
 G
 C API Reference

 This appendix describes the C language application programming interface for the MySQL
client library. The API consists of a set of functions for communicating with MySQL servers and
accessing databases, and a set of data types used by those functions. The client library functions
group into these categories:

 ■ Routines to initialize and terminate the client library

 ■ Connection management routines to establish and terminate connections to the server

 ■ Error-reporting routines to get error codes and messages

 ■ Routines to construct SQL statements and send them to the server

 ■ Result set processing routines to handle results from statements that return data

 ■ Routines to process multiple result sets

 ■ Routines that provide information about the client, server, protocol version, and the
current connection

 ■ Transaction control routines

 ■ Routines for server-side prepared statements

 ■ Administrative routines to control server operation

 ■ Thread routines for writing threaded clients

 ■ Routines that generate debugging information

 Unless otherwise indicated, the data types and functions listed here have been present in the
client library at least as early as MySQL 5.5.0. Changes made since then are so noted.

 The examples in this appendix are only brief code fragments. For complete programs and
instructions for writing them, see Chapter 7 , “Writing MySQL Programs Using C.”

22_9780321833877_xg.indd 107322_9780321833877_xg.indd 1073 3/1/13 10:04 AM3/1/13 10:04 AM

1074 Appendix G C API Reference

 G.1 Compiling and Linking

 At the source level, the interface to the C client library is defined in a set of header files.
Generally, MySQL programs include at least the following three files:

 #include <my_global.h>
 #include <my_sys.h>
 #include <mysql.h>

 To tell the C compiler where to find these files, you might need to specify an -I path_name
option, where path_name is the pathname to the directory where the MySQL header files are
installed. For example, if your MySQL header files are installed in /usr/include/mysql or
 /usr/local/mysql/include , compile a source file my_func.c by using commands that look
something like this:

 % gcc -I/usr/include/mysql -c my_func.c
 % gcc -I/usr/local/mysql/include -c my_func.c

 If you need to access other MySQL header files, they are located in the same directory as
 mysql.h . For example, mysql_com.h contains constants and macros for interpreting query
result metadata. The header files errmsg.h and mysqld_error.h contain constants for error
codes. Note that although you might want to look at mysql_com.h to see what’s in it, you
need not include this file explicitly. mysql.h does so, so including mysql.h gives your program
access to the contents of mysql_com.h as well.

 A MySQL program can communicate as a client to a standalone MySQL server using the regular
client/server protocol, or it can use an embedded server that is linked directly into the program
binary. By proper use of the C API mysql_library_init() and mysql_library_end() initial-
ization and termination routines, a program can be written so that either server type can be
used (see Section G.3.1 , “Client Library Initialization and Termination Routines”). The type
of server to use is determined by which library you link the program against to produce the
executable image:

 ■ A program acts as a client of a standalone server if you link it against the
 libmysqlclient library. To link this library into your program, specify -lmysqlclient
on the link command. You’ll probably also need to tell the linker where to find the
library using a -L path_name option, where path_name is the pathname to the directory
where the library is installed. For example:

 % gcc -o myprog my_main.o my_func.o -L/usr/local/mysql/lib
 -lmysqlclient

 ■ A program uses the embedded server if you link it against the libmysqld library. To link
this library into your program, specify -lmysqld on the link command:

 % gcc -o myprog my_main.o my_func.o -L/usr/local/mysql/lib -lmysqld

 If a link command fails with “unresolved symbol” errors, you’ll need to specify additional
libraries for the linker to search. Common examples include the math library (-lm) and the
 zlib library (-lz or -lgz).

22_9780321833877_xg.indd 107422_9780321833877_xg.indd 1074 3/1/13 10:04 AM3/1/13 10:04 AM

1075G.2 C API Data Structures

 The mysql_config utility provides an easy way to determine the proper header file directories
for compiling or library flags for linking. Invoke it as follows to find out which flags are appro-
priate for your system:

 ■ Compilation flags:

 % mysql_config --include
 -I'/usr/local/mysql/include/mysql'

 ■ Flags for linking a client program:

 % mysql_config --libs
 -L'/usr/local/mysql/lib/mysql' -lmysqlclient -lz -lcrypt -lnsl -lm

 ■ Flags for linking the embedded server:

 % mysql_config --libmysqld-libs
 -L'/usr/local/mysql/lib/mysql' -lmysqld -lz -lcrypt -lnsl -lm

 The output shown is illustrative, but likely will differ on your system.

