Home > Store

Modern Operating Systems, 3rd Edition

Register your product to gain access to bonus material or receive a coupon.

Modern Operating Systems, 3rd Edition

Book

  • Sorry, this book is no longer in print.
Not for Sale

About

Features

Coverage of all standard material – Includes processes, threads, memory management, file systems, I/O, and deadlocks

Discussion of multimedia file systems – An increasingly important topic that most books miss

Coverage of multiprocessors, multicomputers, virtual machines, and distributed systems – Reflects that field is rapidly moving from an era of single-processor systems to multicore systems, multiprocessors, and distributed systems.

A thorough treatment of computer security – Includes viruses, worms, malware and other digital pests. This chapter far exceeds anything in any other book. It also discusses ways to combat them.

Case studies of three popular operating systems: Linux, Windows Vista, and Symbian OS (Ch. 12).

– Many students are familiar with Linux, but this chapter delves into the details.

– Almost nothing has been published on the internal workings of Windows Vista, so this chapter is unique.

– Embedded operating systems such as Symbian OS in cell phones, DVD players, digital cameras, camcorders, and more are increasingly important. Few students have ever even heard of these.

A Research section in many chapters – Describes current research in the topic covered by the chapter.

Description

  • Copyright 2008
  • Edition: 3rd
  • Book
  • ISBN-10: 0-13-600663-9
  • ISBN-13: 978-0-13-600663-3

The widely anticipated revision of this worldwide best-seller incorporates the latest developments in operating systems technologies.  The Third Edition includes up-to-date materials on relevant operating systems such as Linux, Windows, and embedded real-time and multimedia systems. KEY TOPICS: Includes new and updated coverage of multimedia operating systems, multiprocessors, virtual machines, and antivirus software. Covers internal workings of Windows Vista (Ch. 11); unique even for current publications. Provides information on current research based Tanenbaum’s experiences as an operating systems researcher. MARKET: A useful reference for programmers.

