Home > Store

Analysis, Synthesis and Design of Chemical Processes, 5th Edition

eBook (Watermarked)

Not for Sale

Also available in other formats.

Register your product to gain access to bonus material or receive a coupon.

Description

  • Copyright 2018
  • Dimensions: 7" x 9-1/8"
  • Pages: 1520
  • Edition: 5th
  • eBook (Watermarked)
  • ISBN-10: 0-13-417748-7
  • ISBN-13: 978-0-13-417748-9

The Leading Integrated Chemical Process Design Guide: With Extensive Coverage of Equipment Design and Other Key Topics

More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Fifth Edition, presents design as a creative process that integrates the big-picture and small details, and knows which to stress when and why. Realistic from start to finish, it moves readers beyond classroom exercises into open-ended, real-world problem solving. The authors introduce up-to-date, integrated techniques ranging from finance to operations, and new plant design to existing process optimization.

The fifth edition includes updated safety and ethics resources and economic factors indices, as well as an extensive, new section focused on process equipment design and performance, covering equipment design for common unit operations, such as fluid flow, heat transfer, separations, reactors, and more. 

  • Conceptualization and analysis: process diagrams, configurations, batch processing, product design, and analyzing existing processes
  • Economic analysis: estimating fixed capital investment and manufacturing costs, measuring process profitability, and more
  • Synthesis and optimization: process simulation, thermodynamic models, separation operations, heat integration, steady-state and dynamic process simulators, and process regulation
  • Chemical equipment design and performance: a full section of expanded and revamped coverage of designing process equipment and evaluating the performance of current equipment
  • Advanced steady-state simulation: goals, models, solution strategies, and sensitivity and optimization results
  • Dynamic simulation: goals, development, solution methods, algorithms, and solvers
  • Societal impacts: ethics, professionalism, health, safety, environmental issues, and green engineering
  • Interpersonal and communication skills: working in teams, communicating effectively, and writing better reports

This text draws on a combined 55 years of innovative instruction at West Virginia University (WVU) and the University of Nevada, Reno. It includes suggested curricula for one- and two-semester design courses, case studies, projects, equipment cost data, and extensive preliminary design information for jump-starting more detailed analyses.

