Home > Articles > Programming

This chapter is from the book

8.4. Conditional Code

The hardware implements “condition code” or CC registers that contain the usual 4-bit state vector (sign, carry, zero, overflow) used for integer comparison. These CC registers can be set using comparison instructions such as ISET, and they can direct the flow of execution via predication or divergence. Predication allows (or suppresses) the execution of instructions on a per-thread basis within a warp, while divergence is the conditional execution of longer instruction sequences. Because the processors within an SM execute instructions in SIMD fashion at warp granularity (32 threads at a time), divergence can result in fewer instructions executed, provided all threads within a warp take the same code path.

8.4.1. Predication

Due to the additional overhead of managing divergence and convergence, the compiler uses predication for short instruction sequences. The effect of most instructions can be predicated on a condition; if the condition is not TRUE, the instruction is suppressed. This suppression occurs early enough that predicated execution of instructions such as load/store and TEX inhibits the memory traffic that the instruction would otherwise generate. Note that predication has no effect on the eligibility of memory traffic for global load/store coalescing. The addresses specified to all load/store instructions in a warp must reference consecutive memory locations, even if they are predicated.

Predication is used when the number of instructions that vary depending on a condition is small; the compiler uses heuristics that favor predication up to about 7 instructions. Besides avoiding the overhead of managing the branch synchronization stack described below, predication also gives the compiler more optimization opportunities (such as instruction scheduling) when emitting microcode. The ternary operator in C (? :) is considered a compiler hint to favor predication.

Listing 8.2 gives an excellent example of predication, as expressed in microcode. When performing an atomic operation on a shared memory location, the compiler emits code that loops over the shared memory location until it has successfully performed the atomic operation. The LDSLK (load shared and lock) instruction returns a condition code that tells whether the lock was acquired. The instructions to perform the operation then are predicated on that condition code.

/*0058*/ LDSLK P0, R2, [R3];
/*0060*/ @P0 IADD R2, R2, R0;
/*0068*/ @P0 STSUL [R3], R2;
/*0070*/ @!P0 BRA 0x58;

This code fragment also highlights how predication and branching sometimes work together. The last instruction, a conditional branch to attempt to reacquire the lock if necessary, also is predicated.

8.4.2. Divergence and Convergence

Predication works well for small fragments of conditional code, especially if statements with no corresponding else. For larger amounts of conditional code, predication becomes inefficient because every instruction is executed, regardless of whether it will affect the computation. When the larger number of instructions causes the costs of predication to exceed the benefits, the compiler will use conditional branches. When the flow of execution within a warp takes different paths depending on a condition, the code is called divergent.

NVIDIA is close-mouthed about the details of how their hardware supports divergent code paths, and it reserves the right to change the hardware implementation between generations. The hardware maintains a bit vector of active threads within each warp. For threads that are marked inactive, execution is suppressed in a way similar to predication. Before taking a branch, the compiler executes a special instruction to push this active-thread bit vector onto a stack. The code is then executed twice, once for threads for which the condition was TRUE, then for threads for which the predicate was FALSE. This two-phased execution is managed with a branch synchronization stack, as described by Lindholm et al.15

  • If threads of a warp diverge via a data-dependent conditional branch, the warp serially executes each branch path taken, disabling threads that are not on that path, and when all paths complete, the threads reconverge to the original execution path. The SM uses a branch synchronization stack to manage independent threads that diverge and converge. Branch divergence only occurs within a warp; different warps execute independently regardless of whether they are executing common or disjoint code paths.

The PTX specification makes no mention of a branch synchronization stack, so the only publicly available evidence of its existence is in the disassembly output of cuobjdump. The SSY instruction pushes a state such as the program counter and active thread mask onto the stack; the .S instruction prefix pops this state and, if any active threads did not take the branch, causes those threads to execute the code path whose state was snapshotted by SSY.

SSY/.S is only necessary when threads of execution may diverge, so if the compiler can guarantee that threads will stay uniform in a code path, you may see branches that are not bracketed by SSY/.S. The important thing to realize about branching in CUDA is that in all cases, it is most efficient for all threads within a warp to follow the same execution path.

The loop in Listing 8.2 also includes a good self-contained example of divergence and convergence. The SSY instruction (offset 0x40) and NOP.S instruction (offset 0x78) bracket the points of divergence and convergence, respectively. The code loops over the LDSLK and subsequent predicated instructions, retiring active threads until the compiler knows that all threads will have converged and the branch synchronization stack can be popped with the NOP.S instruction.

/*0040*/ SSY 0x80;
/*0048*/ BAR.RED.POPC RZ, RZ;
/*0050*/ LD R0, [R0];
/*0058*/ LDSLK P0, R2, [R3];
/*0060*/ @P0 IADD R2, R2, R0;
/*0068*/ @P0 STSUL [R3], R2;
/*0070*/ @!P0 BRA 0x58;
/*0078*/ NOP.S CC.T;

8.4.3. Special Cases: Min, Max, and Absolute Value

Some conditional operations are so common that they are supported natively by the hardware. Minimum and maximum operations are supported for both integer and floating-point operands and are translated to a single instruction. Additionally, floating-point instructions include modifiers that can negate or take the absolute value of a source operand.

The compiler does a good job of detecting when min/max operations are being expressed, but if you want to take no chances, call the min()/max() intrinsics for integers or fmin()/fmax() for floating-point values.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020