Home > Articles > Engineering > Semiconductor Technologies

This chapter is from the book

1.3 Design of PDNs

Since a computer system supports multiple frequencies, a PDN is best designed in the frequency domain. The response of the PDN to switching circuits can then be viewed in the time domain to evaluate the transient noise voltages generated on the power supply terminals of the IC or between any other nodes in the system. The response of the PDN in the frequency domain enables a designer to understand all the resonances and antiresonances in the system produced by the interaction of inductances and capacitances in the network. An antiresonance, when excited by a source, always generates the maximum noise voltage across the power supply terminals of the IC. Based on the frequency response of the PDN, the designer can evaluate the importance of the antiresonances in the system and decide if the source (switching circuits) will ever excite these antiresonances. Hence, the signature of the source along with the frequency response of the PDN decides the noise voltages on the power supply in the time domain. In this section, the concept of target impedance is introduced. The use of target impedance as a design parameter is discussed by evaluating a simple circuit in the frequency and time domain.

1.3.1 Target Impedance

The target impedance is based on Ohm's law, which states that the ratio of voltage to current has to equal the impedance in the network. For a PDN, the voltage is the allowed ripple (Dv) on the power supply. The target impedance ZT (in ohms) of a PDN can then be calculated as [7]

Equation 1.16

020equ01.jpg

where the average current drawn by the switching circuits is assumed to be 50% of the maximum current and Vdd is the power supply voltage. Assuming a voltage of 5 V with a ripple of 5% and a maximum current of 1 A, the target impedance can be calculated as

Equation 1.17

020equ02.jpg

The maximum current drawn by an IC can always be calculated by using the relationship P = VImax, since both power P and voltage V for an IC are known. The target impedance ZT establishes an upper limit for the maximum impedance for the PDN across the power supply terminals of the IC in the frequency domain. An impedance below ZT ensures that any current transients will always generate noise voltages of less than 5% of 5 V. Hence, ZT is a very useful parameter for designing PDNs in which the noise voltages have to be controlled within, say, 5% of the supply voltage.

A plot of ZT versus frequency is shown in Figure 1-12. The frequency axis represents the frequency components associated with the source excitation. According to the figure, if the impedance exceeds the target impedance at any frequency where the current transients can excite the network, then the resulting power supply noise will exceed 5% of 5 V = 250 mV. The figure assumes that the magnitude of the current transients is 50% of the maximum current.

Figure 1-12

Figure 1-12 Z versus frequency.

The target impedance calculations for five microprocessors introduced between 1990 and 2002 are shown in Table 1-1. As can be seen, the target impedance has decreased 500-fold over a decade because of the lowering of the supply voltage and increase in power. Since the impedance of the PDN is also given by 021fig01.jpg , where L and C are the inductances and capacitances in the network, a low target impedance always implies large capacitance and low inductance in the network. In Table 1-1, the frequency of the microprocessor has increased from 16 MHz to 1.2 GHz over a decade, which implies that the target impedance has to be maintained at least up to the fundamental frequency of the clock. However, this overly restrictive condition may not be satisfied at all frequencies and can often increase the cost of the system. Hence, care should be taken to correlate the frequency response with the current transients in the system to better understand the frequencies at which the PDN will be excited. The target impedance should be maintained at these excitation frequencies.

Table 1-1. Target Impedance Trends

Year

Voltage (Volts)

Power dissipated (Watts)

Current (Amps)

Ztarget (mW)

Frequency (MHz)

1990

5.0

5

1

250

16

1993

3.3

10

3

54

66

1996

2.5

30

12

10

200

1999

1.8

90

50

1.8

600

2002

1.2

180

150

0.4

1200

Information from Smith [7].

1.3.2 Impedance and Noise Voltage

Consider the circuit shown in Figure 1-13(a). The circuit has a supply voltage of 2.0 V. The 3-mW resistance and 320-pH inductance are the spreading resistance and inductance from the power supply to the capacitor. Spreading resistance and inductance produce resistive and inductive drops when the current travels from the power supply to the capacitors (through the interconnects) for charging them. The capacitor parameters are equivalent series resistance (ESR) = 10 mW, equivalent series inductance (ESL) = 1 nH, and C = 100 mF, resulting in a resonant frequency of 0.5 MHz, which are explained in detail later. The on-chip capacitance is 800 nF in the circuit. The current source is 1 A between the voltage and ground terminals of the IC, and through an AC analysis, the voltage (or impedance in ohms) can be obtained as shown in Figure 1-13(b). In Figure 1-13(a), a 1-A current source is used to represent the current, and hence the voltage across it is the impedance in ohms (Z = V/I). In the frequency response, the resonant frequency of the decoupling capacitor can be seen, and the large impedance at approximately 13 MHz is caused by the antiresonance between the chip capacitance and ESL of the decoupling capacitor, which is explained later. The null in the impedance profile is called a resonance; the peak in the impedance profile is called the antiresonance. For a 2-V supply, 5% tolerance, and a 10-A average current, the target impedance is 10 mW. Therefore, the maximum impedance allowed across the current source (which represents the switching circuit) is 10 mW. Clearly, the target impedance is met up to a frequency of 5 MHz in Figure 1-13(b). In the frequency range from 5 MHz to 100 MHz, the target impedance has been exceeded.

Figure 1-13

Figure 1-13 (a) Circuit of PDN. (b) Frequency response.

Let's now look at the response of this network to two current signatures. The circuit used to compute the time-domain response is shown in Figure 1-14(a). The switching circuit is represented using a time-dependent resistor, the resistance of which changes from 97 mW to 197 mW, which corresponds to a 10-A change in current in the circuit, assuming only 3 mW of resistive impedance (no inductance) is present in the PDN. The current changes from 20 A (2/100 mW) to 10 A (2/200 mW) in the circuit. The voltage across the time-dependent resistor is shown in Figure 1-14(b) for a current transient with rise time of 10 ns and period of 1 ms. As explained earlier, the transient voltage across the IC power supply contains transients with both positive and negative peaks. The noise voltage settles to within 5% of 2 V after 50 ns following the switching activity. Hence, during a large part of the 1-ms period, the noise is below the 5% tolerance value. The 10-ns rise time has enough frequency components that exceed the target impedance initially, causing the first negative glitch to exceed the 100 mV tolerance value. If this negative glitch is a problem, then the impedance at frequencies corresponding to the rise time must be reduced.

Figure 1-14

Figure 1-14 (a) Time-domain circuit; (b) 1-ms current period; (c) 80-ns current period.

Let's now consider the noise voltage when the current transient has a rise time of 10 ns and period of 80 ns, corresponding to a frequency of about 13 MHz, which coincides with the antiresonant frequency. The noise voltage is shown in Figure 1-14(c), which is 200 mV for the entire period of 1 ms and hence exceeds the noise budget of 100 mV. This example shows the importance of managing the impedance of the PDN in the frequency domain to manage excessive noise caused by the current transients.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020