
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321940155
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321940155
https://plusone.google.com/share?url=http://www.informit.com/title/9780321940155
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321940155
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321940155/Free-Sample-Chapter

 Game Programming
Algorithms and

Techniques

This page intentionally left blank

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

 Game Programming
Algorithms and

Techniques

A Platform-Agnostic Approach

 Sanjay Madhav

 Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

 The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

 For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.
com.

 Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2013950628

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

 Screenshot from Jetpack Joyride ©2011 Halfbrick Studios. Used with permission.

 Screenshot from Jazz Jackrabbit 2 ©1998 Epic Games, Inc. Used with permission.

 Screenshot from Quadrilateral Cowboy ©2013 Blendo Games LLC. Used with
permission.

 Screenshot from Skulls of the Shogun ©2013 17-BIT. Used with permission.

 Screenshot from Unreal Engine 3 ©2005 Epic Games, Inc. Used with permission.

 Screenshot from Unreal Tournament 3 ©2007 Epic Games, Inc. Used with permission.

 Screenshots from Microsoft® Visual Studio® 2010 ©2010 Microsoft. Used with
permission from Microsoft.

Image in Figure 2-10 courtesy of © denis_pc/fotolia.

Images in Figures 4-4, 8-5, and 8-6 courtesy of © York/fotolia.

 ISBN-13: 978-0-321-94015-5
 ISBN-10: 0-321-94015-6

 Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, IN. First printing: December 2013

 Editor-in-Chief
Mark Taub

 Executive Editor
Laura Lewin

 Development Editor
Chris Zahn

 Managing Editor
Kristy Hart

 Project Editor
Elaine Wiley

 Copy Editor
Bart Reed

 Indexer
WordWise Publishing Services

 Proofreader
Jess DeGabriele

 Technical Reviewers
Alexander Boczar
Dustin Darcy
 Jeff Wofford

 Editorial Assistant
Olivia Basegio

 Cover Designer
Chuti Prasersith

 Compositor
Nonie Ratcliff

 Graphics
Laura Robbins

 To my family for supporting me and to all my students
for not driving me crazy (yet).

This page intentionally left blank

 Preface . xv

 1 Game Programming Overview1
Evolution of Video Game Programming 2

The Game Loop . 5

Time and Games . 9

Game Objects . 13

Summary . 15

Review Questions. 16

Additional References . 16

 2 2D Graphics . 19
2D Rendering Foundations. . 20

Sprites . 22

Scrolling. . 30

Tile Maps . 35

Summary . 39

Review Questions. . 39

Additional References . 39

 3 Linear Algebra for Games 41
Vectors . 42

Matrices . 58

Summary . 62

Review Questions. . 62

Additional References . 63

Contents

viii CONTENTS

 4 3D Graphics . 65
Basics . 66

Coordinate Spaces . 67

Lighting and Shading . 76

Visibility . 85

World Transform, Revisited. . 88

Summary . 91

Review Questions. . 92

Additional References . 92

 5 Input . 93
Input Devices . 94

Event-Based Input Systems. . 99

Mobile Input . 105

Summary . 108

Review Questions. 108

Additional References . 109

 6 Sound . 111
Basic Sound .112

3D Sound . .115

Digital Signal Processing .119

Other Sound Topics . 122

Summary . 124

Review Questions. 125

Additional References . 125

 7 Physics . 127
Planes, Rays, and Line Segments 128

Collision Geometry. 130

Collision Detection . 134

Physics-Based Movement. 148

 CONTENTS ix

Physics Middleware . 153

Summary . 154

Review Questions. 154

Additional References . 155

 8 Cameras . 157
Types of Cameras . 158

Perspective Projections . 161

Camera Implementations. 164

Camera Support Algorithms . 175

Summary . 178

Review Questions. 178

Additional References . 178

 9 Artificial Intelligence . 179
“Real” AI versus Game AI . 180

Pathfinding. 180

State-Based Behaviors. 192

Strategy and Planning . 198

Summary . 200

Review Questions. 200

Additional References . 202

 10 User Interfaces . 203
Menu Systems . 204

HUD Elements . 207

Other UI Considerations. 217

Summary . 221

Review Questions. 222

Additional References . 222

x CONTENTS

 11 Scripting Languages and Data Formats 223
Scripting Languages . 224

Implementing a Scripting Language. 229

Data Formats . 235

Case Study: UI Mods in World
of Warcraft . 239

Summary . 241

Review Questions. 241

Additional References . 242

 12 Networked Games. . 243
Protocols . 244

Network Topology . 250

Cheating . 255

Summary . 257

Review Questions. 257

Additional References . 258

 13 Sample Game: Side-Scroller for iOS 259
Overview . 260

Code Analysis . 262

Exercises . 267

Summary . 268

 14 Sample Game: Tower Defense for PC/Mac 269
Overview . 270

Code Analysis . 273

Exercises . 284

Summary . 285

 A Answers to Review Questions. 287
Chapter 1: Game Programming Overview 288

Chapter 2: 2D Graphics . 289

 CONTENTS xi

Chapter 3: Linear Algebra for Games. 290

Chapter 4: 3D Graphics . 291

Chapter 5: Input . 292

Chapter 6: Sound . 294

Chapter 7: Physics. 295

Chapter 8: Cameras. 295

Chapter 9: Artificial Intelligence. 296

Chapter 10: User Interfaces . 298

Chapter 11: Scripting Languages and Data Formats 299

Chapter 12: Networked Games . 300

 B Useful Tools for Programmers 303
Debugger. 304

Source Control. 309

Diff and Merging Tools . 312

Issue Tracking . 313

 Index . 315

 ACKNOWLEDGMENTS

 Even though my name might be the only one on the cover, this book simply would not have
been possible without the help and support of many other individuals. I’d first like to thank
my mom and dad for their support throughout the years as I pursued my education and then
career. I’d also like to thank my sister Nita for going along with all the crazy and creative things
we did when we were younger, and for providing great advice when we became older.

 The team at Pearson also has been a pleasure to work with throughout the writing process. It
starts with Laura Lewin, my executive editor, who has backed the premise of the book since day
one. She and assistant editor Olivia Basegio have provided very useful guidance throughout the
writing process. The editorial and production teams, especially Chris Zahn, have also been stel-
lar in helping make the book ready for production, including art, copy editing, and typesetting.

 I also want to acknowledge the technical reviewers who blocked time out of their busy sched-
ules to help ensure the accuracy of the book—Alexander Boczar, Dustin Darcy, and Jeff
Wofford. Their feedback has been invaluable, and I’m confident that the book is technically
sound because of it.

 My colleagues at USC, especially those in the Information Technology Program, have really
shaped who I am as an instructor. I’d especially like to thank the current director of the depart-
ment, Michael Crowley, as well as the director who first hired me as a part-time lecturer, Ashish
Soni. I’d also like to thank Michael Zyda for establishing and leading the Computer Science
(Games) program at USC. My lab assistants over the years, most notably Xin Liu and Paul
Conner, have also been immensely helpful.

 Finally, I’d like to thank Jason Gregory for his mentorship that dates back almost ten years. With-
out his guidance, I may have never ended up in the game industry, and almost certainly would
never have ended up following in his footsteps and teaching at USC. He has taught me so much
about games and teaching games over the years, and for that I’m grateful.

 ABOUT THE AUTHOR

 Sanjay Madhav is a lecturer at the University of Southern California, where he teaches several
courses about and related to video game programming. Prior to joining USC full time, he
worked as a programmer at several video game developers, including Electronic Arts, Never-
soft, and Pandemic Studios. Although he has experience programming a wide range of sys-
tems, his primary interest is in gameplay mechanics. Some of his credited games include Medal
of Honor: Pacific Assault, Tony Hawk’s Project 8 , Lord of the Rings: Conquest , and The Saboteur .

 In 2008, Sanjay began teaching part-time at USC while still working full time in the game indus-
try. After Pandemic Studios was shuttered at the end of 2009, he decided to refocus his efforts
on teaching up-and-coming game programmers. His flagship course is an undergraduate-level
game programming course that he has taught for more than ten consecutive semesters.

This page intentionally left blank

 PREFACE
 It wasn’t long ago that the knowledge necessary to program commercial video games was only
available to a small number of game industry veterans. In that bygone era, learning about the
actual algorithms that were used in AAA games was akin to learning some dark and forbidden
knowledge (hence titles such as Michael Abrash’s seminal Graphics Programming Black Book). If
one wanted to pursue a formal education in game programming, the choices were more or less
limited to a handful of specialized trade schools. But over the past ten years, video game educa-
tion has changed dramatically. Several top universities now offer courses and degrees in video
game programming, and more join the ranks every single year.

 A side effect of this explosion of video game curriculum is that the expectations for new hires
in the industry have risen dramatically. In the early 2000s, all that was expected from junior
programmers was a solid computer science background and a demonstrable passion for creat-
ing video games. The hope was that with this solid foundation, strong candidates would learn
the more advanced game programming techniques on the job. Today, with so many excel-
lent places to get a more games-focused education, an increasing number of companies now
expect their junior programmers to have experience with the breadth of topics relevant to
programming games.

 Why Another Game Programming
Book?
 The expansion of video game curriculum has also increased the need for books designed with a
university setting in mind. However, the majority of game programming books currently on the
market target one of two types of readers: hobbyists who want to learn a little bit about mak-
ing games or professionals who already have years of game industry experience. Both types of
books can be frustrating in an academic setting. The hobbyist books may not be academically
rigorous enough for a university, and the industry-targeted books will often sail well over the
heads of inexperienced students.

 One of the courses I teach at the University of Southern California is ITP 380: Video Game
Programming. The students who enter the class are typically in their second or third year and
already know the basics of programming. Some of the students also have experience in proto-
typing games using engines such as GameMaker and Unity, but ITP 380 is the students’ first real
exposure to programming video games. My hope is that this book will perfectly complement
my course and any courses like it at other universities. Although the primary target audience
is students in a university setting, anyone who is interested in learning about programming
games should find this book extremely valuable.

 A unique characteristic of this book is that the first 12 chapters are 100% platform and frame-
work agnostic. This means that irrespective of programming language or target platform, the
vast majority of the book will be entirely applicable to most 2D and 3D games. This separates
this book from most other titles on the market, which use a specific version of a framework that
usually becomes obsolete within a couple of years. By being agnostic, this book should main-
tain its relevance for a longer period of time. This is also helpful for a university setting because
different schools may choose to use different languages and frameworks. That being said, the
value of code samples is indisputable. Because of this, the last two chapters are overviews of
two different games written in two different frameworks, and code samples are provided for
these games.

