Home > Store

Fluid Mechanics for Chemical Engineers with Microfluidics and CFD, 2nd Edition

Register your product to gain access to bonus material or receive a coupon.

Fluid Mechanics for Chemical Engineers with Microfluidics and CFD, 2nd Edition

Book

  • Sorry, this book is no longer in print.
Not for Sale

About

Features

Offers a comprehensive understanding of fluid mechanics essential for the chemical engineer and upper level students.

° A revision of the best selling fluid mechanics book for chemical engineers.

° Covers all the material necessary to pass the fluid mechanics portion of the Professional Engineer's exam.

° Includes software to facilitate an understanding of the important but difficult subject of turbulence.

Description

  • Copyright 2006
  • Dimensions: 7" x 9-1/4"
  • Pages: 784
  • Edition: 2nd
  • Book
  • ISBN-10: 0-13-148212-2
  • ISBN-13: 978-0-13-148212-8

The Chemical Engineer's Practical Guide to Contemporary Fluid Mechanics

Since most chemical processing applications are conducted either partially or totally in the fluid phase, chemical engineers need a strong understanding of fluid mechanics. Such knowledge is especially valuable for solving problems in the biochemical, chemical, energy, fermentation, materials, mining, petroleum, pharmaceuticals, polymer, and waste-processing industries.

Fluid Mechanics for Chemical Engineers, Second Edition, with Microfluidics and CFD, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on a first edition that earned Choice Magazine's Outstanding Academic Title award, this edition has been thoroughly updated to reflect the field's latest advances.

This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows.

Part I offers a clear, succinct, easy-to-follow introduction to macroscopic fluid mechanics, including physical properties; hydrostatics; basic rate laws for mass, energy, and momentum; and the fundamental principles of flow through pumps, pipes, and other equipment. Part II turns to microscopic fluid mechanics, which covers

  • Differential equations of fluid mechanics
  • Viscous-flow problems, some including polymer processing
  • Laplace's equation, irrotational, and porous-media flows
  • Nearly unidirectional flows, from boundary layers to lubrication, calendering, and thin-film applications
  • Turbulent flows, showing how the k/ε method extends conventional mixing-length theory
  • Bubble motion, two-phase flow, and fluidization
  • Non-Newtonian fluids, including inelastic and viscoelastic fluids
  • Microfluidics and electrokinetic flow effects including electroosmosis, electrophoresis, streaming potentials, and electroosmotic switching
  • Computational fluid mechanics with FlowLab and COMSOL Multiphysics

Fluid Mechanics for Chemical Engineers, Second Edition, with Microfluidics and CFD, includes 83 completely worked practical examples, several of which involve FlowLab and COMSOL Multiphysics. There are also 330 end-of-chapter problems of varying complexity, including several from the University of Cambridge chemical engineering examinations. The author covers all the material needed for the fluid mechanics portion of the Professional Engineer's examination.

The author's Web site, www.engin.umich.edu/~fmche/, provides additional notes on individual chapters, problem-solving tips, errata, and more.



Sample Content

Table of Contents

Preface.

