Home > Store

Lessons in Estimation Theory for Signal Processing, Communications, and Control, 2nd Edition

Register your product to gain access to bonus material or receive a coupon.

Lessons in Estimation Theory for Signal Processing, Communications, and Control, 2nd Edition

Book

  • Sorry, this book is no longer in print.
Not for Sale

About

Features

  • covers key topics in parameter estimation and state estimation, with supplemental lessons on sufficient statistics and statistical estimation of parameters, higher-order statistics, and a review of state variable models.
  • begins each lesson with a summary/objectives and includes lesson multiple-choice summary questions for review.
  • summarizes important results in theorems and corollaries.
  • includes problems for all lessons, including computational problems that can only be carried out using a computer.
  • links computations into MATLAB…<194> and its associated toolboxes. A small number of important estimation M-files, which do not presently appear in any MathWork's toolbox, are included in an appendix.

Description

  • Copyright 1995
  • Edition: 2nd
  • Book
  • ISBN-10: 0-13-120981-7
  • ISBN-13: 978-0-13-120981-7

Estimation theory is a product of need and technology. As a result, it is an integral part of many branches of science and engineering. To help readers differentiate among the rich collection of estimation methods and algorithms, this book describes in detail many of the important estimation methods and shows how they are interrelated. Written as a collection of lessons, this book introduces readers o the general field of estimation theory and includes abundant supplementary material.

Sample Content

Table of Contents



 1. Introduction, Coverage, Philosophy, and Computation.


 2. The Linear Model.


 3. Least-Squares Estimation: Batch Processing.


 4. Least-Squares Estimation: Singular-Value Decomposition.


 5. Least-Squares Estimation: Recursive Processing.


 6. Small Sample Properties of Estimators.


 7. Large Sample Properties of Estimators.


 8. Properties of Least-Squares Estimators.


 9. Best Linear Unbiased Estimation.


10. Likelihood.


11. Maximum-Likelihood Estimation.


12. Multivariate Gaussian Random Variables.


13. Mean-Squared Estimation of Random Parameters.


14. Maximum A Posteriori Estimation of Random Parameters.


15. Elements of Discrete-Time Gauss-Markov Random Sequences.


16. State Estimation: Prediction.


17. State Estimation: Filtering (The Kalman Filter).


18. State Estimation: Filtering Examples.


19. State Estimation: Steady-State Kalman Filter and Its Relationships to a Digital Wiener Filter.


20. State Estimation: Smoothing.


21. State Estimation: Smoothing (General Results).


22. State Estimation for the Not-So-Basic State-Variable Model.


23. Linearization and Discretization of Nonlinear Systems.


24. Iterated Least Squares and Extended Kalman Filtering.


25. Maximum-Likelihood State and Parameter Estimation.


26. Kalman-Bucy Filtering.


A. Sufficient Statistics and Statistical Estimation of Parameters.


B. Introduction to Higher-Order Statistics.


C. Estimation and Applications of Higher-Order Statistics.


D. Introduction to State-Variable Models and Methods.


Appendix A: Glossary of Major Results.


Appendix B: Estimation of Algorithm M-Files.


References.


Index.

Preface

Estimation theory is widely used in many branches of science and engineering. No doubt, one could trace its origin back to ancient times, but Karl Friederich Gauss is generally acknowledged to be the progenitor of what we now refer to as estimation theory. R. A. Fisher, Norbert Wiener, Rudolph E. Kalman, and scores of others have expanded upon Gauss's legacy and have given us a rich collection of estimation methods and algorithms from which to choose. This book describes many of the important estimation methods and shows how they are interrelated.


Estimation theory is a product of need and technology. Gauss, for example, needed to predict the motions of planets and comets from telescopic measurements. This ``need'' led to the method of least squares. Digital computer technology has revolutionized our lives. It created the need for recursive estimation algorithms, one of the most important ones being the Kalman filter. Because of the importance of digital technology, this book presents estimation from a discrete-time viewpoint. In fact, it is this author's viewpoint that estimation theory is a natural adjunct to classical digital signal processing. It produces time-varying digital filter designs that operate on random data in an optimal manner.


Although this book is entitled ``Estimation Theory,' computation is essential in order to be able to use its many estimation algorithms. Consequently, computation is an integral part of this book.


It is this author's viewpoint that, whenever possible, computation should be left to the experts. Consequently, I have linked computation into MATLAB\registered\ (MATLAB is a registered trademark of The MathWorks, Inc.) and its associated toolboxes. A small number of important estimation M-files, which do not presently appear in any MathWorks toolbox, have been included in this book; they can be found in Appendix B.


This book has been written as a collection of lessons. It is meant to be an introduction to the general field of estimation theory and, as such, is not encyclopedic in content or in references. The supplementary material, which has been included at the end of many lessons, provides additional breadth or depth to those lessons. This book can be used for self-study or in a one-semester course.


