Home > Articles > Programming > C/C++

Objective-C Phrasebook: Numbers

David Chisnall describes the primitive (non-object) C types available in Objective-C and their treatment.
This chapter is from the book

This chapter is from the book

One of the big differences between Objective-C and Smalltalk is that Objective-C inherits the full range of primitive (non-object) C types. These are, in ascending order of size, char, short, int, long and long long integers, with both signed and unsigned variants, as well as two floating-point types: float and double.

These all behave exactly as they do in C, complete with type promotion rules. You'll also find that Objective-C compilers support a long double type, which is architecture-dependent.

Note that this is very similar to Java, where you have a small selection of non-object types, but with some very important differences. In Java, the intrinsic types are defined to be a fixed size. In C, they are defined to have a minimum precision. For example, the specification says that an int has "the natural size suggested by the architecture of the execution environment," whereas in Java it is explicitly defined as a "32-bit signed two's complement integer."

As well as the primitive types, C supports defining new names for the existing types via the typedef keyword. The most common reason for this is that the specification does not require a particular size for any of the standard types, merely that each must be at least as big as the previous one. In particular, there are platforms currently deployed where int is 16, 32, and 64 bits, so you can't rely on any specific size for these.

OS X supports ILP32 and LP64 modes. This shorthand is used to describe which of the C types have which sizes. ILP32 means that ints, longs, and pointers are 32 bits. LP64 means that longs and pointers are 64-bit quantities, and that, implicitly, other values are smaller. Microsoft Windows, in contrast, is an LLP64 platform on 64-bit architectures; both int and long remain 32 bits and only pointers and long longs are 64 bits. This causes a problem if you assumed that you could safely cast a pointer to long—something that works on almost every platform in the world, including Win32, but does not work on Win64.

The problem of casting a pointer to an integer is a serious one. The long long type is at least 64 bits, so on any current platform it is guaranteed to be big enough to store any pointer, but on any 32- or 16-bit platform it can be much too big. C99 introduced the intptr_t typedef, which is exactly the size of a pointer. Apple introduced an equivalent: NSInteger. This is used throughout the Cocoa frameworks and is always the same size as a pointer. There is also an unsigned version, NSUInteger.

In GUI code, you will often come across CGFloat or NSFloat. These are equivalent to each other. Both are the size of a pointer, making them floats on 32-bit platforms and doubles on 64-bit ones.

Storing Numbers in Collections

From: numberInArray.m

6 NSMutableArray *array = [NSMutableArray array];
7 [array addObject: [NSNumber numberWithInt: 12]];

All of the standard Objective-C collection classes let you store objects, but often you want to store primitive types in them as well. The solution to this is boxing—wrapping a primitive type up in an object.

The NSValue class hierarchy is used for this. NSValue is a class designed to wrap a single primitive value. This class is quite generic, and is an example of a class cluster. When you create an instance of an NSValue, you will get back some subclass, specialized for storing different kinds of data. If you store a pointer in an NSValue, you don't want the instance to take up as much space as one containing an NSRect—a C structure containing four NSFloats.

One concrete subclass of NSValue is particularly important: NSNumber. This class is intended to wrap single numerical values and can be initialized from any of the C standard integer types.

The designated constructor for both of these classes is +valueWithBytes:objCType. The first argument is a pointer to some value and the second is the Objective-C type encoding of the type. Type encodings are strings representing a particular type. They are used a lot for introspection in Objective-C; you can find out the types of any method or instance variable in a class as a type encoding string and then parse this to get the relevant compile-time types.

You can get the type encoding of any type with the @encode () directive. This is analogous to sizeof () in C, but instead of returning the size as an integer it returns the type encoding as a C string. One very convenient trick when working with type encodings is to use the typeof() GCC extension. This returns the type of an expression. You can combine it with @encode (), like this:

NSValue *value =
  [NSValue valueWithBytes: &aPrimitive
       objCType: @encode(typeof(aPrimitive))];

This snippet will return an NSValue wrapping aPrimitive, and will work regardless of the type of the primitive. You could wrap this in a macro, but be careful not to pass it an expression with side effects if you do.

Note that you have to pass a pointer to the primitive value. This method will use the type encoding to find out how big the primitive type is and will then copy it.

More often, you will use one of the other constructors. For example, if you want to create an NSNumber instance from an integer, you would do so like this:

NSNumber *twelve = [NSNumber numberWithInt:
    12];

The resulting object can then be added to a collection. Unlike NSValue, NSNumber instances are ordered, so you can sort collections containing NSNumber instances.

From: numberArray.m

 6 NSArray *a = [NSArray arrayWithObjects:
 7   [NSNumber numberWithUnsignedLongLong:
          ULLONG_MAX],
 8   [NSNumber numberWithInt: -2],
 9   [NSNumber numberWithFloat: 300.057],
10   [NSNumber numberWithInt: 1],
11   [NSNumber numberWithDouble: 200.0123],
12   [NSNumber numberWithLongLong: LLONG_MIN],
13   nil];
14 NSArray *sorted =
15   [a sortedArrayUsingSelector: @selector(compare
          :)];
16 NSLog(@"%@", sorted);

The numberArray.m example stores a group of NSNumber instances in an array and then sorts them using the -compare: selector. As you can see from the output, the ordering is enforced irrespective of how the number was created.

Output from: numberArray.m

1 2010-03-15 14:50:48.166 a.out[51465:903] (
2     "-9223372036854775808",
3     "-2",
4     1,
5     "200.0123",
6     "300.057",
7     18446744073709551615
8 )

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020