- Venezuelan adventures: the isolation of the Huntington's gene
- Ethnicity, religion, and the gene-hunting companies
- The biggest pedigree of all: deCODE genetics and the Icelandic population
- How many disease genes are there?
The biggest pedigree of all: deCODE genetics and the Icelandic population
A company called deCODE genetics initiated the biggest gene-hunting project of all time. The company proposed to use the entire population of Iceland as a genetic resource because Iceland was founded by a small group of Scandinavian settlers centuries ago. The population is homogenous, and has undergone many population constrictions.
Irish monks, the first inhabitants of Iceland, arrived in the eighth century, but did not become established permanently.26 A small band of Norsemen who settled Iceland between AD 870 and AD 930 followed them. In the latter year, an annual parliament, the Althing, was established to make laws and solve disputes, making the Althing the oldest parliament in the world. In 1000, Iceland adopted Christianity as its official religion. Iceland's rule over the intervening centuries has been complex, beginning with its recognition of the King of Norway as its monarch in 1262–1264 and ending with a complete dissolution of Iceland's ties with Denmark in a 1944 referendum.
Viking traders brought the black plague to Iceland. The disease killed as many as 40,000 inhabitants or more than half the population between 1402 and 1404. The plague returned in 1494–95 with a similarly devastating effect. Around 15,000 people, one-third of the population, died during the smallpox epidemic of 1707–09 just as the Icelandic population was recovering from the depredations of the plague and farming was beginning to flourish. In 1783, the Lakigigar eruption resulted in one of the world's worst volcanic disasters. The eruption lasted for eight months. Gases from the eruption reached altitudes of greater than 9,000 feet. The aerosols formed by these gases cooled the Northern Hemisphere by as much as 1 degree centigrade. The haze that formed caused the loss of most of Iceland's livestock from eating fluorine-contaminated grass. Crop failure from acid rain also occurred resulting in the death of 9,000 people, about one-quarter of the population, from the resulting famine.
The small founding population of Iceland coupled with the population bottlenecks just described, plus the relative isolation of the Icelandic population from immigration, rendered it a natural laboratory for human genetic research. In 1996, Kari Stefansson, a native Icelander and Chief of Neuropathology at Boston's Beth Israel Deaconess Hospital, left his comfortable academic perch to found deCODE genetics, a company whose goal was nothing less than to use the enormous human genetic database of Iceland to identify genetic factors involved in common ailments.27 His certainty that multiple sclerosis involved such factors and his frustration in trying to identify them was one of the underlying reasons for this move.
Genealogy is a passion in Iceland and local newspaper obituaries give detailed family trees that can extend back a hundred years or more. Furthermore, comprehensive clinical records of Iceland's public health service go back as far as 1915. Stefansson recognized that a computerized database of this information for the entire Icelandic population would be an invaluable tool for tracking down genetic diseases. Even more important, Stefansson knew that an exclusive agreement between his company and the government of Iceland would be an integral part of any business plan. This would give deCODE a major advantage over potential competitors.
In February 1998, deCODE signed an agreement with Hoffman-La Roche stipulating that Hoffman-La Roche would pay deCODE more than $200 million in "benchmark" payments over five years if the company succeeded in identifying genes associated with common debilitating and often lethal syndromes like stroke, heart disease, Alzheimer's disease, and emphysema.28 However, these "benchmark" payments required that deCODE achieve specific goals within a given amount of time. In an ominous portent of things to come, deCODE failed to achieve the expected goals and received only around $74.3 million of the original total.
The company initially began its work with DNA donated by small groups of Icelanders.29 This approach was followed up by a publicity campaign designed to attract donors in larger numbers. But the great coup was the Althing's passage of the Health Sector Database Act in December 1998 by a majority of 37 to 20 with 6 abstentions and with the strong support of the Prime Minister David Oddsson.30 The database act authorized the development of a Health Sector Database for the collection of genetic and medical information already stored in various places around Iceland as part of the country's national health system.