 Who Should Read This Book?
 This book assumes that the reader already knows how to program in an object-oriented lan-
guage (such as C++, C#, or Java) and is familiar with standard data structures such as linked lists,
binary trees, and hash tables. These topics usually are covered in the first two semesters of a
standard computer science curriculum, so anyone who has completed such coursework should
be fine. Furthermore, having some exposure to topics in calculus will help readers grasp the
concepts discussed in the linear algebra and physics chapters.

 Although not a requirement, it is also helpful if the reader has prior experience in the basics
of game design, or at the very least is familiar with games. At times, this book will discuss
programming mechanics for specific genres, so knowing the references will be very helpful.
Having some experience with prototyping games using tools such as GameMaker might also
be helpful, but is by no means a requirement.

 Though this book is intended for an academic setting, it should be useful for anyone who
already knows general programming but is interested in professionally programming games.
Topics are always presented through a very practical and application-focused lens, unlike some
decidedly academic books.

 Finally, because this book has a broad coverage of several different game programming topics,
it may prove useful for a junior programmer who wants to brush up on different aspects of
game programming. That being said, a seasoned game developer may not find that much in
the way of new information in this book.

 How This Book Is Organized
 The first 12 chapters of this book are an overview of many of the algorithms and techniques
used in game programming. These topics run the gamut from 2D and 3D graphics, physics,

xvi PREFACE

 PREFACE xvii

artificial intelligence, cameras, and more. Although Chapters 1 through 12 are designed to be
read sequentially, it is possible to go out of order to some degree. The graph in Figure P.1 dem-
onstrates the dependencies between the chapters—so at the very least, no chapter should be
read prior to its dependencies being read.

3: Linear
Algebra for

Games

1: Game Programming
Overview

10: User Interfaces

7: Physics 8: Cameras

5: Input

6: Sound

2: 2D Graphics

4: 3D Graphics

9: Artificial
Intelligence

12: Networked
Games

11: Scripting
Languages

and Data Formats

 Figure P.1 Dependency graph for Chapters 1 – 12 .

 The last two chapters of the book present sample game case studies that were created to
 illustrate many of the algorithms and techniques covered in the first 12 chapters. The two
sample games are a 2D side-scroller for iOS devices (written in Objective-C using cocos2d)
and a 3D tower defense game for PC/Mac/Linux (written in C# using XNA/MonoGame).
The full source code for these two case studies is available online on this book’s website:
 http://gamealgorithms.net .

 Book Features and Conventions
 This section describes some of the features used in the book and the conventions followed for
items such as code and equations.

http://gamealgorithms.net

 Note

 Notes are intended to be a bit more fun and tangential. Although they may not
have as much pedagogical value, they still might provide further insight into the
topic in question.

 Pseudocode

 In order to maintain language-neutrality, algorithms will often be presented in pseudocode
form. The syntax used for the pseudocode has similarity with the scripting language Lua,
though there are also clear influences from C/C++ as well as C#. Code snippets will be presented
in fixed-font blocks, like so:

 function Update(float deltaTime)
 foreach Object o in world
 // Comment
 o .Update(deltaTime)
 loop

 end

 This book utilizes syntax highlighting similar to many IDEs. Keywords appear in blue , comments
are in green , class names are in teal , and variables are italicized . Member functions and variables
are accessed with a dot in all instances.

 In some cases, the pseudocode may be interspersed with prose explaining the code further. In
these cases, it will be clear that it’s not the end of the code snippet. Furthermore, in cases where
this is done, the full code will be presented at the end of the section with a numbered code list-
ing such as Listing P.1 .

xviii PREFACE

 Sidebars

 At certain points in this book, you will find sidebars and notes. This section contains examples
of both.

 SIDEBAR

 Sidebars are brief discussions of how a particular algorithm or technique was dealt with
in actual shipped games. In some instances, these might be personal anecdotes based
on projects I worked on in the industry. In other cases, they will be stories about other
games. In any event, these asides are designed to give further insight into how the con-
cept in question might be considered when you’re actually creating a game.

 PREFACE xix

 Listing P.1 Sample Numbered Code Listing

 function Update(float deltaTime)
 foreach Object o in world
 // Comment
 if o is alive
 o .Update(deltaTime)
 end
 loop

 end

 Note that the preceding pseudocode simply states to check whether the Object “is alive”
rather than explicitly calling a particular function. This shortcut will be used in instances where
the meaning is clear.

 Finally, in some cases, parts of the code may be omitted to save space. This will be done spar-
ingly, usually only when it’s a repeat of previously shown code. The format for omitted code will
be a comment followed by ellipses on the subsequent line:

 function Update(float deltaTime)
 // Update code
 ...

 end

 Equations

 Certain chapters (particularly the ones on linear algebra, 3D rendering, and physics) will present
concepts directly in equation form. This is only done when a particular concept is more clear as
an equation instead of in pseudocode. Equations will typically be centered and appear on their
own line, like so:

f(x) = a + b

 Companion Website
 This book features a companion website at http://gamealgorithms.net . Of particular note, this
site provides access to the full source code for the game case studies in Chapter 13 , “Sample
Game: Side-Scroller for iOS,” and Chapter 14 , “Sample Game: Tower Defense for PC/Mac,” as well
as any errata for the book. Finally, the site also has a forum where readers can post questions
regarding both the book and game programming in general.

http://gamealgorithms.net

This page intentionally left blank

 C H A P T E R 1

 GAME PROGRAMMING

OVERVIEW

This chapter provides a brief history of the

evolving roles of game programmers through the

different eras of video game development. Once

that bit of history is established, the chapter then

covers three important concepts in programming

any game: the game loop, management of time,

and game objects.

2 CHAPTER 1 GAME PROGRAMMING OVERVIEW

 Evolution of Video Game Programming
 The first commercial video game, Computer Space , was released in 1971. Created by future Atari
founders Nolan Bushnell and Ted Dabney, the game was not powered by a traditional com-
puter. The hardware had no processor or RAM; it simply was a state machine created with sev-
eral transistors. All of the logic of Computer Space had to be implemented entirely in hardware.

 But when the Atari Video Computer System (Atari 2600) exploded onto the scene in 1977, devel-
opers were given a standardized platform for games. This is when video game creation became
more about programming software as opposed to designing complex hardware. Though
games have changed a great deal since the early Atari titles, some of the core programming
techniques developed during that era are still used today. Unlike most of the book, no algo-
rithms will be presented in this section. But before the programming begins, it’s good to have a
bit of context on how the video game industry arrived at its current state.

 Although the focus of this section is on home console game development, the transitions
described also occurred in computer game development. However, the transitions may have
occurred a little bit earlier because computer game technology is usually a couple of years
ahead of console game technology. This is due to the fact that when a console is released,
its hardware is locked for the five-plus years the console is in the “current generation.” On the
other hand, computer hardware continuously improves at a dizzying pace. This is why when
PC-focused titles such as Crysis are released, the graphical technologies can best many console
games. That being said, the advantage of a console’s locked hardware specification is that it
allows programmers to become intimately familiar with the system over the course of several
years. This leads to late-generation titles such as The Last of Us that present a graphical fidelity
rivaling that of even the most impressive PC titles.

 In any event, console gaming really did not take off until the original Atari was released in 1977.
Prior to that, there were several home gaming systems, but these systems were very limited.
They came with a couple of games preinstalled, and those were the only titles the system could
play. The video game market really opened up once cartridge-based games became possible.

 Atari Era (1977–1985)

 Though the Atari 2600 was not the first generalized gaming system, it was the first extraordi-
narily successful one. Unlike games for modern consoles, most games for the Atari were created
by a single individual who was responsible for all the art, design, and programming. Develop-
ment cycles were also substantially shorter—even the most complicated games were finished
in a matter of months.

 Programmers in this era also needed to have a much greater understanding of the low-level
operations of the hardware. The processor ran at 1.1 MHz and there was only 128 bytes of RAM.
With these limitations, usage of a high-level programming language such as C was impractical
due to performance reasons. This meant that games had to be written entirely in assembly.

 EVOLUTION OF VIDEO GAME PROGRAMMING 3

To make matters worse, debugging was wholly up to the developer. There were no develop-
ment tools or a software development kit (SDK).

 But in spite of these technical challenges, the Atari was a resounding success. One of the more
technically advanced titles, Pitfall! , sold over four million copies. Designed by David Crane and
released in 1982, it was one of the first Atari games to feature an animated human running. In a
fascinating GDC 2011 postmortem panel, listed in the references, Crane describes the develop-
ment process and technical challenges that drove Pitfall! .

 NES and SNES Era (1985–1995)

 In 1983, the North American video game market suffered a dramatic crash. Though there were
inarguably several contributing factors, the largest might have been the saturation of the mar-
ket. There were dozens of gaming systems available and thousands of games, some of which
were notoriously poor, such as the Atari port of Pac-Man or the infamous E.T. movie tie-in.

 The release of the Nintendo Entertainment System in 1985 is largely credited for bringing the
industry back on track. Since the NES was noticeably more powerful than the Atari, it required
more man hours to create games. Many of the titles in the NES era required a handful of pro-
grammers; the original Legend of Zelda , for instance, had three credited programmers.

 The SNES continued this trend of larger programming teams. One necessity that inevitably
pops up as programming teams become larger is some degree of specialization. This helps
ensure that programmers are not stepping on each other’s toes by trying to write code for
the same part of the game at the same time. For example, 1990’s Super Mario World had six
programmers in total. The specializations included one programmer who was solely respon-
sible for Mario, and another solely for the map between the levels. Chrono Trigger (1995), a more
complex title, had a total of nine programmers; most of them were also in specialized roles.

 Games for the NES and SNES were still written entirely in assembly, because the hardware still
had relatively small amounts of memory. However, Nintendo did actually provide development
kits with some debugging functionality, so developers were not completely in the dark as they
were with the Atari.

 Playstation/Playstation 2 Era (1995–2005)

 The release of the Playstation and N64 in the mid 1990s finally brought high-level program-
ming languages to console development. Games for both platforms were primarily written in C,
although assembly subroutines were still used for performance-critical parts of code.