Sample Content

Table of Contents

1 INTRODUCTION

1.1 WHAT IS AN OPERATING SYSTEM?

1.1.1 The Operating System as an Extended Machine

1.1.2 The Operating System as a Resource Manager

1.2 HISTORY OF OPERATING SYSTEMS

1.2.1 The First Generation

1.2.2 The Second Generation

1.2.3 The Third Generation

1.2.4 The Fourth Generation

1.3 COMPUTER HARDWARE REVIEW

1.3.1 Processors

1.3.2 Memory

1.3.3 Disks

1.3.4 Tapes

1.3.5 I/O Devices

1.3.6 Buses

1.3.7 Booting the Computer

1.4 THE OPERATING SYSTEM ZOO

1.4.1 Mainframe Operating Systems

1.4.2 Server Operating Systems

1.4.3 Multiprocessor Operating Systems

1.4.4 Personal Computer Operating Systems

1.4.5 Handheld Computer Operating Systems

1.4.6 Embedded Operating Systems.

1.4.7 Sensor Node Operating Systems

1.4.8 Real-Time Operating Systems

1.4.9 Smart Card Operating Systems

1.5 OPERATING SYSTEM CONCEPTS

1.5.1 Processes

1.5.2 Address Spaces

1.5.3 Files

1.5.4 Input/Output

1.5.5 Protection

1.5.6 The Shell

1.5.7 Ontogeny Recapitulates Phylogeny

1.6 SYSTEM CALLS

1.6.1 System Calls for Process Management

1.6.2 System Calls for File Management

1.6.3 System Calls for Directory Management

1.6.4 Miscellaneous System Calls

1.6.5 The Windows Win32 API

1.7 OPERATING SYSTEM STRUCTURE

1.7.1 Monolithic Systems

1.7.2 Layered Systems

1.7.3 Microkernels

1.7.4 Client-Server Model

1.7.5 Virtual Machines

1.7.6 Exokernels

1.8 THE WORLD ACCORDING TO C

1.8.1 The C Language

1.8.2 Header Files

1.8.3 Large Programming Projects

1.8.4 The Model of Run Time

1.9 RESEARCH ON OPERATING SYSTEMS

1.10 OUTLINE OF THE REST OF THIS BOOK

1.11 METRIC UNITS

1.12 SUMMARY

2 PROCESSES AND THREADS

2.1 PROCESSES

2.1.1 The Process Model

2.1.2 Process Creation

2.1.3 Process Termination

2.1.4 Process Hierarchies

2.1.5 Process States

2.1.6 Implementation of Processes

2.1.7 Modeling Multiprogramming

2.2 THREADS

2.2.1 Thread Usage

2.2.2 The Classical Thread Model

2.2.3 POSIX Threads

2.2.4 Implementing Threads in User Space

2.2.5 Implementing Threads in the Kernel

2.2.6 Hybrid Implementations

2.2.7 Scheduler Activations

2.2.8 Pop-Up Threads

2.2.9 Making Single-Threaded Code Multithreaded

2.3 INTERPROCESS COMMUNICATION

2.3.1 Race Conditions

2.3.2 Critical Regions

2.3.3 Mutual Exclusion with Busy Waiting

2.3.4 Sleep and Wakeup

2.3.5 Semaphores

2.3.6 Mutexes

2.3.7 Monitors

2.3.8 Message Passing

2.3.9 Barriers

2.4 SCHEDULING

2.4.1 Introduction to Scheduling

2.4.2 Scheduling in Batch Systems

2.4.3 Scheduling in Interactive Systems

2.4.4 Scheduling in Real-Time Systems

2.4.5 Policy versus Mechanism

2.4.6 Thread Scheduling

2.5 CLASSICAL IPC PROBLEMS

2.5.1 The Dining Philosophers Problem

2.5.2 The Readers and Writers Problem

2.6 RESEARCH ON PROCESSES AND THREADS

2.7 SUMMARY

3 MEMORY MANAGEMENT

3.1 NO MEMORY ABSTRACTION

3.2 A MEMORY ABSTRACTION: ADDRESS SPACES

3.2.1 The Notion of an Address Space

3.2.2 Swapping

3.2.3 Managing Free Memory

3.3 VIRTUAL MEMORY

3.3.1 Paging

3.3.2 Page Tables

3.3.3 Speeding Up Paging

3.3.4 Page Tables for Large Memories

3.4 PAGE LACEMENT ALGORITHMS

3.4.1 The Optimal Page Replacement Algorithm