Sample Content

Table of Contents

Preface xxv

About the Authors xxix

List of Nomenclature xxxi

Chapter 0: Outcomes Assessment 1

0.1 Student Self-Assessment 2

0.2 Assessment by Faculty 4

0.3 Summary 6

References 6

Section I: Conceptualization and Analysis of Chemical Processes 7

Chapter 1: Diagrams for Understanding Chemical Processes 9

1.1 Block Flow Diagram (BFD) 11

1.2 Process Flow Diagram (PFD) 14

1.3 Piping and Instrumentation Diagram (P&ID) 27

1.4 Additional Diagrams 32

1.5 Three-Dimensional Representation of a Process 34

1.6 The 3-D Plant Model 41

1.7 Operator and 3-D Immersive Training Simulators 43

1.8 Summary 48

References 49

Short Answer Questions 49

Problems 50

Chapter 2: The Structure and Synthesis of Process Flow Diagrams 55

2.1 Hierarchy of Process Design 55

2.2 Step 1—Batch versus Continuous Process 56

2.3 Step 2—The Input/Output Structure of the Process 60

2.4 Step 3—The Recycle Structure of the Process 70

2.5 Step 4—General Structure of the Separation System 83

2.6 Step 5—Heat-Exchanger Network or Process Energy Recovery System 83

2.7 Information Required and Sources 83

2.8 Summary 83

References 85

Short Answer Questions 86

Problems 86

Chapter 3: Batch Processing 91

3.1 Design Calculations for Batch Processes 91

3.2 Gantt Charts and Scheduling 97

3.3 Nonoverlapping Operations, Overlapping Operations, and Cycle Times 98

3.4 Flowshop and Jobshop Plants 101

3.5 Product and Intermediate Storage and Parallel Process Units 106

3.6 Design of Equipment for Multiproduct Batch Processes 111

3.7 Summary 113

References 114

Short Answer Questions 114

Problems 114

Chapter 4: Chemical Product Design 123

4.1 Strategies for Chemical Product Design 124

4.2 Needs 125

4.3 Ideas 127

4.4 Selection 128

4.5 Manufacture 130

4.6 Batch Processing 131

4.7 Economic Considerations 131

4.8 Summary 132

References 132

Chapter 5: Tracing Chemicals through the Process Flow Diagram 135

5.1 Guidelines and Tactics for Tracing Chemicals 135

5.2 Tracing Primary Paths Taken by Chemicals in a Chemical Process 136

5.3 Recycle and Bypass Streams 142

5.4 Tracing Nonreacting Chemicals 145

5.5 Limitations 145

5.6 Written Process Description 146

5.7 Summary 147

Problems 147

Chapter 6: Understanding Process Conditions 149

6.1 Conditions of Special Concern for the Operation of Separation and Reactor Systems 150

6.2 Reasons for Operating at Conditions of Special Concern 152

6.3 Conditions of Special Concern for the Operation of Other Equipment 155

6.4 Analysis of Important Process Conditions 158

6.5 Summary 165

References 165

Short Answer Questions 165

Problems 166

Section II: Engineering Economic Analysis of Chemical Processes 169

Chapter 7: Estimation of Capital Costs 171

7.1 Classifications of Capital Cost Estimates 172

7.2 Estimation of Purchased Equipment Costs 175

7.3 Estimating the Total Capital Cost of a Plant 182

7.4 Estimation of Plant Costs Based on Capacity Information 206

7.5 Summary 208

References 208

Short Answer Questions 209

Problems 210

Chapter 8: Estimation of Manufacturing Costs 213

8.1 Factors Affecting the Cost of Manufacturing a Chemical Product 213

8.2 Cost of Operating Labor 218

8.3 Utility Costs 219

8.4 Raw Material Costs 234

8.5 Yearly Costs and Stream Factors 237

8.6 Estimating Utility Costs from the PFD 238

8.7 Cost of Treating Liquid and Solid Waste Streams 240

8.8 Evaluation of Cost of Manufacture for the Production of Benzene via the Hydrodealkylation of Toluene 241

8.9 Summary 242

References 243

Short Answer Questions 243

Problems 244

Chapter 9: Engineering Economic Analysis 247

9.1 Investments and the Time Value of Money 248

9.2 Different Types of Interest 251

9.3 Time Basis for Compound Interest Calculations 254

9.4 Cash Flow Diagrams 255

9.5 Calculations from Cash Flow Diagrams 259

9.6 Inflation 266

9.7 Depreciation of Capital Investment 268

9.8 Taxation, Cash Flow, and Profit 274

9.9 Summary 277

References 277

Short Answer Questions 278

Problems 278

Chapter 10: Profitability Analysis 285

10.1 A Typical Cash Flow Diagram for a New Project 285

10.2 Profitability Criteria for Project Evaluation 287

10.3 Comparing Several Large Projects: Incremental Economic Analysis 295

10.4 Establishing Acceptable Returns from Investments: The Concept of Risk 298

10.5 Evaluation of Equipment Alternatives 299

10.6 Incremental Analysis for Retrofitting Facilities 305

10.7 Evaluation of Risk in Evaluating Profitability 309

10.8 Profit Margin Analysis 325

10.9 Summary 326

References 327

Short Answer Questions 327

Problems 328

Section III: Synthesis and Optimization of Chemical Processes 343

Chapter 11: Utilizing Experience-Based Principles to Confirm the Suitability of a Process Design 347

11.1 The Role of Experience in the Design Process 348

11.2 Presentation of Tables of Technical Heuristics and Guidelines 351

11.3 Summary 354

List of Informational Tables 354

References 368

Problems 368

Chapter 12: Synthesis of the PFD from the Generic BFD 369

12.1 Information Needs and Sources 370

12.2 Reactor Section 372

12.3 Separator Section 373

12.4 Reactor Feed Preparation and Separator Feed Preparation Sections 388

12.5 Recycle Section 389

12.6 Environmental Control Section 389

12.7 Major Process Control Loops 390

12.8 Flow Summary Table 390

12.9 Major Equipment Summary Table 390

12.10 Summary 391

References 391

General Reference 392

Problems 392

Chapter 13: Synthesis of a Process Using a Simulator and Simulator Troubleshooting 397