 The productivity gains of using a higher-level programming language may at least partially be
responsible for the fact that team sizes did not grow during the initial years of this era. Most
early games still only had eight to ten programmers in total. Even relatively complex games,
such as 2001’s Grand Theft Auto III , had engineering teams of roughly that size.

4 CHAPTER 1 GAME PROGRAMMING OVERVIEW

 But while the earlier titles may have had roughly the same number of programmers as the latter
SNES games, by the end of this era teams had become comparatively large. For example, 2004’s
 Full Spectrum Warrior , an Xbox title, had roughly 15 programmers in total, many of which were in
specialized roles. But this growth was minimal compared to what was to come.

 Xbox 360, PS3, and Wii Era (2005–2013)

 The first consoles to truly support high definition caused game development to diverge on two
paths. AAA titles have become massive operations with equally massive teams and budgets,
whereas independent titles have gone back to the much smaller teams of yesteryear.

 For AAA titles, the growth has been staggering. For example, 2008’s Grand Theft Auto IV had a
core programming team of about 30, with an additional 15 programmers from Rockstar’s tech-
nology team. But that team size would be considered tame compared to more recent titles—
2011’s Assassin’s Creed: Revelations had a programming team with a headcount well over 75.

 But to independent developers, digital distribution platforms have been a big boon. With store-
fronts such as XBLA, PSN, Steam, and the iOS App Store, it is possible to reach a wide audience
of gamers without the backing of a traditional publisher. The scope of these independent titles
is typically much smaller than AAA ones, and in several ways their development is more similar
to earlier eras. Many indie games are made with teams of five or less. And some companies have
one individual who’s responsible for all the programming, art, and design, essentially complet-
ing the full circle back to the Atari era.

 Another big trend in game programming has been toward middleware , or libraries that imple-
ment solutions to common game programming problems. Some middleware solutions are
full game engines, such as Unreal and Unity. Other middleware may only implement a specific
subsystem, such as Havok Physics. The advantage of middleware is that it can save time and
money because not as many developers need to be allocated to work on that particular system.
However, that advantage can become a disadvantage if a particular game design calls for
something that is not the core competency of that particular middleware.

 The Future

 Any discussion of the future would be incomplete without acknowledging mobile and web-
based platforms as increasingly important for games. Mobile device hardware has improved at
a rapid pace, and new tablets have performance characteristics exceeding that of the Xbox 360
and PS3. The result of this is that more and more 3D games (the primary focus of this book) are
being developed for mobile platforms.

 But traditional gaming consoles aren’t going anywhere any time soon. At the time of writing,
Nintendo has already launched their new console (the Wii U), and by the time you read this,
both Microsoft’s Xbox One and Sony’s Playstation 4 will also have been released. AAA games

 THE GAME LOOP 5

for these platforms will undoubtedly have increasingly larger teams, and video game expertise
will become increasingly fractured as more and more game programmers are required to focus
on specializations. However, because both Xbox One and PS4 will allow self-publishing, it also
means independent developers now have a full seat at the table. The future is both exciting and
bright for the games industry.

 What’s interesting is that although much has changed in programming games over the years,
many concepts from the earlier eras still carry over today. In the rest of this chapter we’ll cover
concepts that, on a basic level, have not changed in over 20 years: the game loop, management
of time, and game object models.

 The Game Loop
 The game loop is the overall flow control for the entire game program. It’s a loop because the
game keeps doing a series of actions over and over again until the user quits. Each iteration of
the game loop is known as a frame . Most real-time games update several times per second: 30
and 60 are the two most common intervals. If a game runs at 60 FPS (frames per second), this
means that the game loop completes 60 iterations every second.

 There can be many variations of the game loop, depending on a number of factors, most nota-
bly the target hardware. Let’s first discuss the traditional game loop before exploring a more
advanced formulation that’s designed for more modern hardware.

 Traditional Game Loop

 A traditional game loop is broken up into three distinct phases: processing inputs, updating the
game world, and generating outputs. At a high level, a basic game loop might look like this:

 while game is running
 process inputs
 update game world
 generate outputs

 loop

 Each of these three phases has more depth than might be apparent at first glance. For instance,
processing inputs clearly involves detecting any inputs from devices such as a keyboard,
mouse, or controller. But those aren’t the only inputs to be considered; any external input must
be processed during this phase of the game loop.

 As one example, consider a game that supports online multiplayer. An important input for such
a game is any data received over the Internet, because the state of the game world will directly
be affected by this information. Or take the case of a sports game that supports instant replay.
When a previous play is being viewed in replay mode, one of the inputs is the saved replay

6 CHAPTER 1 GAME PROGRAMMING OVERVIEW

information. In certain types of mobile games, another input might be what’s visible by the
camera, or perhaps GPS information. So there are quite a few potential input options, depend-
ing on the particular game and hardware it’s running on.

 Updating the game world involves going through everything that is active in the game and
updating it as appropriate. This could be hundreds or even thousands of objects. Later in this
chapter, we will cover exactly how we might represent said game objects.

 As for generating outputs, the most computationally expensive output is typically the graph-
ics, which may be 2D or 3D. But there are other outputs as well—for example, audio, including
sound effects, music, and dialogue, is just as important as visual outputs. Furthermore, most
console games have “rumble” effects, where the controller begins to shake when something
exciting happens in the game. The technical term for this is force feedback , and it, too, is
another output that must be generated. And, of course, for an online multiplayer game, an
additional output would be data sent to the other players over the Internet.

 We’ll fill in these main parts of the game loop further as this chapter continues. But first, let’s
look at how this style of game loop applies to the classic Namco arcade game Pac-Man .

 The primary input device in the arcade version of Pac-Man is a quad-directional joystick, which
enables the player to control Pac-Man’s movement. However, there are other inputs to consider:
the coin slot that accepts quarters and the Start button. When a Pac-Man arcade cabinet is not
being played, it simply loops in a demo mode that tries to attract potential players. Once a
quarter is inserted into the machine, it then asks the user to press Start to commence the actual
game.

 When in a maze level, there are only a handful of objects to update in Pac-Man —the main
character and the four ghosts. Pac-Man’s position gets updated based on the processed joystick
input. The game then needs to check if Pac-Man has run into any ghosts, which could either
kill him or the ghosts, depending on whether or not Pac-Man has eaten a power pellet. The
other thing Pac-Man can do is eat any pellets or fruits he moves over, so the update portion of
the loop also needs to check for this. Because the ghosts are fully AI controlled, they also must
update their logic.

 Finally, in classic Pac-Man the only outputs are the audio and video. There isn’t any force feed-
back, networking, or anything else necessary to output. A high-level version of the Pac-Man
game loop during the gameplay state would look something like what is shown in Listing 1.1 .

 Listing 1.1 Theoretical Pac-Man Game Loop

 while player.lives > 0
 // Process Inputs
 JoystickData j = grab raw data from joystick

 THE GAME LOOP 7

 // Update Game World
 update player.position based on j
 foreach Ghost g in world
 if player collides with g
 kill either player or g
 else
 update AI for g based on player.position
 end
 loop

 // Pac-Man eats any pellets
 ...

 // Generate Outputs
 draw graphics
 update audio
 loop

 Note that the actual code for Pac-Man does have several different states, including the afore-
mentioned attract mode, so these states would have to be accounted for in the full game’s
code. However, for simplicity the preceding pseudo-code gives a representation of what the
main game loop might look like if there were only one state.

 Multithreaded Game Loops

 Although many mobile and independent titles still use a variant of the traditional game loop,
most AAA console and PC titles do not. That’s because newer hardware features CPUs that have
multiple cores. This means the CPU is physically capable of running multiple lines of execution,
or threads , at the same time.

 All of the major consoles, most new PCs, and even some mobile devices now feature multicore
CPUs. In order to achieve maximum performance on such systems, the game loop should be
designed to harness all available cores. Several different methods take advantage of multiple
cores, but most are well beyond the scope of this book. However, multithreaded programming
is something that has become prevalent in video games, so it bears mentioning at least one
basic multithreaded game loop technique.

 Rendering graphics is an extremely time-consuming operation for AAA games. There are
numerous steps in the rendering pipeline, and the amount of data that needs to be processed
is rather massive; some console games now render well over a million polygons per frame.
Suppose it takes 30 milliseconds to render the entire scene for a particular game. It also takes an
additional 20 milliseconds to perform the game world update. If this is all running on a single
thread, it will take a total of 50 milliseconds to complete a frame, which will result in an unac-
ceptably low 20 FPS. But if the rendering and world update could be completed in parallel, it

8 CHAPTER 1 GAME PROGRAMMING OVERVIEW

would only take 30 milliseconds to complete a frame, which means that a 30 FPS target can be
achieved.

 In order for this to work, the main game loop thread must be changed so it processes all inputs,
updates the game world, and outputs anything other than the graphics. It then must hand off
any relevant data to a secondary rendering thread, which can then draw all the graphics.

 But there is a catch to this: What should the main thread do while the rendering thread is draw-
ing? We don’t want it to simply wait for the drawing to finish, because that would be no faster
than performing all the actions on one thread. The way this problem is solved is by having
the rendering thread always lag one frame behind the main thread. So every frame, the main
thread is updating the world while the rendering thread draws the results of the last main
thread update.

 One big drawback of this delay is an increase of input lag , or how long it takes for a player’s
action to be visible onscreen. Suppose the “jump” button is pressed during frame 2. In the
multithreaded loop, the input will not get processed until the beginning of frame 3, and the
graphics will not be visible until the end of frame 4. This is illustrated in Figure 1.1 .

Screen

VisibleProcessedPressed

Gameplay

Rendering 1 2 3

1 4 2 3

 Figure 1.1 The jump is delayed a couple of frames due to input lag.

 If a particular game relies on extremely quick response time, including fighting games such as
 Street Fighter , this increased input lag may be deemed unacceptable. But for most other genres,
the increased lag may not be particularly noticeable. Several other factors increase input lag.
The game loop can be one of these factors, and some, like the display lag most LCD panels

 TIME AND GAMES 9

have, might be out of the programmer’s control. For more information on this topic, check the
references at the end of this chapter, which includes an interesting set of articles on the topic of
measuring and solving input lag in games.