Each lesson begins with a summary that describes the main points of the lesson and also lets the reader know exactly what he or she will be able to do as a result of completing the lesson. Each lesson also includes a small collection of multiple-choice summary questions, which are meant to test the reader on whether or not he or she has grasped the lesson's key points. Many of the lessons include a section entitledr


``Computation.'' When I decided to include material about computation, it was not clear to me whether such material should be collected together in one place, say at the rear of the book in an appendix, or whether it should appear at the end of each lesson, on demand so to speak. I sent letters to more than 50 colleagues and former students asking them what their preference would be. The overwhelming majority recommended having discussions about computation at the end of each lesson. I would like to thank the following for helping me to make this decision: Chong-Yung Chi, Keith Chugg, Georgios B. Giannakis, John Goutsias, Ioannis Katsavounidis, Bart Kosko, Li-Chien Lin, David Long, George Papavassilopoulos, Michael Safonov, Mostafa Shiva, Robert Scholtz, Ananthram Swami, Charles Weber, and Lloyd Welch.


Approximately one-half of the book is devoted to parameter estimation and the other half to state estimation. For many years there has been a tendency to treat state estimation, especially Kalman filtering, as a stand-alone subject and even to treat parameter estimation as a special case of state estimation. Historically, this is incorrect. In the musical Fiddler on the Roof, Tevye argues on behalf of


``Tradition!'' Estimation theory also has its tradition, and it begins with Gauss and parameter estimation. In Lesson 2 we show that state estimation is a special case of parameter estimation; i.e., it is the problem of estimating random parameters when these parameters change from one time instant to the next. Consequently, the subject of state estimation flows quite naturally from the subject of parameter estimation.


There are four supplemental lessons. Lesson A is on sufficient statistics and statistical estimation of parameters and has been written by Professor Rama Chellappa. Lessons B and C are on higher-order statistics. These three lessons are on parameter estimation topics. Lesson D is a review of state-variable models. It has been included because I have found that some people who take a course on estimation theory are not as well versed as they need to be about state-variable models in order to understand state estimation.


This book is an outgrowth of a one-semester course on estimation theory taught at the University of Southern California since 1978, where we cover all its contents at the rate of two lessons a week. We have been doing this since 1978. I wish to thank Mostafa Shiva, Alan Laub, George Papavassilopoulos, and Rama Chellappa for encouraging me to convert the course lecture notes into a book. The result was the first version of this book, which was published in 1987 as {\it Lessons in Digital Estimation Theory}. Since that time the course has been taught many times and additional materials have been included. Very little has been deleted. The result is this new edition.


Most of the book's important results are summarized in theorems and corollaries. In order to guide the reader to these results, they have been summarized for easy reference in Appendix A.


Problems are included for all the lessons (except Lesson 1, which is the Introduction), because this is a textbook. The problems fall into three groups. The first group contains problems that ask the reader to fill in details, which have been ``left to the reader as an exercise.''


The second group contains problems that are related to the material in the lesson. They range from theoretical to easy computational problems, easy in the sense that the computations can be carried out by hand. The third group contains computational problems that can only be carried out using a computer. Many of the problems were developed by students in my Fall 1991 and Spring 1992 classes at USC on Estimation Theory. For these problems, the name(s) of the problem developer(s) appears in parentheses at the beginning of each problem. The author wishes to thank all the problem developers.


While writing the first edition of the book, the author had the benefit of comments and suggestions from many of his colleagues and students. I especially want to acknowledge the help of Georgios B. Giannakis, Guan-Zhong Dai, Chong-Yung Chi, Phil Burns, Youngby Kim, Chung-Chin Lu, and Tom Hebert. While writing the second edition of the book, the author had the benefit of comments and suggestions from Georgios B. Giannakis, Mithat C. Dogan, Don Specht, Tom Hebert, Ted Harris, and Egemen Gonen. Special thanks to Mitsuru Nakamura for writing the estimation algorithm M-files that appear in Appendix B; to Ananthram Swami for generating Figures B 4, B 5, and B 7; and to Gent Paparisto for helping with the editing of the galley proofs.


Additionally, the author wishes to thank Marcel Dekker, Inc., for permitting him to include material from J. M. Mendel, Discrete Techniques of Parameter Estimation: The Equation Error Formulation}, 1973, in Lessons 1--3, 5--9, 11, 18, and 23; Academic Press, Inc., for permitting him to include material from J. M. Mendel, Optimal Seismic Deconvolution: An Estimation-based Approach}, copyright\,\copyright\,1983 by Academic Press, Inc., in Lessons 11--17, 19--21, and 25; and the Institute of Electrical and Electronic Engineers (IEEE) for permitting him to include material from J. M. Mendel, Kalman Filtering and Other Digital Estimation Techniques: Study Guide}, copyright, 1987 IEEE, in Lessons 1--3, 5--26, and D. I hope that the readers do not find it too distracting when I reference myself for an item such as a proof (e.g., the proof of Theorem 17-1). This is done only when I have taken material from one of my former publications (e.g., any one of the preceding three), to comply with copyright law, and is in no way meant to imply that a particular result is necessarily my own.


I am very grateful to my editor Karen Gettman and to Jane Bonnell and other staff members at Prentice Hall for their help in the production of this book.


Finally, I want to thank my wife, Letty, to whom this book is dedicated, for providing me, for more than 30 years, with a wonderful environment that has made this book possible.

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020