Home > Articles > Hardware > Upgrading & Repairing

Upgrading and Repairing PCs: The ATA/IDE Interface

This chapter, from the 21st edition of Upgrading and Repairing PCs, provides a wealth of technical information about the IDE/ATA drive interface specification.

Read Cisco CCENT/CCNA ICND1 100-101 Official Cert Guide or more than 24,000 other books and videos on Safari Books Online. Start a free trial today.



This chapter is from the book

An Overview of the IDE Interface

The interface used to connect disk drives to a PC is typically called IDE (Integrated Drive Electronics); however, the official name of this interface is ATA (AT Attachment). The ATA designation refers to the fact that this interface was originally designed to connect a combined drive and controller directly to the 16-bit bus found in the 1984 vintage IBM PC-AT (Advanced Technology) and compatible computers. The AT bus is otherwise known as the ISA (Industry Standard Architecture) bus. Although ATA is the official name of the interface, IDE is a marketing term originated by some of the drive manufacturers to describe the drive/controller combination used in drives with the ATA interface. Integrated Drive Electronics refers to the fact that the interface electronics or controller is built into the drive and is not a separate board, as it was with earlier drive interfaces. Although the correct name for the particular IDE interface we most commonly use is technically ATA, many persist in using the IDE designation today. If you are being picky, you could say that IDE refers generically to any drive interface in which the controller is built into the drive, whereas ATA refers to the specific implementation of IDE that is used in most PCs.

ATA was originally a 16-bit parallel interface, meaning that 16 bits are transmitted simultaneously down the interface cable. A newer interface called Serial ATA (SATA) was officially introduced in late 2000 and was adopted in desktop systems starting in 2003 and in laptops starting in late 2005. SATA sends one bit down the cable at a time, enabling thinner and smaller cables to be used, as well as providing higher performance due to the higher cycling speeds it enables. Although SATA is a completely different physical interface design, it is backward compatible on the software level with Parallel ATA (PATA). Throughout this book, ATA refers to both the parallel and serial versions. PATA refers specifically to the parallel version, and SATA refers specifically to the serial version.

Precursors to IDE

Several types of hard disk interfaces have been used for PC hard disks over the years, as shown in Table 7.1. As time has passed, the number of choices has increased; however, many of the older interface standards are obsolete and no longer viable in newer systems.

Table 7.1. PC Drive Interfaces

Interface

When Used

ST-506/412

1978–1989 (obsolete)

ESDI

1983–1991 (obsolete)

Non-ATA IDE

1987–1993 (obsolete)

SCSI

1986–present

PATA (IDE)

1986–present

SATA

2003–present

ST = Seagate Technology

ESDI = Enhanced Small Device Interface

IDE = Integrated Drive Electronics

SCSI = Small Computer Systems Interface

ATA = AT (Advanced Technology) Attachment

Of these interfaces, only ST-506/412 and ESDI are what you could call true disk-controller-to-drive interfaces, and they are obsolete. Non-ATA versions of IDE were used primarily in the IBM PS/2 systems and are also obsolete. Current SCSI, ATA, and SATA are system-level interfaces that usually internally incorporate a chipset-based controller interface. For example, many SCSI, PATA, and SATA drives incorporate the same basic controller circuitry inside the actual drive. The SCSI interface then adds another layer that connects between the drive controller and the PCI (or ISA) bus, whereas PATA and SATA have a more direct connection from the controller to the AT bus attachment interface. Despite their differences, we call a SCSI, PATA, or SATA card a host interface adapter instead of a controller card because the actual controllers are inside the drives. Virtually all modern disk drives use SATA or PATA interfaces to connect to a system.

IDE Origins

Any drive with an integrated controller could be called an IDE drive, although normally when we say IDE, we really mean the specific version of IDE called ATA. No matter what you call it, combining the drive and controller greatly simplifies installation because no separate power or signal cables run from the controller to the drive. Also, when the controller and drive are assembled as a unit, the number of total components is reduced, signal paths are shorter, and the electrical connections are more noise-resistant. This results in a more reliable and less expensive design than is possible when a separate controller, connected to the drive by cables, is used.

Placing the controller, including the digital-to-analog encoder/decoder (endec), on the drive offers an inherent reliability advantage over interfaces with separate controllers such as ST506 and ESDI. Reliability is increased because the data encoding, from digital to analog, is performed directly on the drive in a tight noise-free environment. The timing-sensitive analog information does not have to travel along crude ribbon cables that are likely to pick up noise and insert propagation delays into the signals. The integrated configuration enables increases in the clock rate of the encoder and the storage density of the drive.