 ADAPTING TO MULTICORE CONSOLES

 The original Xbox and GameCube were both single-core systems, so games that were
developed for these platforms essentially ran variants of the traditional game loop. But
the traditional loop style became obsolete when the Xbox 360 and PS3 systems were
released. Suddenly, game developers who had been accustomed to single-threaded
development had to deal with the new world of multicore programming.

 The initial attempt that most development studios made was the rendering/gameplay
split, as described in this section. This solution ended up being shipped in most of the
early titles for both consoles.

 But the problem was that such an approach didn’t take advantage of all the available
cores. The Xbox 360 can run six threads at once, and the PS3 is able to run two threads on
its general-purpose core and six on math-focused cores. So simply splitting the render-
ing from everything else would not use all the available threads. If a console has three
available slots for threads but only two are in use, the game is only using two-thirds the
total capacity.

 Over time, developers improved their techniques and were able devise ways to fully
utilize all the cores. This is part of the reason why the later Xbox 360 and PS3 titles look
so much better than the earlier ones—they’re actually using all the horsepower that’s
available.

 Time and Games
 The majority of video games have some concept of time progression. For real-time games, that
progression of time is typically measured in fractions of a second. As one example, a 30 FPS title
has roughly 33ms elapse from frame to frame. But even turn-based titles do feature a progres-
sion of time, except this progression is measured in turns instead of in seconds. In this section,
we look at how time should be taken into account when programming a game.

10 CHAPTER 1 GAME PROGRAMMING OVERVIEW

 Real Time and Game Time

 It is very important to distinguish real time , the amount of time that has elapsed in the real
world, from game time , which is how much time has elapsed in the game’s world. Although
there may often be a 1:1 correspondence between real time and game time, that certainly is
not always the case. Take, for instance, a game in a paused state. Although a great deal of time
might be elapsing in the real world, the game time is stopped entirely. It’s not until the game is
unpaused that the game time starts updating again.

 There are several other instances where the real time and game time might diverge. For exam-
ple, to allow for more nuanced gunfights, Max Payne uses a “bullet time” gameplay mechanic
that reduces the speed of the game. In this case, the game time must update at a substantially
slower rate than actual time. On the opposite end of the spectrum, many sports games feature
sped-up time. In a football game, rather than requiring a player to sit through 15 full minutes
per quarter, the game may update the clock twice as fast, so it actually only takes half the time.
And some games may even have time progress in reverse. For example, Prince of Persia: The
Sands of Time featured a unique mechanic where the player could rewind the game time to a
certain point.

 With all these different ways real time and game time might diverge, it’s clear that our video
game’s loop should take elapsed game time into account. The following section discusses how
our game loop might be updated to account for this requirement.

 Logic as a Function of Delta Time

 Early games were often programmed with a specific processor speed in mind. A game’s code
might be written explicitly for an 8 MHz processor, and as long as it worked properly it was
considered acceptable. In such a setup, code that updates the position of an enemy might look
something like this:

 // Update x position by 5 pixels
 enemy.position.x += 5

 If this code moves the enemy at the desired speed on an 8 MHz processor, what happens on a
16 MHz processor? Well, assuming that the game loop now runs twice as fast, that means that
the enemy will also now move twice as fast. This could be the difference between a game that
is challenging and one that is impossible. Now, imagine running this 8 MHz–designed game on
a modern processor that is hundreds of times faster. The game would be over before you even
blinked!

 In other words, if the preceding enemy movement pseudocode were run 30 times per second
(30 FPS), the enemy would move a total of 150 pixels in one second. However, at 60 FPS, the
enemy would move a total of 300 pixels during that same period of time. To solve this issue, we

 TIME AND GAMES 11

need to introduce the concept of delta time : the amount of elapsed game time since the
last frame.

 In order to convert the preceding pseudocode to use delta time, we need to think of the move-
ment not in terms of pixels per frame, but in terms of pixels per second. So if the ideal move-
ment speed is 150 pixels per second, this pseudocode would be preferable:

 // Update x position by 150 pixels/second
 enemy.position.x += 150 * deltaTime

 Now the code will work perfectly fine regardless of the frame rate. At 30 FPS, the enemy will
move 5 pixels per frame, for a total of 150 pixels per second. At 60 FPS, the enemy will only
move 2.5 pixels per frame, but that will still result in a total of 150 pixels per second. The move-
ment certainly will be smoother in the 60 FPS case, but the overall per-second speed will be
identical.

 As a rule of thumb, whenever an object in the game world is having its properties modified in a
way that should be done over the course of several frames, the modification should be written
as a function of delta time. This applies to any number of scenarios, including movement, rota-
tion, and scaling.

 But how do you calculate what the delta time should be every frame? First, the amount of real
time that has elapsed since the previous frame must be queried. This will depend greatly on
the framework, and you can check the sample games to see how it’s done in a couple of them.
Once the elapsed real time is determined, it can then be converted to game time. Depending
on the state of game, this may be identical in duration or it may have some factor applied to it.

 This improved game loop would look something like what’s shown in Listing 1.2 .

 Listing 1.2 Game Loop with Delta Time

 while game is running
 realDeltaTime = time since last frame
 gameDeltaTime = realDeltaTime * gameTimeFactor

 // Process inputs
 ...
 update game world with gameDeltaTime

 // Render outputs
 ...
 loop

 Although it may seem like a great idea to allow the simulation to run at whatever frame rate the
system allows, in practice there can be several issues with this. Most notably, any game that has

12 CHAPTER 1 GAME PROGRAMMING OVERVIEW

even basic physics (such as a platformer with jumping) will have wildly different behavior based
on the frame rate. This is because of the way numeric integration works (which we’ll discuss
further in Chapter 7 , “Physics”), and can lead to oddities such as characters jumping higher at
lower frame rates. Furthermore, any game that supports online multiplayer likely will also not
function properly with variable simulation frame rates.

 Though there are more complex solutions to this problem, the simplest solution is to imple-
ment frame limiting , which forces the game loop to wait until a target delta time has elapsed.
For example, if the target frame rate is 30 FPS and only 30ms has elapsed when all the logic for
a frame has completed, the loop will wait an additional ~3.3ms before starting its next iteration.
This type of game loop is demonstrated in Listing 1.3 . Even with a frame-limiting approach,
keep in mind that it still is imperative that all game logic remains a function of delta time.

 Listing 1.3 Game Loop with Frame Limiting

 // 33.3ms for 30 FPS
 targetFrameTime = 33.3f
 while game is running
 realDeltaTime = time since last frame
 gameDeltaTime = realDeltaTime * gameTimeFactor

 // Process inputs
 ...

 update game world with gameDeltaTime

 // Render outputs
 ...

 while (time spent this frame) < targetFrameTime
 // Do something to take up a small amount of time
 ...
 loop
 loop

 There is one further case that must be considered: What if the game is sufficiently complex that
occasionally a frame actually takes longer than the target frame time? There are a couple of
solutions to this problem, but a common one is to skip rendering on the subsequent frame in
an attempt to catch back up to the desired frame rate. This is known as dropping a frame , and
will cause a perceptible visual hitch. You may have noticed this from time to time when playing
a game and performing things slightly outside the parameters of the expected gameplay (or
perhaps the game was just poorly optimized).

 GAME OBJECTS 13

 Game Objects
 In a broad sense, a game object is anything in the game world that needs to be updated,
drawn, or both updated and drawn on every frame. Even though it’s described as a “game
object,” this does not necessarily mean that it must be represented by a traditional object in the
object-oriented sense. Some games employ traditional objects, but many employ composition
or other, more complex methods. Regardless of the implementation, the game needs some
way to track these objects and then incorporate them into the game loop. Before we worry
about incorporating the objects into the loop, let’s first take a look at the three categories of
game objects a bit more closely.

 Types of Game Objects

 Of the three primary types of game objects, those that are both updated and drawn are the
most apparent. Any character, creature, or otherwise movable object needs to be updated
during the “update game world” phase of the game loop and needs to be drawn during the
“generate outputs” phase. In Super Mario Bros. , Mario, any enemies, and all of the dynamic
blocks would be this type of game object.

 Objects that are only drawn but not updated are sometimes called static objects . These
objects are those that are definitely visible to the player but never need to be updated. An
example of this type of object would be a building in the background of a level. A building isn’t
going to get up and move or attack the player, but it certainly needs to be drawn.

 The third type of game object, those that are updated but not drawn, is less apparent. One
example is the camera. You technically can’t see the camera (you can see from the camera), but
many games feature moving cameras. Another example is what’s known as a trigger . Many
games are designed so that when the player moves to a certain location, something happens.
For example, a horror game might want to have zombies appear when the player approaches
a door. The trigger is what detects that the player is in position and triggers the appropriate
action. So a trigger is an invisible box that must be updated to check for the player. It shouldn’t
be drawn (unless in debug mode) because it suspends disbelief for the gamer.

 Game Objects in the Game Loop

 To use game objects in the game loop, we first need to determine how to represent them. As
mentioned, there are several ways to do this. One such approach, which uses the OOP concept
of interfaces, is outlined in this section. Recall that an interface is much like a contract; if a class
implements a particular interface, it is promising to implement all of the functions outlined in
the interface.

14 CHAPTER 1 GAME PROGRAMMING OVERVIEW

 First, we need to have a base game object class that all the three types of game objects can
inherit from:

 class GameObject
 // Member data/functions omitted
 ...

 end

 Any functionality that all game objects should share, regardless of type, could be placed in
this base class. Then we could declare two interfaces, one for drawable objects and one for
updatable objects:

 interface Drawable
 function Draw()
 end

 interface Updateable
 function Update (float deltaTime)
 end

 Once we have these two interfaces, we can then declare our three types of game objects rela-
tive to both the base class and said interfaces:

 // Update-only Game Object
 class UGameObject inherits GameObject , implements Updateable
 // Overload Update function
 ...
 end

 // Draw-only Game Object
 class DGameObject inherits GameObject , implements Drawable
 // Overload Draw function
 ...
 end

 // Update and Draw Game Object
 class DUGameObject inherits UGameObject , implements Drawable
 // Inherit overloaded Update, overload Draw function
 ...
 end

 If this were implemented in a language that provides multiple inheritance, such as C++, it might
be tempting to have DUGameObject just directly inherit from UGameObject and DGame
Object . But this will make your code very complicated, because DUGameObject will inherit
from two different parents (UGameObject and DGameObject) that in turn both inherit from
the same grandparent (GameObject). This issue is known as the diamond problem , and
although there are solutions to this problem, it’s typically best to avoid the situation unless
there’s a very good reason for it.