3.4.2 The Not Recently Used Page Replacement Algorithm

3.4.3 The First-In, First-Out

3.4.4 The Second Chance Page Replacement Algorithm

3.4.5 The Clock Page Replacement Algorithm

3.4.6 The Least Recently Used

3.4.7 Simulating LRU in Software

3.4.8 The Working Set Page Replacement Algorithm

3.4.9 The WSClock Page Replacement Algorithm

3.4.10 Summary of Page Replacement Algorithms

3.5 DESIGN ISSUES FOR PAGING SYSTEMS

3.5.1 Local versus Global Allocation Policies

3.5.2 Load Control

3.5.3 Page Size

3.5.4 Separate Instruction and Data Spaces

3.5.5 Shared Pages

3.5.6 Shared Libraries

3.5.7 Mapped Files

3.5.8 Cleaning Policy

3.5.9 Virtual Memory Interface

3.6 IMPLEMENTATION ISSUES

3.6.1 Operating System Involvement with Paging

3.6.2 Page Fault Handling

3.6.3 Instruction Backup

3.6.4 Locking Pages in Memory

3.6.5 Backing Store

3.6.6 Separation of Policy and Mechanism

3.7 SEGMENTATION

3.7.1 Implementation of Pure Segmentation

3.7.2 Segmentation with Paging: MULTICS

3.7.3 Segmentation with Paging: The Intel Pentium

3.8 RESEARCH ON MEMORY MANAGEMENT

3.9 SUMMARY

4 FILE SYSTEMS

4.1 FILES

4.1.1 File Naming

4.1.2 File Structure

4.1.3 File Types

4.1.4 File Access

4.1.5 File Attributes

4.1.6 File Operations

4.1.7 An Example Program Using File System Calls

4.2 DIRECTORIES

4.2.1 Single-Level Directory Systems

4.2.2 Hierarchical Directory Systems

4.2.3 Path Names

4.2.4 Directory Operations

4.3 FILE SYSTEM IMPLEMENTATION

4.3.1 File System Layout

4.3.2 Implementing Files

4.3.3 Implementing Directories

4.3.4 Shared Files

4.3.5 Log-Structured File Systems

4.3.6 Journaling File Systems

4.3.7 Virtual File Systems

4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION

4.4.1 Disk Space Management

4.4.2 File System Backups

4.4.3 File System Consistency

4.4.4 File System Performance

4.4.5 Defragmenting Disks

4.5 EXAMPLE FILE SYSTEMS

4.5.1 CD-ROM File Systems

4.5.2 The MS-DOS File System

4.5.3 The UNIX V7 File System

4.6 RESEARCH ON FILE SYSTEMS

4.7 SUMMARY

5 INPUT/OUTPUT

5.1 PRINCIPLES OF I/O HARDWARE

5.1.1 I/O Devices

5.1.2 Device Controllers

5.1.3 Memory-Mapped I/O

5.1.4 Direct Memory Access

5.1.5 Interrupts Revisited

5.2 PRINCIPLES OF I/O SOFTWARE

5.2.1 Goals of the I/O Software

5.2.2 Programmed I/O

5.2.3 Interrupt-Driven I/O

5.2.4 I/O Using DMA

5.3 I/O SOFTWARE LAYERS

5.3.1 Interrupt Handlers

5.3.2 Device Drivers

5.3.3 Device-Independent I/O Software

5.3.4 User-Space I/O Software

5.4 DISKS

5.4.1 Disk Hardware

5.4.2 Disk Formatting

5.4.3 Disk Arm Scheduling Algorithms

5.4.4 Error Handling

5.4.5 Stable Storage

5.5 CLOCKS

5.5.1 Clock Hardware

5.5.2 Clock Software

5.5.3 Soft Timers

5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR

5.6.1 Input Software

5.6.2 Output Software

5.7 THIN CLIENTS

5.8 POWER MANAGEMENT

5.8.1 Hardware Issues

5.8.2 Operating System Issues:

5.8.3 Application Program Issues

5.9 RESEARCH ON INPUT/OUTPUT

5.10 SUMMARY

6 DEADLOCKS

6.1 RESOURCES

6.1.1 Preemptable and Nonpreemptable Resources

6.1.2 Resource Acquisition

6.2 INTRODUCTION TO DEADLOCKS