The government had several altruistic reasons for wanting to form the database.31 First, the act stated that the comprehensive medical records held by the national health system were a national resource that should be kept intact and utilized in the best way possible. Because government funds were used to support construction of the database, the government rejected the notion that any records submitted to the database could be of a proprietary nature. Neither legal entities nor individuals could be granted ownership of specific medical data. Hence, the database would provide the nation with the opportunity to make use of its information to improve medical services for the people of Iceland.
Second, in 1997, the Ministry of Health and Social Security made public a policy statement regarding its plans for utilizing information technology within the national health system. The idea was to create a number of dispersed personal databases that could be linked. This linked database would include medical records and summarize research in fields of possible relevance to Icelandic health, including epidemics, demographics, and genetic diseases. The cost of constructing such a database was beyond the capacity of the national government, but deCODE's participation would make the effort possible.
Third, the government hoped the database might reverse the Icelandic brain drain by enticing Icelandic scientists interested in human genetics to return to their country. Fourth, the government expected that the database would provide economic benefits to Iceland.
Further actions favorable to deCODE genetics followed.32 In January 2000, the minister of health granted a 12-year license to the company to operate the database. In 2002, the Althing passed a bill permitting the government to issue state bonds as security for a $200 million loan to deCODE to show its support for the company and to help in financing construction of the database.
Initially, the idea of establishing such a database met with strong support as the results obtained held the potential of bringing to Iceland enormous sums of money from pharmaceutical companies. Several Icelandic politicians expressed the hope that the deCODE database might be as significant for the country as the discovery of North Sea oil was for Norway.33 Opposition to the project soon emerged, however, as it became evident that Iceland would be the only country in the world to have passed a law authorizing a private company to collect, store, and analyze the genetic heritage of an entire population for commercial purposes.
Some of the concerns were as follows: First, if an individual's personal health information was accessed from the database by an unauthorized person or company, that individual's privacy would be violated or worse.34 deCODE countered that a person's information would be encrypted. Second, the database act assumed all Icelanders had given their consent to have their personal statistics entered. Although an individual could opt out of the database at any time, data already recorded on that person remained in the database. Furthermore, Icelanders had only six months from the time that the database was constructed to request that their data not be included in the database. This provision was only added to the act because an earlier version had assumed "presumed consent" rather than informed consent. Additionally, data relating to deceased family members would be included automatically without regard to the possible privacy interests of living relatives.
Third, there was danger of genetic stereotyping. One of the diseases studied for which Hoffman-La Roche provided financing was schizophrenia. If a certain fraction of the population proved to have or be susceptible to this disease, then this might suggest to health insurers that anybody of Icelandic heritage any place on earth might be at risk of becoming schizophrenic. Fourth, as the sole licensee, deCODE had monopoly control of the data, although the database itself was the property of the national health system and was managed by the government. Furthermore, deCODE was to be permitted to use the data for commercial purposes for 12 years and access to the data by others was denied if it threatened the financial interest of the company. Fifth, deCODE would make its data available to pharmaceutical and insurance companies for a price. Furthermore, the arrangement with Hoffman-La Roche, according to which deCODE would exclusively investigate 12 different diseases, prevented others from studying these diseases in Iceland.
Pétur Hauksson, a psychiatrist, founded Mannvernd (an Icelandic word meaning human protection), a nonprofit human rights group. Its goal soon became to overturn the Health Sector Database Act. One of Mannvernd's most important complaints was that the act was based on the presumed consent of Icelandic citizens. In addition, citizens who agreed to give blood for one of deCODE's genetic disease investigations had to consent to have the samples used for other genetic studies without knowledge of what they might be. Because of Mannvernd's efforts, Icelanders were now able to refuse to have their information entered in the database by submitting an appropriate form. By June 2001, 20,000 Icelanders, about 7% of the population, had opted out of the Health Sector Database. The Icelandic Medical Association also voiced its opposition to the database act. Many doctors refused to turn over patients' records without their consent. In April 1999, the Icelandic Medical Association brought the Health Sector Database Act before the World Medical Association. The latter body stated full support for the position taken by its Icelandic member in opposition to the database act. Other international criticism was also on the rise. For example, Harvard's Richard Lewontin, a distinguished population geneticist, published an op-ed piece in the New York Times on January 23, 1999, titled "People Are Not Commodities," which argued that the database act had transformed the "entire population of Iceland into a captive biomedical community."35
A major concern of the Icelandic Medical Association was the protection of personal data under the database act. Were the encryption technologies sufficient to prevent some unauthorized individual from linking medical data with a specific individual? The association hired Ross Anderson, a Lecturer in the University of Cambridge Computer Laboratory, in fall of 1998 to look into this question. Anderson concluded that deCODE and the Icelandic Data Protection Commission would have to use coded identifiers that would permit linkage of personal data to specific individuals. Because the encryption system would be broken sooner or later, it seemed to Anderson that informed consent standards would have to apply.