 SUMMARY 15

 Once these three types of classes are implemented, it’s easy to incorporate them into the game
loop. There could be a GameWorld class that has separate lists for all the updateable and draw-
able game objects in the world:

 class GameWorld
 List updateable Objects
 List drawableObjects

 end

 When a game object is created, it must be added to the appropriate object list(s). Conversely,
when an object is removed from the world, it must be removed from the list(s). Once we have
storage for all our game objects, we can flesh out the “update game world” part of our loop, as
shown in Listing 1.4 .

 Listing 1.4 Final Game Loop

 while game is running
 realDeltaTime = time since last frame
 gameDeltaTime = realDeltaTime * gameTimeFactor

 // Process inputs
 ...

 // Update game world
 foreach Updateable o in GameWorld.updateableObjects
 o .Update(gameDeltaTime)
 loop

 // Generate outputs
 foreach Drawable o in GameWorld.drawableObjects
 o .Draw()
 loop

 // Frame limiting code
 ...
 loop

 This implementation is somewhat similar to what Microsoft uses in their XNA framework,
though the version presented here has been distilled to its essential components.

 Summary
 This chapter covered three core concepts that are extremely important to any game. The
game loop determines how all the objects in the world are updated every single frame. Our
management of time is what drives the speed of our games and ensures that gameplay can

16 CHAPTER 1 GAME PROGRAMMING OVERVIEW

be consistent on a wide variety of machines. Finally, a well-designed game object model can
simplify the update and rendering of all relevant objects in the world. Combined, these three
concepts represent the core building blocks of any real-time game.

 Review Questions
 1. Why were early console games programmed in assembly language?

 2. What is middleware?

 3. Select a classic arcade game and theorize what it would need to do during each of the
three phases of the traditional game loop.

 4. In a traditional game loop, what are some examples of outputs beyond just graphics?

 5. How does a basic multithreaded game loop improve the frame rate?

 6. What is input lag, and how does a multithreaded game loop contribute to it?

 7. What is the difference between real time and game time, and when would game time
diverge from real time?

 8. Change the following 30 FPS code so it is not frame rate dependent:

 position.x += 3.0
 position.y += 7.0

 9. How could you force a traditional game loop to be locked at 30 FPS?

 10. What are the three different categories of game objects? Give examples of each.

 Additional References

 Evolution of Video Game Programming

 Crane, David. “GDC 2011 Classic Postmortem on Pitfall!” (http://tinyurl.com/6kwpfee).
The creator of Pitfall! , David Crane, discusses the development of the Atari classic in this one-
hour talk.

 Game Loops

 Gregory, Jason. Game Engine Architecture . Boca Raton: A K Peters, 2009. This book dedi-
cates a section to several varieties of multithreaded game loops, including those you might use
on the PS3’s asymmetrical CPU architecture.

 West, Mick. “Programming Responsiveness” and “Measuring Responsiveness” (http://
tinyurl.com/594f6r and http://tinyurl.com/5qv5zt). These Gamasutra articles written by Mick
West (co-founder of Neversoft) discuss factors that can cause increased input lag as well as how
to measure input lag in games.

http://tinyurl.com/6kwpfee
http://tinyurl.com/594f6r
http://tinyurl.com/594f6r
http://tinyurl.com/5qv5zt

 ADDITIONAL REFERENCES 17

 Game Objects

 Dickheiser, Michael, Ed. Game Programming Gems 6 . Boston: Charles River Media, 2006.
One of the articles in this volume, “Game Object Component System,” describes an alterna-
tive to a more traditional object-oriented model. Although this implementation may be a bit
complex, more and more commercial games are trending toward game object models that use
composition (“has-a”) instead of strict “is-a” relationships.

This page intentionally left blank

INDEX

Symbols
2D graphics

characters, 54
isometric tile maps, 38-39
maps, 35-36
rendering, 20-22
scrolling, 30-34
sprites, 22-23

animating, 25-28
drawing, 23-25
sheets, 28-29

tile maps, 36-37
3D graphics

cameras. See cameras
coordinate systems, 56-57, 67

converting, 298
homogenous coordinates, 68
model spaces, 67
projection spaces, 74-76
transforming 4D vectors by matrices, 69
view/camera spaces, 72-73
world spaces, 68-72

lighting/shading, 76-83, 85
colors, 76
Phong refl ection models, 82-83
vertex attributes, 77-79

object representations, 91
overview of, 66
polygons, 66
sound, 115-119
vectors, 42, 60-61
visibility, 85-87
world transforms, 88-90

4D vectors, 42, 69
5.1 surround sound systems, 118

A
AAA titles, 4
A* algorithm, 189-192
absolute coordinates, 218, 298
abstract syntax tree. See AST
accelerometers, 106-108, 293
accounts, GitHub, 311
adding

breakpoint conditions, 307
watches, 306-307

addition
matrices, 58
vectors, 43-44

addresses
ping, 245
protocols. See protocols

admissible heuristics, 184-185
advantages

game state cheats, 256
hosts, 253

AI (artifi cial intelligence)
pathfi nding, 180-192
planning/strategies, 198-200
state-based behaviors, 192-198
strategies, 298
types of, 180

AIController class, 195
aiming reticules, 211-212, 298
algebra

matrices, 58
addition/subtraction, 58
inverse, 60
multiplication, 59-60
scalar multiplication, 58
transforming 3D vectors, 60-61
transposes, 60

solutions, 290-291
vectors, 42-43

addition, 43-44
coordinate systems, 56-57
cross products, 51-53
dot products, 48
length, 45-46
linear interpolation, 55-56
refl ection, 50-51
rotating 2D characters, 54
scalar multiplication, 47
subtraction, 44-45

algorithms
A+, 189-192
Bresenham’s line-drawing, 66
cameras, 175-178
culling, 88
Dijkstra’s, 192, 297
greedy best-fi rst, 185-189
instantaneous collision detection, 141, 295
occlusion, 88
painter’s, 23, 85-86, 289, 292

ALGORITHMS316

pathfi nding, 180-192
Rubine, 106, 293

ambient components, 82
ambient light, 80, 292
analog

fi ltering, 97, 293
input devices, 97-99

analysis
code

side scrollers, 262-267
tower defense games, 273-284

lexical, 230
syntax, 232-233

Angry Birds Space, 33
angular mechanics, 153
AnimatedSprite class, 26
animating sprites, 25-28
AnimFrameData structure, 26
AppDelegate class, 263
application debuggers, 304

breakpoints, 305-307
call stack windows, 307
data breakpoints, 308
watches, 306-307

applying
GitHub clients, 311-312
multiple transforms, 71

apps, mobile phones, 33
arbitrary convex polygons, 133
arbitrary points, planes, 295
arcade versions, 6
areas, nodes, 296
arrows, waypoint, 208-211, 298
artifacts, 66
Artifi cial Intelligence and Interactive Digital

Entertainment (AIIDE) conference, 198
artifi cial intelligence. See AI
ASCII characters, 299
aspect ratios, 163
Assassins Creed: Revelations, 4
AST (abstract syntax tree), 232
Atari, 2-3
attacks, man-in-the-middle, 256-257, 301
attitudes, 108
Audacity, 112
audio

3D sound, 115
emitters/listeners, 116-118
falloff , 118
surround sound, 118-119

Doppler eff ects, 122-123
DSP, 119-122
obstruction, 123

sound
cues, 112-115
occlusion, 123

source data, 112
augmented reality games, 293
automating edges, 182
axis-aligned bounding boxes, 132, 135-136, 295

B
back face culling, 79
backgrounds, parallax scrolling, 32-34
Backus-Naur Form. See BNF
basic sounds, 112

sound cues, 112-115
source data, 112

basis vectors, 57
behaviors, state-based, 192-198

design patterns, 196-198
fi nite state machines, 193-194
state machines, implementing, 195-196

bidirectional refl ectance distribution function
(BRDF), 82

binary fi les, 235, 300
binary formats, 236
binary spatial partitioning. See BSP
binding, native, 227
BioShock, 163
BioShock: Infi nite, 221
bit depth, 76
bitfi eld, 250
BNF (Backus-Naur Form), 232
bounding spheres, 131
branches, 310
BRDF (bidirectional refl ectance distribution

function), 82
breakpoints

conditions, 307
confi guring, 304-305
data, 308

Bresenham’s line-drawing algorithm, 66
BSP (binary spatial partitioning), 88, 148
buff ers

colors, 21-22, 289
double buff ering, 22
z-buff ering, 86-87, 292

bugs, issue tracking, 313
Bugzilla, 313
builds, Release, 306
bullet through paper problem, 141
bullet time, 10
Burnout, 160
Bushnell, Nolan, 2
buttons, menus, 205-206

 317 COLLISIONS

GameObject, 276-277
GameplayScene, 263
GameState, 275
MainMenuLayer, 263
ObjectLayer, 266-267
Pathfi nder, 278
Projectile, 265
ScrollingLayer, 264
Ship, 265
Singleton, 274
Timer, 278

clicks, mouse, 100
clients, 300

diff /merging tools, 312
Git, 310-312
predication, 252
server/client models, 250-253

closed sets, 186
cocos2d, 262
code. See also languages

analysis
side scrollers, 262-267
tower defense games, 273-284

debuggers, 304
breakpoints, 304-307
call stack windows, 307
data breakpoints, 308
watches, 306-307

duplication, 293
executing, 233-234
letter key, 298
scripting languages, 224

implementing, 229-234
Lua, 227
tradeoff s, 224-225
types of, 225-226
UnrealScript, 227-228
visual scripting systems, 229

source control, 310. See also source control
coeffi cient of restitution, 147
collisions

cameras, 175-176
detection, 134

axis-aligned bounding box intersection,
135-136

line segment versus plane intersection,
136-137

line segment versus triangle intersection,
138-139

optimizing, 147-148
responses, 146-147
sphere intersection, 134
sphere versus plane intersection, 140
swept sphere intersection, 141-145

geometry, 130-134

C
calculating

force, 151
frames, 27
length, 45-46
points, 177

Call of Duty, 217
call stack windows, 307
cameras, 158

algorithms, 175-178
cutscene, 161
_Defense, 279
fi rst-person, 159-160, 170
fi xed, 158
follow, 160-165
implementing, 164-175
non-player controlled, 158
orbit, 168-170
perspective projections, 161-163
positioning, 296
spaces, 72-73
splines, 172-175, 296
spring follow, 165-168

capsules, 133
Carmack, John, 46-47
Cartesian coordinate spaces, 67
case studies, World of Warcraft, 239-241
cathode ray tubes. See CRTs
Catmull-Rom splines, 173, 296
CCD (continuous collision detection), 141
central processing units. See CPUs
ChangeAnim function, 27
change of basis matrix, 57
channels, LFE, 118
characters

