- 1.1 Discrete Sequences and Their Notation
- 1.2 Signal Amplitude, Magnitude, Power
- 1.3 Signal Processing Operational Symbols
- 1.4 Introduction to Discrete Linear Time-Invariant Systems
- 1.5 Discrete Linear Systems
- 1.6 Time-Invariant Systems
- 1.7 The Commutative Property of Linear Time-Invariant Systems
- 1.8 Analyzing Linear Time-Invariant Systems
- References
- Chapter 1 Problems
1.4 Introduction to Discrete Linear Time-Invariant Systems
In keeping with tradition, we'll introduce the subject of linear time-invariant (LTI) systems at this early point in our text. Although an appreciation for LTI systems is not essential in studying the next three chapters of this book, when we begin exploring digital filters, we'll build on the strict definitions of linearity and time invariance. We need to recognize and understand the notions of linearity and time invariance not just because the vast majority of discrete systems used in practice are LTI systems, but because LTI systems are very accommodating when it comes to their analysis. That's good news for us because we can use straightforward methods to predict the performance of any digital signal processing scheme as long as it's linear and time invariant. Because linearity and time invariance are two important system characteristics having very special properties, we'll discuss them now.