Home > Articles > Home & Office Computing > Microsoft Applications

The Statistical Power of t-Tests

The t-test is a two-group version of the more general analysis of variance. Excel expert Conrad Carlberg, author of Predictive Analytics: Microsoft Excel, shows how changing the nature of hypotheses, increasing the sample size, and using a dependent groups design progressively increase the power of the more basic t-test.
Like this article? We recommend

Like this article? We recommend

The main intent of this series of four articles is to discuss the meaning and calculation of the statistical power of the F test when used as a criterion for the analysis of variance (ANOVA).

You are reading the second in a series of four articles that discuss statistical power, and how to quantify and visualize it using Microsoft Excel. I suggest that you read The Concept of Statistical Power first. If you wish, continue with the present article, then The Noncentrality Parameter in the F Distribution and Calculating the Power of the F Test.

The present article focuses exclusively on the statistical power of the t-test. The reason is that it is much more straightforward to calculate, and to visualize, the statistical power of the t-test with different designs than to do so with the F-test. Therefore, this article serves as an introduction to the calculation of the power of the F-test.

As the first article in this series noted, the power of a statistical test is the probability that you will reject the null hypothesis when in fact the null hypothesis is false.

A t-test is often used to compare the difference between two means that are based on samples. The samples come from populations. In that context, the test's statistical power is the probability that you will conclude that the two population means are different when they are different. (It can also represent the probability of correctly deciding that one population mean is not just different from but larger than the other.)

Within that context, several different situations can affect the power of the t-test:

  • The alternative hypothesis is nondirectional.
  • The alternative hypothesis is directional.
  • The number of observations changes.
  • The design calls for a dependent groups (or "paired") t-test.

The next four sections of this article show the effect of these four situations on the power of the t-test. The effects on the power of the F test are analogous.

Nondirectional Hypotheses

When you make a nondirectional alternative hypothesis to guide your t-test, you state that the population means of the two groups are different. You do not specify which mean you expect to be greater than the other.

The effect of using a nondirectional hypothesis is to divide the alpha—the probability of rejecting a true null hypothesis—between the two tails of the t distribution.

Figure 1 depicts a situation in which the experimenter makes a nondirectional hypothesis.

Figure 1 The alpha level is split between the two tails of the curve on the left.

Figure 1 depicts the result of using Excel's Data Analysis add-in to test the difference between the two group means, with the underlying data in cells A2:B21. Notice that I chose the add-in's "equal variances" t-test tool.

The curve on the left in Figure 1 represents the null hypothesis of no difference in the population means. If those two means are equal, then repeated samples that subtract the control mean from the treatment mean will have a long-term average of zero. Some sample differences will be less than zero and some will be greater than zero, and if you charted those differences, you would eventually wind up with a curve that looks like the one on the left in Figure 1.

Paying Off to Alpha

If we set alpha to 5%, we can identify two wedges under the curve, each of which constitutes 2.5% of the area under the curve. Those wedges are identified as "Alpha / 2" in Figure 1.

In fact, we intend to carry out one experiment only. Suppose that the null hypothesis is true. Then we might be unlucky and happen to get for our samples two groups whose mean difference is unusually large: more than 18, say, or less than -17. If we're unlucky, we'll pay off. Based on the unusually large difference between the sample means, we'll conclude that there's a difference in the population means when in fact there isn't.

Getting It Right When There's a Difference

Figure 1 also shows a curve, on the right, which represents an alternative reality in which the population treatment mean is different from the population control mean. In this reality, the treatment mean is 10.55 points greater than the control mean, and so the distribution of the differences between sample means has an average of 10.55. Some (hypothetical) samples would have a difference in means greater than 10.55, and some would have a difference smaller than 10.55.

Our selection of an alpha level causes us to accept the null hypothesis—and to reject the alternative hypothesis—if we get a sample mean difference that’s between -17 and 18. Those critical values are the ones that cut off the two wedges in the curve on the left.

But if we get a mean difference greater than 18 or less than -17, we'll reject the null hypothesis. If the reality of the situation is that the population mean difference is not zero, then we will have gotten it right: We'll reject the null when it's false.

If the population difference is actually 10.55, then we can quantify the power of the t-test in this situation. It is the area under the right-hand curve that's to the right of the critical value. It is the probability that—assuming the alternative hypothesis is true—we will get a sample result that is larger than our critical value. It is the power of the t-test.

Quantifying the Power

In Excel, we can quantify that power, as follows.

Take the difference between the critical value (16.89, shown in Figure 1, cell F24) and the mean of the right-hand curve (10.55, the difference between the treatment mean and the control mean in cells E4:F4). That difference is 6.34.

Divide 6.34 by the standard error of the difference between the means. The standard error in this case is 8.34, shown in cell F23 of Figure 1. The result of the division is 0.76, and it is a t value: the difference between a mean and a criterion, divided by its standard error.

Use Excel's T.DIST.RT() function to return the proportion of the area under a t distribution to the right of a t value of 0.76 with 38 degrees of freedom:

    T.DIST.RT(.76,38) = 0.23

In words, the power of this t-test is 0.23 or 23%. That's not a very powerful test. The next three sections of this article discuss how to increase the test's power.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020