2D, rotating, 54
ASCII, 299
NPCs, 180

cheats, 255
game state, 256
information, 255-256, 301
man-in-the-middle attacks, 256-257

chords, 94, 293
Chrono Trigger, 3
Civilization, 181
C language, 2
C# language, 270-272
classes

AIController, 195
AnimatedSprite, 26
AppDelegate, 263
encapsulation, 271
Enemy, 265
Game, 274

COLORS318

view/camera spaces, 72-73
world spaces, 68-72

homogenous coordinates, 68
textures, 77
UV, 78

CPUs (central processing units), 7
Crane, David, 3
crashes, issue tracking, 313
Crazy Taxi, 208
cross products, 48-53
CRTs (cathode ray tubes), 20-21
Crysis, 2
cues, sound, 112-115, 294
culling

algorithms, 88
back face, 79

cutscenes, 161, 296
cycles, development, 2

D
Dabney, Ted, 2
data breakpoints, 308
data formats, 235

binary, 236
INI, 236-237
JSON, 238
tradeoff s, 235-236
XML, 237

dBs (decibels), 118, 294
dead zones, 97
debuggers, 304

breakpoints, 304-308
call stack windows, 307
watches, 306-307

decibels, 118, 294
dedicated servers, 253
_Defense, 270

C# language, 270-272
code analysis, 273-284
exercises, 284-285
MonoGame, 273
XNA, 272

delta time, 10-12, 288
depth

bit, 76
buff ers, 86

design, 196-198. See also confi guring
Design Patterns, 196
detection, collision, 134

axis-aligned bounding box intersection,
135-136

line segments
versus plane intersection, 136-137
versus triangle intersection, 138-139

colors, 76
buff ers, 21-22, 289
resolution, 20

column-major vectors, 61
Company of Heroes, 227, 255
components

ambient, 82
diff use, 82
specular, 83
w-components, 68

compressors, 120
Computer Space, 2
conditions

breakpoints, adding, 307
hit count, 307

confi guring
breakpoints, 304-305

conditions, 307
data, 308

_Defense, 273
source control, 309

Git, 310-312
SVN, 309

watches, 306-307
conjugate of quaternions, 90
connections

peer-to-peer, 253-254
server/client models, 250-253
TCP, 246. See also TCP
UDP, 249. See also UDP

consoles, 9, 288
ConstructPlan function, 199
continuous collision detection. See CCD
control

fl ow
game loops, 5
multithreaded, 7-8
objects in game loops, 13-15
phases of game loops, 5-7

source, 309
Git, 310-312
SVN, 309

converting
3D coordinates, 298
coordinate systems, 56
vectors, 46

convexes
hulls, 133
polygons, 121, 294

coordinate systems, 56-57
3D, converting, 298
absolute, 218, 298
coordinate spaces, 67, 291

model spaces, 67
projection spaces, 74-76

 319 FIELDS, VECTORS

drawing
sprites, 23-25
vectors, 43

dropping frames, 12
DSP (digital signal processing), 119-122, 294
duplication of code, 293

E
echo packets, 245
edges, 181-182
eff ects

Doppler, 122-123, 294
DSP, 119-122, 294

electron guns, 289
elements, HUD, 207

aiming reticules, 211-212
radar, 212-217
waypoint arrows, 208-211

emitters, 116-118
encapsulation, 271
encryption, 257
Enemy class, 265
enumerations, keycode, 95
equality, vectors, 43
equations, parametric, 295
errors, operator precedence, 226
Euclidean distance, 185
Euler integration, 151-152
Euler rotations, 70, 292
event-based input systems, 99-104
events, 293
evolution of video game programming, 2

Atari era (1977-1985), 2-3
future of, 4-5
NES/SNES era (1985-1995), 3
Playstation/Playstation 2 era (1995-2005), 3
PS3/Wii/Xbox 360 era (2005-2013), 4

executing code, 233-234
exercises

Ship Attack, 267-268
tower defense games, 284-285

experience, UX, 221
expressions, regular, 231, 299
Extensible Markup Language. See XML

F
falloff , 118
Fallout, 38
fi eld of view. See FOV
fi elds, vectors, 42

optimizing, 147-148
responses, 146-147
spheres

intersection, 134
versus plane intersection, 140
swept sphere intersection, 141-145

development, cycles, 2
devices

digital, 292
event-based input systems, 99-104
input, 94

analog, 97-99
digital, 95-97

mobile input, 105
accelerometers/gyroscopes, 106-108
touch screens, 105-106

Diablo III, 74
Diablo, 38
diamond problem, 14
diff tools, 312
diff use component, 82
digital devices, 292
digital input devices, 95, 97
digital signal processing. See DSP
Dijkstra’s algorithm, 192, 297
dimensions

matrices
inverse, 60
multiplication, 59-60
scalar multiplication, 58
transforming 3D vectors, 60-61
transposes, 60

vectors, 42-43
addition, 43-44
coordinate systems, 56-57
cross products, 51-53
dot products, 48
length, 45-46
linear interpolation, 55-56
refl ection, 50-51
rotating 2D characters, 54
scalar multiplication, 47
subtraction, 44-45

directional light, 81, 292
distance

Euclidean, 185
Manhattan, 184

documentation, issue tracking, 313
Doppler eff ects, 122-123, 294
Doppler shifts, 120
dot products, vectors, 48
double buff ering, 22
doubly linked lists, 289

FILES320

frames
calculating, 27
dropping, 12
limiting, 12
rates, 288

frames per second. See FPS
frameworks

cocos2d, 262
MonoGame, 273
XNA, 272

Fresnel acoustic diff raction, 123
Full Spectrum Warrior, 4
functions

ChangeAnim, 27
ConstructPlan, 199
Fire script, 101
getter/setter, 271
Initialize, 27
LoadLevel, 277
parametric, 129
SetState, 196
storing, 293
Update, 196
UpdateAnim, 27
UpdateInput, 101

G
Game class, 274
GameObject class, 276-277
GameplayScene class, 263
games

3D graphics, 66-76
AI

pathfi nding, 180-192
planning/strategies, 198-200
state-based behaviors, 192-198
types of, 180

augmented reality, 293
cameras. See cameras
collision geometry, 130-134
data formats, 235-238
history of programming, 2-5
HUD elements, 207-217
linear algebra for

matrices, 58-61
vectors, 42-57

localization, 219-221
loops, 5, 288

multithreaded, 7-8
objects, 13-15
phases, 5-7

menus, 204-207
networked, 244. See also networked games

fi les
audio

sound cues, 112-115
source data, 112

binary, 235, 300
images, 28
INI, 236-237, 300
JSON, 113, 238
source control, 309

Git, 310-312
SVN, 309

text-based, 235
XML, 237

fi ltering
analog, 97, 293
low-pass fi lters, 120

fi nite state machines, 193-194
Fire script function, 101
fi rst-person cameras, 159-160, 170
fi xed cameras, 158
fl at shading, 83
fl oating point numbers, 46-47
fl ow control, game loops, 5

multithreaded, 7-8
objects, 13-15
phases, 5-7

follow cameras, 160-168
force, 149-151
formatting. See also design

binary fi les, 300
data formats, 235

binary, 236
INI, 236-237
JSON, 238
tradeoff s, 235-236
XML, 237

_Defense, 273
side scrollers, 260

cocos2d, 262
code analysis, 262-267
exercises, 267-268
Objective-C language, 261

tower defense games, 270
C# language, 270-272
code analysis, 273-284
exercises, 284-285
MonoGame, 273
XNA, 272

four-way scrolling, 34
FOV (fi eld of view), 76, 161-162
FPS (frames per second), 5, 289
frame buff ers, 86
FrameData, 26

 321 INI FILES

Havok Physics, 4
headers, 244-245
heads-up display. See HUD elements
heads (vectors), 43
head-tracking devices, 94
height, aspect ratios, 163
heuristics, 184-185, 297
history

of video game programming, 2
Atari era (1977-1985), 2-3
future of, 4-5
NES/SNES era (1985-1995), 3
Playstation/Playstation 2 era (1995-2005), 3
PS3/Wii/Xbox 360 era (2005-2013), 4

source control, 309
Git, 310-312
SVN, 309

hit count conditions, 307
homogenous coordinates, 68
hosts, advantages, 253
HTTP (Hypertext Transfer Protocol), 257
HTTPS (Secure HTTP), 257
HUD (heads-up display) elements, 207

aiming reticules, 211-212
radar, 212-217
waypoint arrows, 208-211

I
ICMP (Internet Control Messaging Protocol),

245-246, 300
identifi ers, tokenization, 230
if statements, 31
image fi les, 28
implementing

cameras, 158, 164-175
algorithms, 175-178
cutscene, 161
fi rst-person, 159-160, 170
fi xed, 158
follow, 160-165
non-player controlled, 158
orbit, 168-170
perspective projections, 161-163
splines, 172-175
spring follow, 165-168

HUD elements, 207-217
menus, 204-207
scripting languages, 229-234
state machines, 195-196

impulse-driven systems, 120
infi nite scrolling, 32
information cheats, 255-256, 301
INI fi les, 236-237, 300

objects, 13, 91
protocols, 244-250
scripting languages, 224-234
side scrollers, 260-268
sound, 112-115
state, 256, 275
third-person, 117, 294
time, 9-12
topologies, 250-254
tower defense, 270-285

GameState class, 275
Gears of War, 183, 253
generating

code, 233-234
outputs, 5

geometry, collision, 130
arbitrary convex polygons, 133
axis-aligned bounding boxes, 132
bounding spheres, 131
capsules, 133
lists, 134
oriented bounding boxes, 132

gestures, 105-106
getter functions, 271
ghosts in Pac Man, 194
Git, 310-312
GitHub, 311-313
God of War, 158
Gouraud shading, 83, 292
GPS data, 108
GPUs (graphics processing units), 66
Grand Theft Auto III, 3
Grand Theft Auto IV, 4
graphical artifacts, 66
graphics