The earliest IDE drives were called hardcards and were nothing more than hard disks and controller cards bolted directly together and plugged into a slot as a single unit. Companies such as the Plus Development Division of Quantum took small 3 1/2-inch drives (either ST-506/412 or ESDI) and attached them directly to a standard controller card. The drive/controller assembly then was plugged into an ISA bus slot as though it were a normal disk controller card. Unfortunately, the mounting of a heavy, vibrating hard disk in an expansion slot with nothing but a single screw to hold it in place left a lot to be desired—not to mention the physical interference with adjacent cards, because many of these units were much thicker than a controller card alone.

Several companies got the idea to redesign the controller to replace the logic board assembly on a standard hard disk and then mount it in a standard drive bay just like any other drive. Because the built-in controller in these drives still needed to plug directly into the expansion bus just like any other controller, a cable was run between the drive and one of the slots. This was the origin of IDE.

Origins of ATA

Control Data Corporation (CDC; its disk drive division was later called Imprimis), Western Digital, and Compaq actually created what could be called the first ATA IDE interface drive and were the first to establish the 40-pin ATA connector pinout. The first ATA IDE drive was a 5 1/4-inch half-height CDC Wren II 40MB drive with an integrated WD controller and was initially used in the first Compaq 386 systems in 1986. I remember seeing this drive for the first time in 1986 at the fall COMDEX show. Besides the (at the time) unique 40-pin ribbon cable, I remember being surprised by the green activity LED on the front bezel. (Most drives up until then used red LEDs.)

Compaq was the first to incorporate a special bus adapter in its system to adapt the 98-pin AT-bus (also known as ISA) edge connector on the motherboard to a smaller 40-pin, header-style connector into which the drive would plug. The 40-pin connector was all that was necessary because it was known that a disk controller never would need more than 40 of the ISA bus lines. Smaller 2 1/2-inch ATA drives found in laptop computers use a superset 44-pin or 50-pin connection, which includes additional pins for power and configuration. The pins from the original ISA bus used in ATA are the only signal pins required by a standard-type AT hard disk controller. For example, because a primary AT-style disk controller uses only interrupt request (IRQ) line 14, the primary motherboard ATA connector supplies only that IRQ line; no other IRQ lines are necessary. Even if your ATA interface is integrated within the motherboard chipset South Bridge or I/O Controller Hub chip (as it would be in newer systems) and runs at higher bus speeds, the pinout and functions of the pins are still the same as the original design taken right off the ISA bus.

left-arrow.jpg See the Chapter 4 section, “Motherboard Connectors,” p. 228.

left-arrow.jpg See the Chapter 4 section, “The ISA Bus,” p. 245.

Eventually, the 40-pin ATA connector and drive interface design was placed before one of the ANSI standards committees that, in conjunction with drive manufacturers, ironed out some deficiencies, tied up some loose ends, and then published what was known as the CAM ATA (Common Access Method AT Attachment) interface. The CAM ATA Committee was formed in October 1988, and the first working document of the ATA interface was introduced in March 1989. Before the CAM ATA standard, many companies, such as Conner Peripherals (which later merged with Seagate Technology), made proprietary changes to the original interface as designed by CDC. As a result, many older ATA drives from the late 1980s are difficult to integrate into a dual-drive setup because minor differences in the interfaces can cause compatibility problems among the drives. By the early 1990s, most drive manufacturers brought their drives into full compliance with the official standard, which eliminated many of these compatibility problems.

Some areas of the ATA standard have been left open for vendor-specific commands and functions. These vendor-specific commands and functions are the reason it is important to use the OEM-specific programs for testing ATA drives. To work to full capability, the diagnostic program you are using typically must know the specific vendor-unique commands for remapping defects. Unfortunately, these and other specific drive commands differ from OEM to OEM, thus clouding the standard somewhat. Most ATA drive manufacturers publish their drive-formatting/initialization software on their websites.

As I noted at the start of this chapter, PATA is a 16-bit parallel interface that has been largely phased out in favor of the serial interface of SATA. SATA’s thinner and smaller cables provide higher performance due to the higher cycling speeds allowed and are considerably easier to work with than the wide PATA ribbon cables. Figure 7.1 shows how the power and data cables SATA uses compare in size to those PATA uses.

Figure 7.1

Figure 7.1. SATA data cables are much smaller than those used by PATA, whereas the power cables are similar in size.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020