Register your product to gain access to bonus material or receive a coupon.
Video accessible from your Account page after purchase.
15+ Hours of Video Instruction
These Analysis of Algorithms Video Lectures cover the essential information that every serious programmer needs to know about analyzing algorithms, including analytic combinatorics. In these videos, basic coverage of recurrences, generating functions, and asymptotics leads to an introduction to analytic combinatorics, including labeled and unlabeled combinatorial classes. The videos go on to cover survey trees, permutations, strings and tries, and words and mappings, with applications drawn from the study of widely-used algorithms.
Description
This collection of video lectures provides an introductory exploration of how to mathematically analyze algorithms. Author Robert Sedgewick emphasizes the mathematics required to support scientific studies that can serve as the basis for predicting algorithms and for comparing different algorithms on the basis of performance. Every lecture is accompanied with suggested related readings that you can find in An Introduction to the Analysis of Algorithms, Second Edition. These lectures provide another perspective on the material presented in the book and are in one-to-one correspondence with the chapters in the textbook.
You also can find related resources on the instructors’ web site, including the following:
About the Instructor
Robert Sedgewick is the William O. Baker Professor of Computer Science at Princeton University. He is a Director of Adobe Systems and has served on the research staffs at Xerox PARC, IDA, and INRIA. He earned his PhD from Stanford University under Donald E. Knuth. He is the coauthor (with Kevin Wayne) of Algorithms, Fourth Edition.
Skill Level
All Levels
What You Will Learn
Who Should Take This Course
Despite the large amount of literature on the mathematical analysis of algorithms, basic information on methods and models in widespread use has not been directly accessible to students and researchers in the field. This book aims to address that situation. It is intended for:
Course Requirements
Table of Contents
Lecture 1: Analysis of Algorithms. We begin by considering historical context and motivation for the scientific study of algorithm performance. Then we consider a classic example that illustrates the key ingredients of the process: the analysis of Quicksort. The lecture concludes with a discussion of some resources that you might find useful during this course.
Lecture 2: Recurrences. We begin the course with an overview of recurrence relations, which provide us with a direct mathematical model for the analysis of algorithms. We finish by examining the fascinating oscillatory behavior of the divide-and-conquer recurrence corresponding to the mergesort algorithm and the general "master theorem" for related recurrences.
Lecture 3: Generating Functions. Since the 17th century, scientists have been using generating functions to solve recurrences, so we continue with an overview of generating functions, emphasizing their utility in solving problems like counting the number of binary trees with N nodes.
Lecture 4: Asymptotics. Exact answers are often cumbersome, so we next consider a scientific approach to developing approximate answers that, again, mathematicians and scientists have used for centuries.
Lecture 5: Analytic Combinatorics. With a basic knowledge of recurrences, generating functions, and asymptotics, you are ready to learn and appreciate the basic features of analytic combinatorics, a systematic approach that avoids much of the detail of the classical methods that we have been considering. We introduce unlabelled and labelled combinatorial classes and motivate our basic approach to studying them, with numerous examples.
Lecture 6: Trees. The quintessential recursive structure, trees of various sorts are ubiquitous in scientific enquiry, and they arise explicitly in countless computing applications. You can find broad coverage in the textbook, but the lecture focuses on the use of analytic combinatorics to enumerate various types of trees and study parameters.
Lecture 7: Permutations. The study of sorting algorithms is the study of properties of permutations. We introduce analytic-combinatoric approaches to studying permutations in the context of this relationship.
Lecture 8: Strings and Tries. From DNA sequences to web indices, strings (sequences of characters) are ubiquitous in modern computing applications, so we use analytic combinatorics to study their basic properties and then introduce the trie, an essential and fundamental structure not found in classical combinatorics.
Lecture 9: Words and Mappings. We view strings as sets of characters or as functions from [1..N] to [1..M] to study classical occupancy problems and their application to fundamental hashing algorithms. Functions from [1..N] to [1..N] are mappings, which have an interesting and intricate structure that we can study with analytic combinatorics.