2D. See 2D graphics
3D. See 3D graphics
_Defense, 281
rendering, 7

graphics processing units. See GPUs
graphs, representing search spaces, 181-183
Grassmann products, 90
greedy best-fi rst algorithms, 185-189
grids, matrices, 58
Grim Fandango, 227
guitar controllers, 94
gyroscopes, 106-108, 293

H
Halo, 255
handedness of coordinate systems, 52
hard-coding UI text, 298
Havok, 153

INITIALIZE FUNCTION322

L
lag, input, 8, 288
Lammers, Susan, 194
languages

C, 2
C#, 270-272
Objective-C, 261
scripting, 224, 299

implementing, 229-234
Lua, 227
tradeoff s, 224-225
types of, 225-226
UnrealScript, 227-228
visual scripting systems, 229

XML, 237
Last of Us, The, 2
latency, 245
Legend of Zelda, The, 3, 35
length

vectors, 45-46
squared, 46

lerp. See linear interpolation
letter key codes, 298
lexical analysis, 230
LFE (low-frequency eff ects) channels, 118
libraries, XNA game, 272
lighting, 76, 79, 292

colors, 76
per pixel, 84
Phong refl ection models, 82-83
shading, 83-85
vertex attributes, 77-79

limiting frames, 12
linear algebra

matrices, 58-61
vectors, 42-43

addition, 43-44
coordinate systems, 56-57
cross products, 51-53
dot products, 48
length, 45-46
linear interpolation, 55-56
refl ection, 50-51
rotating 2D characters, 54
scalar multiplication, 47
subtraction, 44-45

linear interpolation, 55-56
linear mechanics, 149
line segments, 129-130, 136-139
listeners, 116-118, 294
lists of collision geometries, 134
LoadLevel function, 277

Initialize function, 27
input

_Defense, 280
devices, 94

analog, 97-99
digital, 95-97

event-based systems, 99-104
lag, 8, 288
menus, typing, 206-207
mobile, 105

accelerometers/gyroscopes, 106-108
touch screens, 105-106

inputs, processing, 5
instantaneous collision detection algorithms,

141, 295
integration

Euler, 151-152
methods, 153
numeric methods, 295
semi-implicit Euler, 151-152
velocity Verlet, 152-153, 295

interfaces, 293. See also UIs
Internet Control Messaging Protocol. See ICMP
Internet Protocol. See IP
interpolation, 55-56, 117
intersections

axis-aligned bounding boxes, 135-136
line segment, 136-139
planes, 136-140
spheres, 134, 140-145, 295
triangles, 138-139

inverse matrices, 60
inverse square roots, 46-47
IP (Internet Protocol), 244-245, 300
isometric tile maps, 38-39
isometric views, 290
issue tracking, 313
Iwatani, Toru, 194

J–K
JavaScript Object Notation. See JSON
Jetpack Joyride, 30, 33
Jobs, Steve, 261
joysticks, 6. See also input
JSON (JavaScript Object Notation), 113, 238

key codes, 95, 298
KeyState value, 96
keywords, tokenization, 230
Kinect, 94
Kismet, 229

 323 MULTI-TOUCH

menus, 204
buttons, 205-206
stacks, 204-205, 298
typing, 206-207

merging tools, 312
meshes, 66
messages, Objective-C, 261
methods. See also functions

integration, 153
numeric integration, 295
partitioning, 148

metrics, 313
micro strategies, 198
middleware, 4, 153-154, 221, 288
mipmapping, 28
mobile input, 105

accelerometers/gyroscopes, 106-108
touch screens, 105-106

mobile phones, apps, 33
models

local lighting, 82
lockstep, 301
peer-to-peer, 253-254
Phong refl ection, 82-83, 292
server/client, 250-253, 300
spaces, 67

monitors, CRTs, 20-21
MonoGame, 273
Moon Patrol, 33
Mountain Lion, 260
mouse clicks, 100, 293
movement, physics, 148

angular mechanics, 153
calculating force, 151
Euler/semi-implicit Euler integration, 151-152
integration methods, 153
linear mechanics, 149
variable time steps, 150
velocity Verlet integration, 152-153

MTUs (maximum transmission units), 247
multicore consoles, 9
multicore CPUs, 7. See also CPUs
multiplayer support, 5
multiple resolution support, 218-219
multiple transforms, applying, 71
multiplication

matrices, 58-60
order of, 291
vectors, 47

multithreaded game loops, 7-8
multi-touch, 105

localization, 219-221, 280
local lighting models, 82
lockstep models, 301
logic as function of delta time, 10-12
look-at matrices, 72
loops, game, 5, 288

multithreaded, 7-8
objects, 13-15
phases, 5-7

Lord of the Rings: Conquest, 57, 117
loss, packets, 247
low-frequency eff ects. See LFE channels
low-pass fi lters, 120
Lua, 225, 227

M
machines, state

design patterns, 196-198
fi nite, 193-194
implementing, 195-196

macro strategies, 198
magnitude, 46. See also length
MainMenuLayer class, 263
Manhattan distance, 184
man-in-the-middle attacks, 256-257, 301
maps, 35-36

textures, 77
tiles, 35-39

marking regions, 121-122
mass, 149
math

matrices, 58-61
vectors, 43-53

matrices, 58
3D vectors, transforming, 60-61
4D vectors, transforming, 69
addition/subtraction, 58
inverse, 60
look-at, 72
multiplication, 59-60
rotation, 70
scalar multiplication, 58
scale, 69
transform, 69
translation, 70
transposes, 60

maximum transmission units. See MTUs
Max Payne, 10
mechanics

angular, 153
linear, 149

memory, 2

NAMCO324

static, 13
types of, 13

obstruction, sound, 123
occlusion

algorithms, 88
sound, 123, 294

octets, 245
octrees, 148
Oculus Rift, 108
online multiplayer support, 5
OpenAL, 112
open sets, 186
operators

precedence errors, 226
tokenization, 230

optimizing collisions, 147-148
orbit cameras, 168-170
order

of multiplication, 291
winding, 78

oriented bounding boxes, 132
orthographic projections, 292
outputs, 5, 288
overdraw, 85

P
packets, 244

echo, 245
ICMP, 246
loss, 247
UDP, 249

Pac-Man, 3, 6-7, 194
painter’s algorithm, 23, 85-86, 289, 292
parallax scrolling, 32-34
parallelogram rule, 44
parametric equations, 295
parametric functions, 129
partitioning, 148
Pathfi nder class, 278
pathfi nding, AI, 180-192
path nodes, 182
patterns

design, 196-198
state design, 297

peer-to-peer models, 253-254
performance, TCP, 248
per pixel lighting, 84
perspective, projections, 74, 161-163
phases, game loops, 5-7
Phong

refl ection models, 82-83, 292
shading, 84

N
Namco, 6
native binding, 227
navigating

accelerometers/gyroscopes, 106-108
HUD elements, 207

aiming reticules, 211-212
radar, 212-217
waypoint arrows, 208-211

menus, 204
buttons, 205-206
stacks, 204-205
typing, 206-207

touch screens, 105-106
near planes, 75
NES (Nintendo Entertainment System), 3
networked games

cheats, 255-257
protocols, 244

ICMP, 245-246
IP, 244-245
TCP, 246-249
UDP, 249-250

topologies, 250-254
NeXT, 261
nodes, 181

areas, 296
path, 182
scene, 262

non-player characters. See NPCs
non-player controlled cameras, 158
normalization, 46
normal to planes, 51
NPCs (non-player characters), 180
numbers

fl oating point, 46-47
matrices, 58
sequence, 250

numeric integration methods, 295

O
Objective-C language, 261
ObjectLayer class, 266-267
objects, 13

categories of, 289
game loops, 13-15
polygons, 66
representations, 91
sprites, 22-23

animating, 25-28
drawing, 23-25
sheets, 28-29

 325 RELEASE BUILDS

Programmers at Work, 194
programming

3D graphics
coordinate spaces, 67-73
homogenous coordinates, 68
overview of, 66
polygons, 66
projection spaces, 74-76
transforming 4D vectors by matrices, 69

evolution of, 2-5
game loops, 5

multithreaded, 7-8
objects, 13-15
phases, 5-7

objects, 13
time, 9-12

Projectile class, 265
projections

_Defense, 279
orthographic, 292
perspective, 161-163

projection spaces, 74-76
protocols, 244

HTTP, 257
HTTPS, 257
ICMP, 245-246, 300
IP, 244-245, 300
TCP, 246-249, 300
UDP, 249-250, 300

PS3 era (2005-2013), 4
Python, 225

Q–R
quadtrees, 148
QuakeC, 225
quaternions, 89-90

radar, 212-217
radii squared, 134
RAM (random access memory), 2
rasterization, software, 66
rates, frames, 288
ratios, aspect, 163
rays, 129-130
real time, 10, 288
real-time strategy. See RTS
red, green, and blue. See RGB
refl ection

Phong refl ection models, 82-83, 292
vectors, 50-51

regions, marking, 121-122
regular expressions, 231, 299
relative coordinates, 218
Release builds, 306

physics
collision detection, 134

axis-aligned bounding box intersection,
135-136

line segment versus plane intersection,
136-137

line segment versus triangle intersection,
138-139

optimizing, 147-148
responses, 146-147
sphere intersection, 134
sphere versus plane intersection, 140
swept sphere intersection, 141-145

collision geometry, 130-134
_Defense, 280
line segments, 129-130
middleware, 153-154
movement, 148-153
planes, 128
rays, 129-130

PhysX, 153
picking, 176-178, 209, 296
ping, 245
pitch systems, 120-123
Pitfall!, 3
pixels, 20-21
planes, 128

arbitrary points, 295
intersection, 136-137, 140
near, 75

planning AI, 198-200
Playstation/Playstation 2 era (1995-2005), 3
points

calculating, 177
light, 81

polling systems, 99, 293
polygons, 66, 291

arbitrary convex, 133
convex, 121, 294

Pong, 192
ports, 248, 300
positioning

cameras, 296
vectors, 42

precedence, operator errors, 226
prediction, clients, 252
Prince of Persia: The Sands of Time, 10
processing