Meanwhile, deCODE had begun to achieve scientific success with the more traditional approach by making use of family pedigrees with their informed consent. Hence, the company's obligations under the database act became more of a burden than an opportunity, especially because deCODE was unable to bring the Icelandic Medical Association and the Data Protection Commission on board. The final blow to construction of the database came on November 27, 2003, the day that the Icelandic Supreme Court rendered its verdict in the case of Gudmundsdóttir v. Iceland.
The case was prompted by a young woman who wrote to the Icelandic Ministry of Health in February 2000 requesting that any information in her father's medical records and any genealogical or genetic data concerning him not be transferred to the database. The medical director of health denied her request after he had obtained a legal opinion. The Icelandic District Court upheld the director's decision arguing that the medical information available in the database could not be connected to a specific person. But the Supreme Court reversed the lower court decision stating that Gudmundsdóttir had a personal privacy interest in her father's medical data. However, the Court broadened its ruling pointing out that, because by Icelandic law individual medical records were required to contain detailed information on people's health, employment, lifestyles, social circumstances, and so on, a guarantee had to be applied to ensure the individual's freedom from interference with privacy, home, and family life.
Although the database act was dead, deCODE was making good scientific progress in gene discovery. On its Web site, the company claimed to have "discovered risk factors for dozens of common diseases ranging from cardiovascular disease to cancer."36 deCODE also introduced a new program called deCODEme, which offered customers complete scans that would allow them to discover their "genetic risk for 46 diseases and traits ranging from heart attack and diabetes to alcohol flush reaction and testicular cancer."37 The company also offered a cardiovascular risk scan, a similar scan for seven common cancers, and a scan of a person's DNA to discover their genetic roots. The problem was that deCODE had never made a profit, was losing money, and was becoming increasingly indebted to its creditors. On November 17, 2009, deCODE filed for bankruptcy under Chapter 11 of the United States Bankruptcy Code.38 At the same time, it entered into an agreement with Saga Investments LLC to purchase its Iceland-based subsidiary Islensk Erfdagreining and its drug discovery and development programs. Following the sale of these assets, deCODE genetics would be liquidated.
In reporting the bankruptcy of deCODE genetics, the Times of London said that it had been assured by Kari Stefansson "that ownership of genetic data remained with the company's customers and that Saga would be bound by a privacy policy that prevents disclosure of data to third parties such as insurers, employers or doctors."39 But Dan Vorhaus, a lawyer with the American firm of Robinson, Bradshaw, and Hinson, which specializes in genomics, was not convinced. He noted the agreements that deCODE had made with its customers were "often unclear and contradictory."40
"The ownership is going to change, and the people making decisions about how to run the company are going to change," Vorhaus said. "This information was held by deCODE, a scientific research organisation. What you have now is Saga, an investment company with a different agenda, very much focused on the bottom line.
Within the range of allowable uses, deCODE's new ownership may choose to use that information in a different way, and possibly to a greater extent, than was previously the case."41
So the question of genetic privacy, that became such an issue after the passage of the database act, arises once more with the bankruptcy of deCODE genetics. It will become an issue again should other gene-hunting companies declare bankruptcy or enter into mergers or takeovers such as the one between deCODE and Saga. In January 2010, deCODE emerged from bankruptcy under the ownership of Saga Investments.42 Its new CEO was a lawyer named Earl Collier with its founder and former CEO Kari Stefansson now head of research.