13.1 The Structure of a Process Simulator 398

13.2 Information Required to Complete a Process Simulation: Input Data 401

13.3 Handling Recycle Streams 413

13.4 Choosing Thermodynamic Models 415

13.5 Case Study: Toluene Hydrodealkylation Process 426

13.6 Electrolyte Systems Modeling 428

13.7 Solids Modeling 440

Appendix 13.1 445

Appendix 13.2 447

13.8 Summary 450

References 451

Short Answer Questions 454

Problems 455

Chapter 14: Process Optimization 463

14.1 Background Information on Optimization 463

14.2 Strategies 469

14.3 Topological Optimization 473

14.4 Parametric Optimization 479

14.5 Lattice Search, Response Surface, and Mathematical Optimization Techniques 489

14.6 Process Flexibility and the Sensitivity of the Optimum 489

14.7 Optimization in Batch Systems 490

14.8 Summary 497

References 498

Short Answer Questions 498

Problems 498

Chapter 15: Pinch Technology 509

15.1 Introduction 509

15.2 Heat Integration and Network Design 510

15.3 Composite Temperature-Enthalpy Diagram 523

15.4 Composite Enthalpy Curves for Systems without a Pinch 524

15.5 Using the Composite Enthalpy Curve to Estimate Heat-Exchanger Surface Area 525

15.6 Effectiveness Factor (F) and the Number of Shells 529

15.7 Combining Costs to Give the EAOC for the Network 534

15.8 Other Considerations 536

15.9 Heat-Exchanger Network Synthesis Analysis and Design (HENSAD) Program 540

15.10 Mass-Exchange Networks 541

15.11 Summary 550

References 550

Short Answer Questions 551

Problems 552

Chapter 16: Advanced Topics Using Steady-State Simulators 561

16.1 Why the Need for Advanced Topics in Steady-State Simulation? 562

16.2 User-Added Models 562

16.3 Solution Strategy for Steady-State Simulations 571

16.4 Studies with the Steady-State Simulation 589

16.5 Estimation of Physical Property Parameters 601

16.6 Summary 605

References 605

Short Answer Questions 607

Problems 607

Chapter 17: Using Dynamic Simulators in Process Design 617

17.1 Why Is There a Need for Dynamic Simulation? 618

17.2 Setting Up a Dynamic Simulation 619

17.3 Dynamic Simulation Solution Methods 633

17.4 Process Control 639

17.5 Summary 647

References 647

Short Answer Questions 648

Problems 649

Chapter 18: Regulation and Control of Chemical Processes with Applications Using Commercial Software 655

18.1 A Simple Regulation Problem 656

18.2 The Characteristics of Regulating Valves 657

18.3 Regulating Flowrates and Pressures 660

18.4 The Measurement of Process Variables 662

18.5 Common Control Strategies Used in Chemical Processes 663

18.6 Exchanging Heat and Work between Process and Utility Streams 674

18.7 Logic Control 680

18.8 Advanced Process Control 682

18.9 Case Studies 683

18.10 Putting It All Together: The Operator Training Simulator (OTS) 688

18.11 Summary 689

References 690

Problems 690

Section IV: Chemical Equipment Design and Performance Process Equipment Design and Performance 695

