Home > Articles > Home & Office Computing > Microsoft Applications

Like this article? We recommend

Like this article? We recommend

Rotating Factors

Rotating Factors

How do we get from the original loadings to the second set? The original components are derived in a way that prevents them from sharing variance. Remember that the first component gets all the variance that's available to it, the second component gets all the remaining variance that's available to it, and so on with subsequent components. This approach ensures that components have no shared variance, and therefore they are uncorrelated with one another.

A consequence of this approach is that the components are what factor analysts call orthogonal: Plotted on a two-dimensional chart, the components represent axes that are at right angles to each other. Here's another way to view this aspect of principal components: If you calculate scores on two (or more) factors for each record, and correlate scores on Factor 1 with scores on Factor 2, the correlation would be 0.0 (see Figure 2). The factors represent entirely different things.

Figure 2 You get the same 0.0 correlation with both original and rotated components.

Another consequence of the way in which the principal components are extracted is that each variable (here, Murder, Assault, and so on) has the highest correlation possible with each component. In fact, the loadings in Figure 1—as I've mentioned, they're actually correlations—are measures of the distance between the variables and the components. The higher the loading, the closer the component comes to the variable. The result is relatively high loadings for most or all of the variables on the first component, which in turn makes it difficult to interpret the meaning of that component and any components that are subsequently extracted.

Now suppose that, after the component extraction is complete, the components could be rotated while the measured variables remain in place. It might be possible to get a more interpretable pattern of loadings on the components. (At this point in the process, we start referring to factors instead of components.) Some variables would be closer to the rotated factors, and some would be farther away, creating a clearer pattern of loadings.

In the process of rotating the components, you have to observe some rules, or else you wind up with arbitrary and subjective decisions about how the factors behave vis-à-vis the variables. In the mid-1900s, a statistician named Louis Thurstone laid down these rules for what is now termed simple structure. Not all rotation methods follow the rules for simple structure, but if you know which rules you're following and which you're not, then you can understand your results much more clearly.

I won't discuss those rules in any real detail here, but one rule of simple structure as implemented by the Varimax rotation is that the components must remain orthogonal to each other. They start out at right angles to one another, and they must maintain that orientation while rotating.

It's a real simplification, but you might think of two orthogonal factors as two spokes in a bicycle wheel, at right angles to one another. As you steer the bicycle, the wheel turns right and left, and it also tilts right and left as you lean one way or another. Those turns and tilts rotate the wheel with respect to its stationary surroundings, but the spokes maintain their original orientation to one another. Similarly, the orthogonal rotation process in factor analysis maintains the relationships between the factors as it adjusts the factors' relationships to the stationary variables.

Another rule that governs the Varimax rotation of the factors under the rules of simple structure is that the variables' total communalities must not change. A variable's communality with respect to a given factor is the square of the variable's loading on that factor. Because the loadings are correlations, the squares of the loadings are percentages of variance.

If you extract and rotate as many factors as there are variables, then a variable's total communality is 1.0, because all the factors account for 100% of its variance. If you don't extract and rotate as many factors as there are variables, the extracted factors will account only for a portion of the available variance, but that portion is generally quite high.

Let's look again at the original worksheet (see Figure 3). The sum of the squared loadings appears in column F. (Keep in mind that the loadings are correlations, and therefore their squares represent percentages of shared variance.) For example, 90.542% of the variance in the Murder variable is accounted for by Factors 1 and 2, regardless of whether the factors are original components or rotated factors. What differs is the way that 90.542% is allocated across the two factors. The rotated loadings make possible a Property Crimes versus Personal Crimes interpretation, but the amount of explained variance in all seven variables remains the same as with the original, unrotated components.

Figure 3 Rotation adjusts the loadings and often clarifies the meanings of the factors.

What happens when you chart the states on the rotated components? The scatter chart in Figure 4 shows where each state falls on the Property Crimes factor and the Personal Crimes factor.

Figure 4 I reversed the directions of the axes to put higher x-axis scores on the left and higher y-axis scores at the bottom.

The chart in Figure 4 is much clearer than the chart of the unrotated components we saw in part 1. In the current chart, we've identified the two factors as representing two different types of crimes: Property Crimes and Personal Crimes.

The tendencies I noted in the chart in part 1 are much more pronounced in Figure 4 above, because the rotation of the axes altered the pattern of loadings on the factors.

These trends are now apparent:

  • Western states (CA, NV, AZ, CO, HI) have high scores on the Property Crimes factor.
  • Eastern states (WV, MS, NC, NH, ME) have low scores on the Property Crimes factor.
  • Southern states (TX, GA, FL, LA, SC, NC) have high scores on the Personal Crimes factor.
  • Northern states (ND, RI, WI, MN, MA, VT) have low scores on the Personal Crimes factor.

In sum, you probably suspected from the start that the raw crime rate data would define two factors: Property Crimes and Personal Crimes. But only by extracting the components and rotating them to clarify the loadings can you score the states on those factors—and find that the regions of the U.S. cluster according to those components.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020