Home > Articles > Networking > Network Design & Architecture

This chapter is from the book

How the Problem Arose

Naming and addressing had never been a major concern in data communications. The networks were sufficiently simple and of sufficiently limited scope that it wasn't a problem. Most early networks were point-to-point or multidrop lines, for which addressing can be done by simple enumeration. Even for large SNA networks, it was not really an issue. Because SNA is hierarchical with only a single path from the leaves (terminals) to the root (mainframe), enumerating the leaves of the hierarchy (tree) again suffices.2 In fact, addressing in a decentralized network with multiple paths, like the early ARPANET or even the early Internet, can be accommodated by enumeration and was. But everyone knew the addressing problem was lurking out there and eventually it would have to be dealt with.

The ARPANET was a research project that wasn't expected by many to succeed. No one expected the ARPANET to ever be large enough for addressing to be a major problem, so why worry about an esoteric problem for which at the time we had no answers. As it was, there were an overwhelming number of major technical problems to solve which were a lot more crucial. Just being able to route packets, let alone do useful work with it, would be a major achievement. After all, it was research. It was more important to be focused on the few specific problems that were central to making the project work. Addressing was distinctly a lesser issue. Of course, to everyone's surprise the ARPANET was almost immediately useful.

Because the initial design called for no more than a few tens of switches connecting a few hosts each, addressing could be kept simple. Consequently, there were only 8 bits of address on the Interface Message Processors (IMP). Host addresses were the IMP number (6 bits) and the IMP port numbers (2 bits). Each IMP could have a maximum of 4 hosts attached (and four 56K trunks). IMP numbers were assigned sequentially as they were deployed.

Although a maximum of 64 IMPs might seem a severe limitation, it seemed like more than enough for a research network. There was not much reason for concern about addressing. Once the success of the ARPANET was accepted, the address size of NCP was expanded in the late 1970s to 16 bits to accommodate the growth of the network. (Network Control Program implemented the Host-to-Host Protocol, the early ARPANET equivalent of TCP/IP.)

It was clear that the one aspect of naming and addressing that would be needed was some sort of directory. ARPA was under a lot of pressure to demonstrate that the network could do useful work; there certainly was not time to figure out what a directory was and design, and implement such a thing. And for the time being, a directory really wasn't necessary. There were only three applications (Telnet, FTP, and RJE), and only one each per host. Just kludge something for the short term. A simple expedient was taken of simply declaring that everyone use the same socket for each application: Telnet on socket 1, FTP on 3, and RJE on 5.3 Every host would have the same application on the same address. This would do until there was an opportunity to design and build a cleaner, more general solution. Hence, well-known sockets were born. (Strangely enough, while many of us saw this as a kludge, discussions among the people involved revealed that others never saw it that way. An unscientific survey indicates that it may depend on those who had early imprinting with operating systems and those that didn't.)

If there was any interest in naming and addressing during that period, it was more concerned with locating resources in a distributed network. How does a user find an application in the network? By the mid-1970s, several efforts were underway to build sophisticated resource sharing systems on top of the ARPANET (the original justification) or on smaller networks attached to the ARPANET. David Farber was experimenting with a system at UC Irvine that allowed applications to migrate from host to host (Farber and Larson, 1972); and another ARPA project, the National Software Works, was trying to build an elaborate distributed collaboration system on top of the ARPANET (Millstein, 1977). These projects raised questions about what should be named at the application layer and how it related to network addresses, but outstripped the capability of systems of the day.

The problem of naming and addressing had been a factor in the development of operating systems. The complexity of process structure in some operating systems provided a good basis for considering the problem (Saltzer, 1977). Operating system theory at the time drew a distinction between location-independent names and the logical and physical levels of addresses. This distinction was carried into networking and generalized as two levels of names: 1) location-independent names for applications and 2) location-dependent addresses for hosts.

The general concept was that the network should seem like an extension of the user's interface. The user should not have to know where a facility was to use it. Also, because some applications might migrate from host to host, their names should not change just because they moved. Thus, applications must have names that are location independent or as commonly called today, portable. The binding of application names to processes would change infrequently. These applications would map to location-dependent addresses, a mapping that might change from time to time. Network addresses would map to routes that could change fairly frequently with changing conditions of the network. That was the general understanding.

Using switch port numbers for addresses was not uncommon. After all, this is basically what the telephone system did (as did nearly all communication equipment at that time). However, although this might have been acceptable for a telephone system, it causes problems in a computer network. It didn't take long to realize that perhaps more investigation might be necessary. Very quickly, the ARPANET became a utility to be relied on as much or more than an object of research. This not only impairs the kind of research that can be done, it also prevents changes from being made. (On the other hand, there is a distinct advantage to having a network with real users as an object of study.) But it also led to requirements that hadn't really been considered so early in the development. When Tinker Air Force Base in Oklahoma joined the Net, they very reasonably wanted two connections to different IMPs for reliability. (A major claim [although not why it was built] for the ARPANET in those days of the Cold War was reliability and survivability.) But it doesn't work quite so easily. For the ARPANET, two lines running to the same host from two different IMPs, have two different addresses and appear as two different hosts. (See Figure 5-1.) The routing algorithm in the network has no way of knowing they go to the same place. Clearly, the addressing model needed to be reconsidered. (Because not many hosts had this requirement, it was never fixed, and various workarounds were found for specific situations.) Mostly, the old guard argued that it didn't really happen often enough to be worth solving. But we were operating system guys; we had seen this problem before. We needed a logical address space over the physical address space! The answer was obvious; although it would be another ten years before anyone wrote it down and published it. But military bases were rare on the Net, so it was not seen as a high-priority problem. Also, we all knew that this was a hard subtle problem, and we needed to understand it better before we tried to solve it. Getting it wrong could be very bad.

Figure 5-1

Figure 5-1 Because ARPANET host addresses were the port numbers of the IMPs (routers), a host with redundant network connections appears to the network as two separate hosts. Routing can't tell the two lines go to the same place.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020