6.2.1 Conditions for Resource Deadlocks

6.2.2 Deadlock Modeling

6.3 THE OSTRICH ALGORITHM

6.4 DEADLOCK DETECTION AND RECOVERY

6.4.1 Deadlock Detection with One Resource of Each Type

6.4.2 Deadlock Detection with Multiple Resources of Each Type

6.4.3 Recovery from Deadlock

6.5 DEADLOCK AVOIDANCE

6.5.1 Resource Trajectories

6.5.2 Safe and Unsafe States

6.5.3 The Banker’s Algorithm for a Single Resource

6.5.4 The Banker’s Algorithm for Multiple Resources

6.6 DEADLOCK PREVENTION

6.6.1 Attacking the Mutual Exclusion Condition

6.6.2 Attacking the Hold and Wait Condition

6.6.3 Attacking the No Preemption Condition

6.6.4 Attacking the Circular Wait Condition

6.7 OTHER ISSUES

6.7.1 Two-Phase Locking

6.7.2 Communication Deadlocks

6.7.3 Livelock

6.7.4 Starvation

6.8 RESEARCH ON DEADLOCKS

6.9 SUMMARY

7 MULTIMEDIA OPERATING SYSTEMS

7.1 INTRODUCTION TO MULTIMEDIA

7.2 MULTIMEDIA FILES

7.2.1 Video Encoding

7.2.2 Audio Encoding

7.3 VIDEO COMPRESSION

7.3.1 The JPEG Standard

7.3.2 The MPEG Standard

7.4 AUDIO COMPRESSION

7.5 MULTIMEDIA PROCESS SCHEDULING

7.5.1 Scheduling Homogeneous Processes

7.5.2 General Real-Time Scheduling

7.5.3 Rate Monotonic Scheduling

7.5.4 Earliest Deadline First Scheduling

7.6 MULTIMEDIA FILE SYSTEM PARADIGMS

7.6.1 VCR Control Functions

7.6.2 Near Video on Demand

7.6.3 Near Video on Demand with VCR Functions

7.7 FILE PLACEMENT

7.7.1 Placing a File on a Single Disk

7.7.2 Two Alternative File Organization Strategies

7.7.3 Placing Files for Near Video on Demand

7.7.4 Placing Multiple Files on a Single Disk

7.7.5 Placing Files on Multiple Disks

7.8 CACHING

7.8.1 Block Caching

7.8.2 File Caching

7.9 DISK SCHEDULING FOR MULTIMEDIA

7.9.1 Static Disk Scheduling

7.9.2 Dynamic Disk Scheduling

7.10 RESEARCH ON MULTIMEDIA

7.11 SUMMARY

8 MULTIPLE PROCESSOR SYSTEMS

8.1 MULTIPROCESSORS

8.1.1 Multiprocessor Hardware

8.1.2 Multiprocessor Operating System Types

8.1.3 Multiprocessor Synchronization

8.1.4 Multiprocessor Scheduling

8.2 MULTICOMPUTERS

8.2.1 Multicomputer Hardware

8.2.2 Low-Level Communication Software

8.2.3 User-Level Communication Software

8.2.4 Remote Procedure Call

8.2.5 Distributed Shared Memory

8.2.6 Multicomputer Scheduling

8.2.7 Load Balancing

8.3 VIRTUALIZATION

8.3.1 Requirements for Virtualization

8.3.2 Type 1 Hypervisors

8.3.3 Type 2 Hypervisors

8.3.4 Paravirtualization

8.3.5 Memory Virtualization

8.3.6 I/O Virtualization

8.3.7 Virtual Appliances

8.3.8 Virtual Machines on Multicore CPUs

8.3.9 Licensing Issues

8.4 DISTRIBUTED SYSTEMS

8.4.1 Network Hardware

8.4.2 Network Services and Protocols

8.4.3 Document-Based Middleware

8.4.4 File System-Based Middleware

8.4.5 Object-Based Middleware

8.4.6 Coordination-Based Middleware

8.5 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS

8.6 SUMMARY

9 SECURITY

9.1 THE SECURITY ENVIRONMENT

9.1.1 Threats

9.1.2 Intruders

9.1.3 Accidental Data Loss

9.2 BASICS OF CRYPTOGRAPHY

9.2.1 Secret-Key Cryptography

9.2.2 Public-Key Cryptography

9.2.3 One-Way Functions

9.2.4 Digital Signatures

9.2.5 Trusted Platform Module

9.3 PROTECTION MECHANISMS