I. MACROSCOPIC FLUID MECHANICS.

1. Introduction to Fluid Mechanics.

    1.1 Fluid Mechanics in Chemical Engineering

    1.2 General Concepts of a Fluid

    1.3 Stresses, Pressure, Velocity, and the Basic Laws

    1.4 Physical Properties - Density, Viscosity, and Surface Tension

    1.5 Units and Systems of Units

      Example 1.1 - Units Conversion

      Example 1.2 - Mass of Air in a Room

    1.6 Hydrostatics

      Example 1.3 - Pressure in an Oil Storage Tank

      Example 1.4 - Multiple Fluid Hydrostatics

      Example 1.5 - Pressure Variations in a Gas

      Example 1.6 - Hydrostatic Force on a Curved Surface

      Example 1.7 - Application of Archimedes?f Law

    1.7 Pressure Change Caused by Rotation

      Example 1.8 - Overflow from a Spinning Container

    Problems for Chapter 1

2. Mass, Energy, and Momentum Balances.

    2.1 General Conservation Laws

    2.2 Mass Balances

      Example 2.1 - Mass Balance for Tank Evacuation

    2.3 Energy Balances

      Example 2.2 - Pumping n-Pentane

    2.4 Bernoulli’s Equation

    2.5 Applications of Bernoulli?fs Equation

      Example 2.3 - Tank Filling

    2.6 Momentum Balances

      Example 2.4 - Impinging Jet of Water

      Example 2.5 - Velocity of Wave on Water

      Example 2.6 - Flow Measurement by a Rotameter

    2.7 Pressure, Velocity, and Flow Rate Measurement

    Problems for Chapter

3. Fluid Friction in Pipes.

    3.1 Introduction

    3.2 Laminar Flow

      Example 3.1 - Polymer Flow in a Pipeline

    3.3 Models for Shear Stress

    3.4 Piping and Pumping Problems

      Example 3.2 - Unloading Oil from a Tanker

      Specified Flow Rate and Diameter

      Example 3.3 - Unloading Oil from a Tanker

      Specified Diameter and Pressure Drop

      Example 3.4 - Unloading Oil from a Tanker

      Specified Flow Rate and Pressure Drop

      Example 3.5 - Unloading Oil from a Tanker

      Miscellaneous Additional Calculations

    3.5 Flow in Noncircular Ducts

      Example 3.6 - Flow in an Irrigation Ditch

    3.6 Compressible Gas Flow in Pipelines

    3.7 Compressible Flow in Nozzles

    3.8 Complex Piping Systems

      Example 3.7 - Solution of a Piping/Pumping Problem

    Problems for Chapter 3

4. Flow in Chemical Engineering Equipment.

    4.1 Introduction

    4.2 Pumps and Compressors

      Example 4.1 - Pumps in Series and Parallel

    4.3 Drag Force on Solid Particles in Fluids

      Example 4.2 - Manufacture of Lead Shot

    4.4 Flow Through Packed Beds

      Example 4.3 - Pressure Drop in a Packed-Bed Reactor

    4.5 Filtration

    4.6 Fluidization

    4.7 Dynamics of a Bubble-Cap Distillation Column

    4.8 Cyclone Separators

    4.9 Sedimentation

    4.10 Dimensional Analysis

      Example 4.4 - Thickness of the Laminar Sublayer

    Problems for Chapter 4

II. MICROSCOPIC FLUID MECHANICS.

5. Differential Equations of Fluid Mechanics.

    5.1 Introduction to Vector Analysis

    5.2 Vector Operations

      Example 5.1 - The Gradient of a Scalar

      Example 5.2 - The Divergence of a Vector

      Example 5.3 - An Alternative to the Differential Element

      Example 5.4 - The Curl of a Vector

      Example 5.5 - The Laplacian of a Scalar

    5.3 Other Coordinate Systems

    5.4 The Convective Derivative

    5.5 Differential Mass Balance

      Example 5.6 - Physical Interpretation of the Net Rate of Mass Outflow

      Example 5.7 - Alternative Derivation of the Continuity Equation

    5.6 Differential Momentum Balances

    5.7 Newtonian Stress Components in Cartesian Coordinates

      Example 5.8 - Constant-Viscosity Momentum Balances in Terms of Velocity Gradients

    Example 5.9 - Vector Form of Variable-Viscosity Momentum Balance

    Problems for Chapter 5

6. Solution of Viscous-Flow Problems.

    6.1 Introduction

    6.2 Solution of the Equations of Motion in Rectangular Coordinates

      Example 6.1 - Flow Between Parallel Plates

    6.3 Alternative Solution Using a Shell Balance

      Example 6.2 - Shell Balance for Flow Between Parallel Plates

      Example 6.3 - Film Flow on a Moving Substrate

      Example 6.4 - Transient Viscous Diffusion of Momentum (FEMLAB)

