Home > Store

ARM System-on-Chip Architecture: ARM System-on-Chip Architecture, 2nd Edition

Register your product to gain access to bonus material or receive a coupon.

ARM System-on-Chip Architecture: ARM System-on-Chip Architecture, 2nd Edition

Book

  • Sorry, this book is no longer in print.
Not for Sale

Description

  • Copyright 2001
  • Dimensions: 234X187
  • Pages: 432
  • Edition: 2nd
  • Book
  • ISBN-10: 0-201-67519-6
  • ISBN-13: 978-0-201-67519-1

The future of the computer and communications industries is converging on mobile information appliances - phones, PDAs, laptops and other devices. The ARM is at the heart of this trend, leading the way in system-on-chip (SoC) development and becoming the processor core of choice for many embedded applications.
System-on-chip technology is changing the way we use computers, but it also sets designers the very challenging problem of getting a complex SoC design right first time. ARM System-on-Chip Architecture introduces the concepts and methodologies employed in designing a system-on-chip based around a microprocessor core, and in designing the core itself. Extensive illustrations, based on the ARM, give practical substance to the design principles set out in the book, reinforcing the reader's understanding of how and why SoCs and microprocessors are designed as they are.
ARM System-on-Chip Architecture:
- presents and discusses the major issues of system-on-chip design, including memory hierarchy, caches, memory management, on-chip buses, on-chip debug and production test
- provides an overview of the ARM processor family, enabling the reader to decide which ARM is best for the job in hand
- describes the ARM and Thumb programming models, enabling the designer to begin to develop applications
- covers all the latest ARM products and developments, including StrongARM, the ARM9 and ARM10 series of cores, and the ARM-based SoC components at the heart of Ericsson's Bluetooth technology, the Psion Series 5 PDA and Samsung's SGH2400 GSM handset
- includes details on the AMULET asynchronous ARM cores and the AMULET3H asynchronous SoC subsystem
ARM System-on-Chip Architecture is an essential handbook for system-on-chip designers using ARM processor cores and engineers working with the ARM. It can also be used as a course text for undergraduate and masters students of computer science, computer engineering and electrical engineering. 
 

Sample Content

Table of Contents

Preface.
1. An Introduction to Processor Design.
2. The ARM Architecture.
3. ARM Assembly Language Programming.
4. ARM Organization and Implementation.
5. The ARM Instruction Set.
6. Architectural Support for High-Level Languages.
7. The Thumb Instruction Set.
8. Architectural Support for System Development.
9. ARM Processor Cores.
10. Memory Hierarchy.
11. Architectural Support for Operating Systems.
12. ARM CPU Cores.
13. Embedded ARM Applications.
14. The AMULET Asynchronous ARM Processors.
Appendix: Computer Logic.
Glossary.
Bibliography.
Index.

Preface

Aims

This book introduces the concepts and methodologies employed in designing a system-on-chip (SoC) based around a microprocessor core and in designing the microprocessor core itself. The principles of microprocessor design are made concrete by extensive illustrations based upon the ARM.

The aim of the book is to assist the reader in understanding how SoCs and microprocessors are designed and used, and why a modern processor is designed the way that it is. The reader who wishes to know only the general principles should find that the ARM illustrations add substance to issues which can otherwise appear somewhat ethereal; the reader who wishes to understand the design of the ARM should find that the general principles illuminate the rationale for the ARM being as it is.

Other microprocessor architectures are not described in this book. The reader who wishes to make a comparative study of architectures will find the required information on the ARM here but must look elsewhere for information on other designs.

Audience

The book is intended to be of use to two distinct groups of readers:

Professional hardware and software engineers who are tasked with designing an SoC product which incorporates an ARM processor, or who are evaluating the ARM for a product, should find the book helpful in their duties. Although there is considerable overlap with ARM technical publications, this book provides a broader context with more background. It is not a substitute for the manufacturer’s data, since much detail has had to be omitted, but it should be useful as an introductory overview and adjunct to that data.

Students of computer science, computer engineering and electrical engineering should find the material of value at several stages in their courses. Some chapters are closely based on course material previously used in undergraduate teaching; some other material is drawn from a postgraduate course.

Prerequisite knowledge

This book is not intended to be an introductory text on computer architecture or computer logic design. Readers are assumed to have a level of familiarity with these subjects equivalent to that of a second year undergraduate student in computer science or computer engineering. Some first year material is presented, but this is more by way of a refresher than as a first introduction to this material.

No prior familiarity with the ARM processor is assumed.

The ARM

On 26 April 1985, the first ARM prototypes arrived at Acorn Computers Limited in Cambridge, England, having been fabricated by VLSI Technology, Inc., in San Jose, California. A few hours later they were running code, and a bottle of Moët & Chandon was opened in celebration. For the remainder of the 1980s the ARM was quietly developed to underpin Acorn’s desktop products which form the basis of educational computing in the UK; over the1990s, in the care of ARM Limited, the ARM has sprung onto the world stage and has established a market-leading position in high-performance low-power and low-cost embedded applications.

This prominent market position has increased ARM’s resources and accelerated the rate at which new ARM-based developments appear.

The highlights of the last decade of ARM development include:

the introduction of the novel compressed instruction format called ‘Thumb’ which reduces cost and power dissipation in small systems;

significant steps upwards in performance with the ARM9, ARM10 and ‘StrongARM’ processor families;

a state-of-the-art software development and debugging environment;

a very wide range of embedded applications based around ARM processor cores.

Most of the principles of modern SoC and processor design are illustrated somewhere in the ARM family, and ARM has led the way in the introduction of some concepts (such as dynamically decompressing the instruction stream). The inherent simplicity of the basic 3-stage pipeline ARM core makes it a good pedagogical introductory example to real processor design, whereas the debugging of a system based around an ARM core deeply embedded into a complex system chip represents the cutting-edge of technological development today.