CPUs. See CPUs
inputs, 5

processors, history of, 2
products

cross, 48-53
dot, 48
Grassmann, 90

RENDERING326

scrolling
2D graphics, 30

four-way, 34
infi nite, 32
parallax, 32-34
single-axis, 30-32

single-direction, 289
ScrollingLayer class, 264
SDKs (software development kits), 3
SDL (Simple DirectMedia Layer), 95
searching greedy best-fi rst algorithms, 185-189
search spaces, representing, 181-183
Secure HTTP. See HTTPS
segments, lines, 129-130, 136-139
semi-implicit Euler integration, 151-152
sending

ICMP, 245-246
IP, 244-245

sequences, 94
numbers, 250
regular expressions, 231

serialization, 236
servers, 300

dedicated, 253
repositories, 309
server/client models, 250-253, 300

sets
closed, 186
open, 186

SetState function, 196
setsStitles, 289
setter functions, 271
settings, _Defense, 273
shaders, 66
shading, 76, 83-85

colors, 76
Gouraud, 292
lighting, 79
Phong refl ection models, 82-83
vertex attributes, 77-79

sheets, sprites, 28-29
Ship Attack, 260

cocos2d, 262
code analysis, 262-267
exercises, 267-268
Objective-C language, 261

Ship class, 265
side scrollers, 260

cocos2d, 262
code analysis, 262-267
exercises, 267-268
Objective-C language, 261

signals, DSP, 119-122
Simple DirectMedia Layer. See SDL
Sims, The, 74

rendering, 288
2D graphics, 20

color buff ers, 21-22
CRT monitor basics, 20-21
isometric tile maps, 38-39
maps, 35-36
scrolling, 30-34
sprites, 22-29
tile maps, 36-37
vertical sync, 21-22

graphics, 7
reports, issue tracking, 313
repositories, 309
representations

objects, 91
search spaces, 181-183

Resident Evil, 158
resolution, 20, 218-219
responses, collisions, 146-147
reticules, aiming, 211-212, 298
reverb, 120, 294
RGB (red, green, and blue), 20, 76
right hand rule, 52
Rock Band, 180
rotations

2D characters, 54
Euler, 292
matrices, 70

row-major vectors, 61
RTS (real-time strategy), 198
Rubine algorithm, 106, 293
Rubine, Dean, 106
rules

parallelogram, 44
right hand, 52

Runge-Kutta method, 153

S
sample games

side scrollers, 260-268
tower defense games, 270-285

sample problems
2D characters, 54
vector refl ection, 50-51

scalar multiplication
matrices, 58
vectors, 47

Scaleform, 221
scale matrices, 69
scene nodes, 262
screens. See also interfaces

space, 74-76
tearing, 21, 289

scripting languages, 239-241, 299

 327 SYNC, VERTICAL

splines
cameras, 172-175, 296
Catmull-ROM, 296

spotlights, 81
spring follow cameras, 165-168
sprites, 22-23

animating, 25-28
drawing, 23-25
sheets, 28-29, 289

stacks
call stack windows, 307
menus, 204-205, 298

Starcraft II, 256
StarCraft, 198, 200, 254
Star Wars: The Old Republic, 221
state

behaviors, 192-198
design patterns, 196-198
fi nite state machines, 193-194
implementing state machines, 195-196

design patterns, 297
games

cheats, 256
_Defense, 275

machines
design patterns, 196-198
implementing, 195-196

statements, if, 31
static objects, 13
storing functions, 293
strategies, AI, 198-200, 298
Street Fighter, 8, 95
subtraction

matrices, 58
vectors, 44-45

subversion. See SVN
Super Mario Bros. 2, 34
Super Mario Bros., 13, 150
Super Mario World, 3, 32
support

camera algorithms, 175-178
data format, 235-238
localization, 219-221
multiple resolution, 218-219
scripting languages, 224-234

surfaces, planes, 128
surround sound, 118-119
SVN (subversion), 309
swaps, buff ers, 22
swept spheres, 295
switches between source data, 114
symbols, tokenization, 230
sync, vertical, 21-22

single-axis scrolling, 30-32
single-direction scrolling, 289
single models, 66
Singleton class, 274
Skyrim, 159
smartphones, 105

accelerometers/gyroscopes, 106-108
touch screens, 105-106

SNES era (1985-1995), 3
sockets, UDP, 250
software development kits. See SDKs
software rasterization, 66
solutions, algebra, 290-291
Sommefeldt, Rhys, 47
sound

3D, 115
emitters/listeners, 116-118
falloff , 118
surround sound, 118-119

basic, 112
sound cues, 112-115
source data, 112

cues, 294
_Defense, 282
Doppler eff ects, 122-123
DSP, 119-122
obstruction, 123
occlusion, 123, 294

source control, 309
diff /merging tools, 312
Git, 310-312
SVN, 309

source data
sound, 112, 294
switches between, 114

space
matrices, 58-61
vectors, 42-43

addition, 43-44
coordinate systems, 56-57
cross products, 51-53
dot products, 48
length, 45-46
linear interpolation, 55-56
refl ection, 50-51
rotating 2D characters, 54
scalar multiplication, 47
subtraction, 44-45

specular component, 83
speed, updating, 10-12
spheres

bounding, 131
intersection, 134, 140
intersections, 295
swept, 141-145, 295

SYNTAX328

transforms
3D vectors by matrices, 60-61
4D vectors by matrices, 69
matrices, 58-61, 69
multiple, 71
worlds, 88-91

translation matrices, 70
Transmission Control Protocol. See TCP
transposes, matrices, 60
trees

abstract syntax, 299
octrees, 148
quadtrees, 148

trends in game programming, 4
triangles, 291

intersection, 138-139
planes, 128
polygons, 66

Tribes, 250
troubleshooting

debuggers, 304
adding breakpoint conditions, 307
breakpoints, 304-305
call stack windows, 307
data breakpoints, 308
watches, 306-307

issue tracking, 313
trunks, 310
types

of AI, 180
of cameras, 158

cutscene, 161
fi rst-person, 159-170
fi xed, 158
follow, 160-165
non-player controlled, 158
orbit, 168-170
splines, 172-175
spring follow, 165-168

of game objects, 13
of input devices, 94-99
of lighting, 81, 292
of objects, 289
of scripting languages, 225-226
of shading, 83-85

typing menus, 206-207

U
UDP (User Datagram Protocol), 249-250, 300
UIs (user interfaces)

_Defense, 282-284
HUD elements, 207-217
localization, 219-221

syntax
analysis, 232-233
abstract trees, 299
Objective-C, 261

T
tablets, 105

accelerometers/gyroscopes, 106-108
touch screens, 105-106

tags, 310
tails (vectors), 43
TCP (Transmission Control Protocol), 246-249, 300
Team Fortress 2, 255
tearing, screen, 289
text

localization, 219
tokenization, 230
UI, hard-coding, 298

text-based fi les, 235
TexturePacker, 29, 260-262
textures, 28

coordinates, 77
mapping, 77

third-person games, 117, 294
tile maps, 35-39
time, 9

delta, 288
game time/real time, 10
logic as function of delta, 10-12
real, 288
variable time steps, 150

timeouts, 246
Timer class, 278
titles, sets, 289
tokenization, 230
tokens, 230
Tony Hawk’s Project 8, 205
tools

diff , 312
merging, 312

topologies, 250
peer-to-peer models, 253-254
server/client models, 250-253

touch screens, 105-106
tower defense games, 270

C# language, 270-272
code analysis, 273-284
exercises, 284-285
MonoGame, 273
XNA, 272

tracking issues, 313
tradeoff s

data formats, 235-236
scripting languages, 224-225

 329 ZONES, DEAD

Playstation/Playstation 2 era (1995-2005), 3
PS3/Wii/Xbox 360 era (2005-2013), 4

viewing call stack windows, 307
viewports, 163
views, 72-73

fi eld of, 295
isometric, 38-39, 290

virtual controllers, 105
virtual reality headsets, 94
visibility, 85

painter’s algorithm, 85-86
world transforms, 91
z-buff ering, 86-87

visual scripting systems, 229, 299
Visual Studio

breakpoints
conditions, 307
confi guring, 304-305
data, 308

call stack windows, 307
watches, adding, 306-307

W
watches, confi guring, 306-307
waypoint arrows, 208-211, 298
w-components, 68
whitepapers, 250
width, aspect ratios, 163
Wii era (2005-2013), 4
WiiMote, 94
winding order, 78
windows, call stack, 307
World of Warcraft, 227

case study, 239-241
TCP, 248

worlds
spaces, 68-72
transforms, 88-91
updating, 5

X–Z
Xbox 360 era (2005-2013), 4
Xcode, 260
XCOM, 181
XML (Extensible Markup Language), 237
XNA game libraries, 272

z-buff ering, 86-88, 292
z-fi ghting, 88
Zinman-Jeanes, Jacob, 260
zones, dead, 97

menus, 204-207
middleware, 221
multiple resolution support, 218-219
text, hard-coding, 298

Uncharted, 160
uniform scale, 70
unit quaternions, 90
unit vectors, 46
Unity, 4
unprojection, 296
Unreal, 4
Unreal Engines, 101
UnrealScript, 225-228, 299
UpdateAnim function, 27
Update function, 196
UpdateInput function, 101
updating

servers, 301
speed, 10-12
worlds, 5

User Datagram Protocol. See UDP
user interfaces. See UIs
UV coordinates, 78
UX (user experience), 221, 299

V
variable time steps, 150
VBLANK (vertical blank interval), 20-21, 289
vectors, 42-43

2D characters, rotating, 54
4D, transforming by matrices, 69
addition, 43-44
coordinate systems, 56-57
cross products, 51-53
dot products, 48
length, 45-46
linear interpolation, 55-56
refl ection, 50-51
scalar multiplication, 47
subtraction, 44-45

velocity, 252
collision responses, 146
Verlet integration, 152-153, 295

versions, IP, 245
vertical blank interval. See VBLANK
vertical sync, 21-22
vertices, 66

attributes, 77-79
normal, 78

video games, history of programming, 2
Atari era (1977-1985), 2-3
future of, 4-5
NES/SNES era (1985-1995), 3

	Contents
	Preface
	1 Game Programming Overview
	Evolution of Video Game Programming
	The Game Loop
	Time and Games
	Game Objects
	Summary
	Review Questions
	Additional References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [756.000 756.000]
>> setpagedevice