    6.4 Poiseuille and Couette Flows in Polymer Processing

      Example 6.5 - The Single-Screw Extruder

      Example 6.6 - Flow Patterns in a Screw Extruder (FEMLAB)

    6.5 Solution of the Equations of Motion in Cylindrical x Table of Contents Coordinates

      Example 6.7 - Flow Through an Annular Die

      Example 6.8 - Spinning a Polymeric Fiber

    6.6 Solution of the Equations of Motion in Spherical Coordinates

      Example 6.9 - Analysis of a Cone-and-Plate Rheometer

    Problems for Chapter 6

7. Laplace’s Equation, Irrotational and Porous-Media Flows.

    7.1 Introduction

    7.2 Rotational and Irrotational Flows

      Example 7.1 - Forced and Free Vortices

    7.3 Steady Two-Dimensional Irrotational Flow

    7.4 Physical Interpretation of the Stream Function

    7.5 Examples of Planar Irrotational Flow

      Example 7.2 - Stagnation Flow

      Example 7.3 - Combination of a Uniform Stream and a Line Sink (C)

      Example 7.4 - Flow Patterns in a Lake (FEMLAB)

    7.6 Axially Symmetric Irrotational Flow

    7.7 Uniform Streams and Point Sources

    7.8 Doublets and Flow Past a Sphere

    7.9 Single-Phase Flow in a Porous Medium

      Example 7.5 - Underground Flow of Water

    7.10 Two-Phase Flow in Porous Media

    7.11 Wave Motion in Deep Water

    Problems for Chapter 7

8. Boundary-Layer Aand Other Nearly Unidirectional Flows.

    8.1 Introduction

    8.2 Simplified Treatment of Laminar Flow Past a Flat Plate

      Example 8.1 - Flow in an Air Intake

    8.3 Simplification of the Equations of Motion

    8.4 Blasius Solution for Boundary-Layer Flow

    8.5 Turbulent Boundary Layers

      Example 8.2 - Laminar and Turbulent Boundary Layers Compared

    8.6 Dimensional Analysis of the Boundary-Layer Problem

    8.7 Boundary-Layer Separation

      Example 8.3 - Boundary-Layer Flow Between Parallel Plates (FEMLAB Library)

      Example 8.4 - Entrance Region for Laminar Flow Between Flat Plates

    8.8 The Lubrication Approximation

      Example 8.5 - Flow in a Lubricated Bearing (FEMLAB)

    8.9 Polymer Processing by Calendering

      Example 8.6 - Pressure Distribution in a Calendered Sheet

    8.10 Thin Films and Surface Tension

    Problems for Chapter 8

9. Turbulent Flow.

    9.1 Introduction

      Example 9.1 - Numerical Illustration of a Reynolds Stress Term

    9.2 Physical Interpretation of the Reynolds Stresse

    9.3 Mixing-Length Theory

    9.4 Determination of Eddy Kinematic Viscosity and Mixing Length

    9.5 Velocity Profiles Based on Mixing Length Theory 486

      Example 9.2 - Investigation of the von K?Larm?Lan Hypothesis

    9.6 The Universal Velocity Profile for Smooth Pipes

    9.7 Friction Factor in Terms of Reynolds Number for Smooth Pipes

      Example 9.3 - Expression for the Mean Velocity

    9.8 Thickness of the Laminar Sublayer

    9.9 Velocity Profiles and Friction Factor for Rough Pipe

    9.10 Blasius-Type Law and the Power-Law Velocity Profile

    9.11 A Correlation for the Reynolds Stresses

    9.12 Computation of Turbulence by the k/? Method

      Example 9.4 - Flow Through an Orifice Plate (FEMLAB)

      Example 9.5 - Turbulent Jet Flow (FEMLAB)