Book structure

Chapter 1 starts with a refresher on first year undergraduate processor design material. It illustrates the principle of abstraction in hardware design by reviewing the roles of logic and gate-level representations. It then introduces the important concept of the Reduced Instruction Set Computer (RISC) as background for what follows, and closes with some comments on design for low power.

Chapter 2 describes the ARM processor architecture in terms of the concepts introduced in the previous chapter, and Chapter 3 is a gentle introduction to user-level assembly language programming and could be used in first year undergraduate teaching for this purpose.

Chapter 4 describes the organization and implementation of the 3- and 5-stage pipeline ARM processor cores at a level suitable for second year undergraduate teaching, and covers some implementation issues.

Chapters 5 and 6 go into the ARM instruction set architecture in increasing depth. Chapter 5 goes back over the instruction set in more detail than was presented in Chapter 3, including the binary representation of each instruction, and it penetrates more deeply into the corners of the instruction set. It is probably best read once and then used for reference. Chapter 6 backs off a bit to consider what a high-level language (in this case, C) really needs and how those needs are met by the ARM instruction set. This chapter is based on second year undergraduate material.

Chapter 7 introduces the ‘Thumb’ instruction set which is an ARM innovation to address the code density and power requirements of small embedded systems. It is of peripheral interest to a generic study of computer science, but adds an interesting lateral perspective to a postgraduate course.

Chapter 8 raises the issues involved in debugging systems which use embedded processor cores and in the production testing of board-level systems. These issues are background to Chapter 9 which introduces a number of different ARM integer cores, broadening the theme introduced in Chapter 4 to include cores with ‘Thumb’, debug hardware, and more sophisticated pipeline operation.

Chapter 10 introduces the concept of memory hierarchy, discussing the principles of memory management and caches. Chapter 11 reviews the requirements of a modern operating system at a second year undergraduate level and describes the approach adopted by the ARM to address these requirements. Chapter 12 introduces the integrated ARM CPU cores (including StrongARM) that incorporate full support for memory management.

Chapter 13 covers the issues of designing SoCs with embedded processor cores. Here, the ARM is at the leading edge of technology. Several examples are presented of production embedded system chips to show the solutions that have been developed to the many problems inherent in committing a complex application-specific system to silicon.

Chapter 14 moves away from mainstream ARM developments to describe the asynchronous ARM-compatible processors and systems developed at the University of Manchester, England, during the 1990s. After a decade of research the AMULET technology is, at the time of writing, about to take its first step into the commercial domain. Chapter 14 concludes with a description of the DRACO SoC design, the first commercial application of a 32-bit asynchronous microprocessor.

A short appendix presents the fundamentals of computer logic design and the terminology which is used in Chapter 1.

A glossary of the terms used in the book and a bibliography for further reading are appended at the end of the book, followed by a detailed index.

Course relevance

The chapters are at an appropriate level for use on undergraduate courses as follows:

Chapter 1 (basic processor design); Chapter 3 (assembly language programming); Chapter 5 (instruction binaries and reference for assembly language programming).

Chapter 4 (simple pipeline processor design); Chapter 6 (architectural support for high-level languages); Chapters 10 and 11 (memory hierarchy and architectural support for operating systems).

Chapter 8 (embedded system debug and test); Chapter 9 (advanced pipelined processor design); Chapter 12 (advanced CPUs); Chapter 13 (example embedded systems).

A postgraduate course could follow a theme across several chapters, such as processor design (Chapters 1, 2, 4, 9, 10 and 12), instruction set design (Chapters 2, 3, 5, 6, 7 and 11) or embedded systems (Chapters 2, 4, 5, 8, 9 and 13).

Chapter 14 contains material relevant to a third year undergraduate or advanced postgraduate course on asynchronous design, but a great deal of additional background material (not presented in this book) is also necessary.

Support material

Many of the figures and tables will be made freely available over the Internet for non-commercial use. The only constraint on such use is that this book should be a recommended text for any course which makes use of such material. Information about this and other support material may be found on the World Wide Web at:

http://www.cs.man.ac.uk/amulet/publications/books/ARMsysArch

Any enquiries relating to commercial use must be referred to the publishers. The assertion of the copyright for this book outlined on page iv remains unaffected.

Feedback

The author welcomes feedback on the style and content of this book, and details of any errors that are found. Please email any such information to:

sfurber@cs.man.ac.uk

Acknowledgements

Many people have contributed to the success of the ARM over the past decade. As a policy decision I have not named in the text the individuals with principal responsibilities for the developments described therein since the lists would be long and attempts to abridge them invidious. History has a habit of focusing credit on one or two high-profile individuals, often at the expense of those who keep their heads down to get the job done on time. However, it is not possible to write a book on the ARM without mentioning Sophie Wilson whose original instruction set architecture survives, extended but otherwise largely unscathed, to this day.

I would also like to acknowledge the support received from ARM Limited in giving access to their staff and design documentation, and I am grateful for the help I have received from ARM’s semiconductor partners, particularly VLSI Technology, Inc., which is now wholly owned by Philips Semiconductors.

The book has been considerably enhanced by helpful comments from reviewers of draft versions. I am grateful for the sympathetic reception the drafts received and the direct suggestions for improvement that were returned. The publishers, Addison Wesley Longman Limited, have been very helpful in guiding my responses to these suggestions and in other aspects of authorship.

Lastly I would like to thank my wife, Valerie, and my daughters, Alison and Catherine, who allowed me time off from family duties to write this book.



0201675196P04062001

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020