Chapter 19: Process Fluid Mechanics 697

19.1 Basic Relationships in Fluid Mechanics 697

19.2 Fluid Flow Equipment 703

19.3 Frictional Pipe Flow 709

19.4 Other Flow Situations 723

19.5 Performance of Fluid Flow Equipment 736

References 755

Short Answer Questions 756

Problems 757

Chapter 20: Process Heat Transfer 771

20.1 Basic Heat-Exchanger Relationships 771

20.2 Heat-Exchange Equipment Design and Characteristics 779

20.3 LMTD Correction Factor for Multiple Shell and Tube Passes 789

20.4 Overall Heat Transfer Coefficients—Resistances in Series 798

20.5 Estimation of Individual Heat Transfer Coefficients and Fouling Resistances 800

20.6 Extended Surfaces 828

20.7 Algorithm and Worked Examples for the Design of Heat Exchangers 837

20.8 Performance Problems 846

References 859

Appendix 20.A Heat-Exchanger Effectiveness Charts 861

Appendix 20.B Derivation of Fin Effectiveness for a Rectangular Fin 864

Short Answer Questions 866

Problems 866

Chapter 21: Separation Equipment 875

21.1 Basic Relationships in Separations 876

21.2 Illustrative Diagrams 883

21.3 Equipment 911

21.4 Extraction Equipment 942

21.5 Gas Permeation Membrane Separations 947

References 951

Short Answer Questions 952

Problems 954

Chapter 22: Reactors 961

22.1 Basic Relationships 962

22.2 Equipment Design for Nonisothermal Conditions 980

22.3 Performance Problems 1003

Chapter 23: Other Equipment 1015

23.1 Pressure Vessels 1016

23.2 Knockout Drums or Simple Phase Separators 1024

23.3 Steam Ejectors 1049

References 1058

Short Answer Questions 1059

Problems 1060

Chapter 24: Process Troubleshooting and Debottlenecking 1065

24.1 Recommended Methodology 1067

24.2 Troubleshooting Individual Units 1071

24.3 Troubleshooting Multiple Units 1076

24.4 A Process Troubleshooting Problem 1081

24.5 Debottlenecking Problems 1085

24.6 Summary 1091

References 1091

Problems 1091

Section V: The Impact of Chemical Engineering Design on Society 1101

Chapter 25: Ethics and Professionalism 1103

25.1 Ethics 1104

25.2 Professional Registration 1121

25.3 Legal Liability [13] 1125

25.4 Business Codes of Conduct [14, 15] 1126

25.5 Summary 1127

References 1128

Problems 1129

Chapter 26: Health, Safety, and the Environment 1131

26.1 Risk Assessment 1131

26.2 Regulations and Agencies 1134

26.3 Fires and Explosions 1143

26.4 Process Hazard Analysis 1145

26.5 Chemical Safety and Hazard Investigation Board 1153

26.6 Inherently Safe Design 1153

26.7 Summary 1154

26.8 Glossary 1154

References 1156

Problems 1157

Chapter 27: Green Engineering 1159

27.1 Environmental Regulations 1159

27.2 Environmental Fate of Chemicals 1160

27.3 Green Chemistry 1163

27.4 Pollution Prevention during Process Design 1164

27.5 Analysis of a PFD for Pollution Performance and Environmental Performance 1166

27.6 An Example of the Economics of Pollution Prevention 1167

27.7 Life Cycle Analysis 1168

27.8 Summary 1169

Section VI: Interpersonal and Communication Skills 1173

Chapter 28: Teamwork 1175

28.1 Groups 1175

28.2 Group Evolution 1184

28.3 Teams and Teamwork 1186

28.4 Misconceptions 1189

28.5 Learning in Teams 1189

28.6 Other Reading 1190

28.7 Summary 1191

References 1192

Problems 1192

Chapter 29: Written and Oral Communication 1195

29.1 Audience Analysis 1196

29.2 Written Communication 1196

29.3 Oral Communication 1209

29.4 Software and Author Responsibility 1215

29.5 Summary 1218

References 1218

Problems 1219

Chapter 30: A Report-Writing Case Study 1221

30.1 The Assignment Memorandum 1221

30.2 Response Memorandum 1222

30.3 Visual Aids 1224

30.4 Example Reports 1230

30.5 Checklist of Common Mistakes and Errors 1244

Appendix A: Cost Equations and Curves for the CAPCOST Program 1247

A.1 Purchased Equipment Costs 1247

A.2 Pressure Factors 1264

A.3 Material Factors and Bare Module Factors 1267

References 1275

Appendix B: Information for the Preliminary Design of Fifteen Chemical Processes 1277

B.1 Dimethyl Ether (DME) Production, Unit 200 1278

B.2 Ethylbenzene Production, Unit 300 1283

B.3 Styrene Production, Unit 400 1291

B.4 Drying Oil Production, Unit 500 1299

B.5 Production of Maleic Anhydride from Benzene, Unit 600 1305

B.6 Ethylene Oxide Production, Unit 700 1311

B.7 Formalin Production, Unit 800 1317

B.8 Batch Production of L-Phenylalanine and L-Aspartic Acid, Unit 900 1323

B.9 Acrylic Acid Production via the Catalytic Partial Oxidation of Propylene [1–5], Unit 1000 1329

B.10 Production of Acetone via the Dehydrogenation of Isopropyl Alcohol (IPA) [1–4], Unit 1100 1338

B.11 Production of Heptenes from Propylene and Butenes [1], Unit 1200 1344

B.12 Design of a Shift Reactor Unit to Convert CO to CO2, Unit 1300 1352

B.13 Design of a Dual-Stage Selexol Unit to Remove CO2 and H2S From

B.14 Design of a Claus Unit for the Conversion of H2S to Elemental Sulfur, Unit 1500 1363

B.15 Modeling a Downward-Flow, Oxygen-Blown, Entrained-Flow Gasifier, Unit 1600 1371

Appendix C: Design Projects 1379

Project 1 Increasing the Production of 3-Chloro-1-Propene (Allyl Chloride) in Unit 600 1381

Project 2 Design and Optimization of a New 20,000-Metric-Tons-per-Year Facility to Produce Allyl Chloride at La Nueva Cantina, Mexico 1394

Project 4 The Design of a New 100,000-Metric-Tons-per-Year Phthalic Anhydride Production Facility 1412

Project 5 Problems at the Cumene Production Facility, Unit 800 1417

Project 6 Design of a New, 100,000-Metric-Tons-per-Year Cumene Production Facility 1430

Index 1433

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020