    9.13 Analogies Between Momentum and Heat Transfer

      Example 9.6 - Evaluation of the Momentum/Heat-Transfer Analogies

    9.14 Turbulent Jets

      Problems for Chapter 9

10. Bubble Motion, Two-Phase Flow, and Fluidization.

    10.1 Introduction

    10.2 Rise of Bubbles in Unconfined Liquids

      Example 10.1 - Rise Velocity of Single Bubbles

    10.3 Pressure Drop and Void Fraction in Horizontal Pipes

      Example 10.2 - Two-Phase Flow in a Horizontal Pipe

    10.4 Two-Phase Flow in Vertical Pipes

      Example 10.3 - Limits of Bubble Flow

      Example 10.4 - Performance of a Gas-Lift Pump

      Example 10.5 - Two-Phase Flow in a Vertical Pipe

    10.5 Flooding

    10.6 Introduction to Fluidization

    10.7 Bubble Mechanics

    10.8 Bubbles in Aggregatively Fluidized Beds

      Example 10.6 - Fluidized Bed with Reaction (C)

    Problems for Chapter 10

11. Non-Newtonian Fluids.

    11.1 Introduction

    11.2 Classification of Non-Newtonian Fluids

    11.3 Constitutive Equations for Inelastic Viscous Fluids

      Example 11.1 - Pipe Flow of a Power-Law Fluid

      Example 11.2 - Pipe Flow of a Bingham Plastic

      Example 11.3 - Non-Newtonian Flow in a Die (FEMLAB Library)

    11.4 Constitutive Equations for Viscoelastic Fluids

    11.5 Response to Oscillatory Shear

    11.6 Characterization of the Rheological Properties of Fluids

      Example 11.4 - Proof of the Rabinowitsch Equation

      Example 11.5 - Working Equation for a Coaxial Cylinder Rheometer: Newtonian Fluid

    Problems for Chapter 11

12. Microfluidics and Electrokinetic Flow Effects.

    12.1 Introduction

    12.2 Physics of Microscale Fluid Mechanics

    12.3 Pressure-driven Flow Through Microscale Tubes

      Example 12.1 - Calculation of Reynolds Numbers

    12.4 Mixing, Transport, and Dispersion

    12.5 Species, Energy, and Charge Transport

    12.6 The Electrical Double Layer and Electrokinetic Phenomena

      Example 12.2 - Relative Magnitudes of Electroosmotic and Pressure-driven Flow

      Example 12.3 - Electroosmotic Flow Around a Particle

      Example 12.4 - Electroosmosis in a Microchannel (FEMLAB)

      Example 12.5 - Electroosmotic Switching in a Branched Microchannel (FEMLAB)

    12.7 Measuring the Zeta Potential

      Example 12.6 - Magnitude of Typical Streaming Potentials

    12.8 Electroviscosity

    12.9 Particle and Macromolecule Motion in Microfluidic Channels

      Example 12.7 - Gravitational and Magnetic Settling of Assay Beads

    Problems for Chapter 12

13. An Introduction to Computational Fluid Dynamics and Flowlab.

    13.1 Introduction and Motivation

    13.2 Numerical Methods

    13.3 Learning CFD by Using FlowLab

    13.4 Practical CFD Examples

      Example 13.1 - Developing Flow in a Pipe Entrance Region (FlowLab)

      Example 13.2 - Pipe Flow Through a Sudden Expansion (FlowLab)

      Example 13.3 - A Two-Dimensional Mixing Junction (FlowLab)

      Example 13.4 - Flow Over a Cylinder (FlowLab)

    References for Chapter 13

14. Femlab for Solving Fluid Mechanics Problems.

    14.1 Introduction to FEMLAB

    14.2 How to Run FEMLAB

      Example 14.1 - Flow in a Porous Medium with an Obstruction (FEMLAB)

    14.3 Draw Mode

    14.4 Solution and Related Modes

    14.5 Fluid Mechanics Problems Solvable by FEMLAB

    Problems for Chapter 14

Appendix A: Useful Mathematical Relationships.

Appendix B: Answers to the True/False Assertions.

Appendix C: Some Vector and Tensor Operations.

Index.

Index

Download the Index file related to this title.

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020