9.3.1 Protection Domains

9.3.2 Access Control Lists

9.3.3 Capabilities

9.3.4 Trusted systems

9.3.5 Trusted Computing Base

9.3.6 Formal Models of Secure Systems

9.3.7 Multilevel Security

9.3.8 Covert Channels

9.4 AUTHENTICATION

9.4.1 Authentication Using Passwords

9.4.2 Authentication Using a Physical Object

9.4.3 Authentication Using Biometrics

9.5 INSIDER ATTACKS

9.5.1 Logic Bombs

9.5.2 Trap Doors

9.5.3 Login Spoofing

9.6 EXPLOITING CODE BUGS

9.6.1 Buffer Overflow Attacks

9.6.2 Format String Attacks

9.6.3 Return to libc Attacks

9.6.4 Integer Overflow Attacks

9.6.5 Code Injection Attacks

9.6.6 Privilege Escalation Attacks

9.7 MALWARE

9.7.1 Trojan Horses

9.7.2 Viruses

9.7.3 Worms

9.7.4 Spyware

9.7.5 Rootkits

9.8 DEFENSES

9.8.1 Firewalls

9.8.2 Antivirus and Anti-Antivirus Techniques

9.8.3 Code Signing

9.8.4 Jailing

9.8.5 Model-Based Intrusion Detection

9.8.6 Encapsulating Mobile Code

9.8.7 Java Security

9.9 RESEARCH ON SECURITY

9.10 SUMMARY

10 CASE STUDY 1: LINUX

10.1 HISTORY OF UNIX AND LINUX

10.1.1 UNICS

10.1.2 PDP-11 UNIX

10.1.3 Portable UNIX

10.1.4 Berkeley UNIX

10.1.5 Standard UNIX

10.1.6 MINIX

10.1.7 Linux

10.2 OVERVIEW OF LINUX

10.2.1 Linux Goals

10.2.2 Interfaces to Linux

10.2.3 The Shell

10.2.4 Linux Utility Programs

10.2.5 Kernel Structure

10.3 PROCESSES IN LINUX

10.3.1 Fundamental Concepts

10.3.2 Process Management System Calls in Linux

10.3.3 Implementation of Processes and Threads in Linux

10.3.4 Scheduling in Linux

10.3.5 Booting Linux

10.4 MEMORY MANAGEMENT IN LINUX

10.4.1 Fundamental Concepts

10.4.2 Memory Management System Calls in Linux

10.4.3 Implementation of Memory Management in Linux

10.4.4 Paging in Linux

10.5 INPUT/OUTPUT IN LINUX

10.5.1 Fundamental Concepts

10.5.2 Networking

10.5.3 Input/Output System Calls in Linux

10.5.4 Implementation of Input/Output in Linux

10.5.5 Modules in Linux

10.6 THE LINUX FILE SYSTEM

10.6.1 Fundamental Concepts

10.6.2 File System Calls in Linux

10.6.3 Implementation of the Linux File System

10.6.4 NFS: The Network File System

10.7 SECURITY IN LINUX

10.7.1 Fundamental Concepts

10.7.2 Security System Calls in Linux

10.7.3 Implementation of Security in Linux

10.8 SUMMARY

11 CASE STUDY 2: WINDOWS VISTA

11.1 HISTORY OF WINDOWS VISTA

11.1.1 1980s: MS-DOS

11.1.2 1990s: MS-DOS-based Windows

11.1.3 2000s: NT-based Windows

11.1.4 Windows Vista

11.2 PROGRAMMING WINDOWS VISTA

11.2.1 The Native NT Application Programming Interface

11.2.2 The Win32 Application Programming Interface

11.2.3 The Windows Registry

11.3 SYSTEM STRUCTURE

11.3.1 Operating System Structure

11.3.2 Booting Windows Vista

11.3.3 Implementation of the Object Manager

11.3.4 Subsystems, DLLs, and User-mode Services

11.4 PROCESSES AND THREADS IN WINDOWS VISTA

11.4.1 Fundamental Concepts

11.4.2 Job, Process, Thread and Fiber Management API Calls

11.4.3 Implementation of Processes and Threads

11.5 MEMORY MANAGEMENT

11.5.1 Fundamental Concepts

11.5.2 Memory Management System Calls

11.5.3 Implementation of Memory Management

11.6 CACHING IN WINDOWS VISTA

11.7 INPUT/OUTPUT IN WINDOWS VISTA

