Home > Articles > Networking > Wireless/High Speed/Optical

This chapter is from the book

This chapter is from the book

Historical Perspective

A hundred years ago, a radio "system" was a transmitter, a receiver, and a path that could be successfully traversed by the miracle of radio waves. Even then there were broader issues to resolve—trade-offs that could be made between one element of the configuration and another. A more powerful transmitter or a more sensitive receiver; a higher mast or a directive antenna—these were some of the potential design improvements that could extend the range of the system when needed. Which of these to adopt became an important question, affecting cost and having performance implications in other dimensions. Was the power demand excessive? Was range being limited by circuit noise within the receiver or by external environmental noise? Was it limited by a physical obstruction over which one might radiate?

Radio had evolved from the design of general-purpose transmitters and receivers to a variety of "systems" with specific applications. Broadcast systems created the wildly popular phenomena of radio and television entertainment, by creating a way to deliver that entertainment inexpensively to a mass market. The trade-offs shifted again; base transmitters could be extremely powerful and expensive, sited on tall buildings or hills, using tall masts and elaborate gain antennas, but the millions of home receivers had to be low-cost consumer products.

"Propagation engineers" now had a more difficult problem; rather than designing a single path from one radio to another, they were concerned with an "area of coverage" in which signal quality was likely (but not guaranteed) to be acceptable. Moreover, the demand for channels required channels to be reused in nearby areas, so that interference needed to be predicted and controlled in the service areas of systems. Probability and statistics had joined the sciences that contributed to system design.

The first mobile telephone systems emerged in the 1940s, quickly became popular, and introduced a number of new trade-offs. The mobile equipment, carried in the trunks of cars and powered from the car battery, needed to be smaller and lower in power (as well as cheaper) than the base station equipment; but coverage areas needed to be large, since cars would need to operate throughout large urban areas. A single high-powered base station could serve an entire urban area of more than a thousand square miles, but the lower-powered return paths from the vehicles could not, and satellite base station receivers became necessary. The higher cost of the (relatively few) satellite base stations could now be traded off for the (smaller) savings in power in the more numerous mobile units. This trade-off of expensive base equipment against more numerous mobile radios is characteristic of such systems.

In the major urban areas, a mobile telephone system would now consist of several radio channels, serving several hundred customers. This aggregation of radios and customers led to the incorporation of telephone traffic-handling probabilities into mobile system design—designers would now calculate the probability that an idle channel would be available. Because of the shortage of channels, however, service was very poor before the days of cellular systems. In the 1950s mobile operators who set up calls were replaced by equipment to automatically select idle channels, allowing the dialing of telephone calls in both directions. Signaling had been added to voice communication on radio channels, together with the first steps toward complex logic.

As early as the 1940s, when the first crude mobile telephone systems were going into service, AT&T had begun to propose a new concept in mobile radio system design. Rather than using a single high-powered base station to cover an entire urban area, they proposed to create a service area from a grid of smaller coverage areas, called "cells." This had several important advantages. It allowed both base and mobile radios to operate at lower power, which would reduce radio costs. It also allowed larger service areas, since additional small coverage areas could always be added around the periphery to expand the system. Most importantly, although nearby cells required different channels to prevent interference, farther cells could reuse the same channels. In this way each channel could handle tens or even hundreds of calls in the same urban area, overcoming the limitations on capacity that were a result of spectrum shortages. These new systems would require a few hundred channels to get started, however, and the needs of the broadcasters were more persuasive in that period.

In 1968 the FCC finally opened the inquiry that ultimately led to cellular systems in the 1980s. For the advantages they provided, however, these systems demanded a new level of complexity. This time, the major complexity was not in the radio design, which saw few radical changes. With the introduction of small cells, calls could cross many cells, requiring mobile locating, channel switching during calls, and the simultaneous switching of wireline connections from one cell to another. Mobiles had to identify systems and find the channels on which calls could be received or originated, which required the introduction of microcomputers in mobile radios and made the technology of telephone switching machines an important element of radio system design. Moreover, with the introduction of so many disciplines in the design of a single system, and a variety of new trade-offs to be made, it was no longer practical for the many engineers to mediate these trade-offs, and the practice of systems engineering became a new and important discipline.

The introduction of cellular systems also marked the continuation of a long-term trend, in which spectrum shortages drove system designs to higher and higher frequencies. Frequencies such as 900 MHz (and later, 2 GHz) were used for such applications for the first time, and it became necessary to understand the propagation characteristics at these frequencies in real-world environments. Moreover, the old methods of the propagation engineer, in which terrain elevations were plotted to determine coverage, were no longer practical for hundreds of cells in a single system, and statistical coverage methods were developed to assure an acceptable quality of coverage. This trend has reversed once again more recently, as computers have allowed detailed terrain studies to be carried out for many cells.

Even as the first analog systems such as the Advanced Mobile Phone Service (AMPS) were being deployed in the early 1980s, efforts were under way to provide significant performance and capacity enhancements enabled by digital communications, advancements in digital signal-processing technology, and speech encoding. The Global System for Mobile Communications (GSM) was a cooperative effort of European countries to define an evolutionary system that provided increased capacity (or equivalently improved spectral efficiency), improved the quality of service, and allowed seamless roaming and coverage across the continent, and eventually around the world. The GSM standard was the first to encompass both the radio elements and the interconnection of serving areas to provide a holistic approach to ubiquitous service. As the first commercial digital cellular system, GSM demonstrated the power of digital signal processing in providing spectrally efficient, high-quality communications. GSM systems began deployment in the early 1990s.

By the mid-nineties, digital spread-spectrum systems were being introduced in North America under standard IS-95. Introduced by Qualcomm, Inc., a U.S.-based company, this system allows all cells to use the same frequency. Each channel is distinguished not by a distinct frequency or time slot but by a spreading code. The fundamental basis for this system is a technique called code-division multiple access (CDMA), a technique that has become the universal architecture for third-generation systems and beyond. CDMA systems have provided another technological leap in complexity, bringing additional enhancements to capacity, information bandwidth, quality of service, and variety of services that can be provided.

Each generation of wireless systems builds upon the technological advances of the prior generation. For each step in this evolution, the classical tools of the engineer remain, but they are honed and reshaped by each subsequent generation. The importance of system design and the role of systems engineering have grown substantially with each new technological generation. The continuing demand for new services and increased capacity, interacting with ongoing technological advancement, leads to new opportunities for system design, new problems to solve, and even the development of new engineering disciplines.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020