11.7.1 Fundamental Concepts

11.7.2 Input/Output API Calls

11.7.3 Implementation of I/O

11.8 THE WINDOWS NT FILE SYSTEM

11.8.1 Fundamental Concepts

11.8.2 Implementation of the NT File System

11.9 SECURITY IN WINDOWS VISTA

11.9.1 Fundamental Concepts

11.9.2 Security API Calls

11.9.3 Implementation of Security

11.10 SUMMARY

12 CASE STUDY 3: SYMBIAN OS

12.1 THE HISTORY OF SYMBIAN OS

12.1.1 Symbian OS Roots: Psion and EPOC

12.1.2 Symbian OS Version 6

12.1.3 Symbian OS Version 7

12.1.4 Symbian OS Today

12.2 AN OVERVIEW OF SYMBIAN OS

12.2.1 Object Orientation

12.2.2 Microkernel Design

12.2.3 The Symbian OS Nanokernel

12.2.4 Client/Server Resource Access

12.2.5 Features of a Larger Operating System

12.2.6 Communication and Multimedia

12.3 PROCESSES AND THREADS IN SYMBIAN OS

12.3.1 Threads and Nanothreads

12.3.2 Processes

12.3.3 Active Objects

12.3.4 Interprocess Communication

12.4 MEMORY MANAGEMENT

12.4.1 Systems with No Virtual Memory

12.4.2 How Symbian OS Addresses Memory

12.5 INPUT AND OUTPUT

12.5.1 Device Drivers

12.5.2 Kernel Extensions

12.5.3 Direct Memory Access

12.5.4 Special Case: Storage Media

12.5.5 Blocking I/O

12.5.6 Removable Media

12.6 STORAGE SYSTEMS

12.6.1 File systems for Mobile Devices

12.6.2 Symbian OS File systems

12.6.3 File system Security and Protection

12.7 SECURITY IN SYMBIAN OS

12.8 COMMUNICATION IN SYMBIAN OS

12.8.1 Basic Infrastructure

12.8.2 A Closer Look at the Infrastructure

12.9 SUMMARY

13 OPERATING SYSTEMS DESIGN

13.1 THE NATURE OF THE DESIGN PROBLEM

13.1.1 Goals

13.1.2 Why is it Hard to Design an Operating System?

13.2 INTERFACE DESIGN

13.2.1 Guiding Principles

13.2.2 Paradigms

13.2.3 The System Call Interface

13.3 IMPLEMENTATION

13.3.1 System Structure

13.3.2 Mechanism versus Policy

13.3.3 Orthogonality

13.3.4 Naming

13.3.5 Binding Time

13.3.6 Static versus Dynamic Structures

13.3.7 Top-Down versus Bottom-Up Implementation

13.3.8 Useful Techniques

13.4 PERFORMANCE

13.4.1 Why Are Operating Systems Slow?

13.4.2 What Should Be Optimized?

13.4.3 Space-Time Trade-offs

13.4.4 Caching

13.4.5 Hints

13.4.6 Exploiting Locality

13.4.7 Optimize the Common Case

13.5 PROJECT MANAGEMENT

13.5.1 The Mythical Man Month

13.5.2 Team Structure

13.5.3 The Role of Experience

13.5.4 No Silver Bullet

13.6 TRENDS IN OPERATING SYSTEM DESIGN

13.6.1 Virtualization

13.6.2 Multicore Chips

13.6.3 Large Address Space Operating Systems

13.6.4 Networking

13.6.5 Parallel and Distributed Systems

13.6.6 Multimedia

13.6.7 Battery-Powered Computers

13.6.8 Embedded Systems

13.6.9 Sensor Nodes

13.7 SUMMARY

14 READING LIST AND BIBLIOGRAPHY

14.1 SUGGESTIONS FOR FURTHER READING

14.1.1 Introduction and General Works

14.1.2 Processes and Threads

14.1.3 Memory Management

14.1.4 Input/Output

14.1.5 File Systems

14.1.6 eadlocks

14.1.7 Multimedia Operating Systems

14.1.8 Multiple Processor Systems

14.1.9 ecurity

14.1.10 Linux

14.1.11 Windows Vista

14.1.12 The Symbian OS

14.1.13 Design Principles

14.2 ALPHABETICAL BIBLIOGRAPHY

INDEX

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020