 G.2 C API Data Structures

 Data structures for the MySQL client library represent the kinds of information you deal with in
the course of a session with the server. There are structures for the connection itself, for results
from a query, for a row within a result, and for metadata (descriptive information about the
columns making up a result). The terms “column” and “field” are synonymous in the following
discussion.

 G.2.1 Scalar Data Types

 MySQL’s scalar data types represent values such as very large integers, boolean values, and field
or row offsets.

 ■ my_bool

 A boolean type, used for the return value of mysql_change_user() and
 mysql_thread_init() .

 ■ my_ulonglong

 A long integer type, used for the return value of functions that return row counts or
other potentially large numbers, such as mysql_affected_rows() , mysql_num_rows() ,
and mysql_insert_id() . To print a my_ulonglong value, cast it to unsigned long and
use a format of %lu . For example:

 printf ("Row count = %lu\n", (unsigned long) mysql_affected_rows (conn));

 The value will not print correctly on some systems if you don’t do this. However, if the
value to be printed might exceed the maximum permitted by unsigned long (2 32 −1),
 %lu won’t work, either. You’ll need to check your printf() documentation to see

22_9780321833877_xg.indd 107522_9780321833877_xg.indd 1075 3/1/13 10:04 AM3/1/13 10:04 AM

1076 Appendix G C API Reference

whether there is some implementation-specific means of printing the value. For example,
a %llu format specifier might be available.

 ■ MYSQL_FIELD_OFFSET

 This data type is used by functions such as mysql_field_seek() and mysql_field_
tell() to represent offsets within the set of MYSQL_FIELD structures for the current
result set.

 ■ MYSQL_ROW_OFFSET

 This data type is used by functions such as mysql_row_seek() and mysql_row_tell()
to represent offsets within the set of rows for the current result set.

 G.2.2 Nonscalar Data Structures

 MySQL’s nonscalar data structures represent structures or arrays. Any instance of a MYSQL ,
 MYSQL_RES , or MYSQL_STMT structure should be considered a “black box.” That is, you should
refer only to the structure itself, not to members within the structure. The MYSQL_ROW , MYSQL_
FIELD , MYSQL_BIND , and MYSQL_TIME structures do not have the same restriction. Each one has
members that you can access freely to obtain data and metadata returned as a result of a query.
The MYSQL_BIND and MYSQL_TIME structures are used both for transmitting data to the server
and receiving results from the server.

 ■ MYSQL

 The primary client library type is the MYSQL structure, which is used for connection
handlers. A handler contains information about the state of a connection with a server.
To open a session with the server, initialize a MYSQL structure with mysql_init() , then
pass it to mysql_real_connect() . After you’ve established the connection, use the
handler to issue SQL statements, generate result sets, get error information, and so forth.
When you’re done with the connection, pass the handler to mysql_close() , after which
you should no longer use it.

 ■ MYSQL_FIELD

 The client library uses MYSQL_FIELD structures to represent metadata about the columns
in the result set, one structure per column. To determine the number of MYSQL_FIELD
structures in the set, call mysql_num_fields() . To access successive field structures, call
 mysql_fetch_field() . To move back and forth among structures, call mysql_field_
tell() and mysql_field_seek() . As of MySQL 5.5.3, MYSQL_FIELD also serves to
provide metadata about IN and OUT stored-procedure parameters when a procedure is
invoked using a prepared CALL statement.

 The MYSQL_FIELD structure is useful for presenting or interpreting the contents of data
rows. It looks like this:

 typedef struct st_mysql_field {
 char *name;
 char *org_name;
 char *table;

22_9780321833877_xg.indd 107622_9780321833877_xg.indd 1076 3/1/13 10:04 AM3/1/13 10:04 AM

1077G.2 C API Data Structures

 char *org_table;
 char *db;
 char *catalog;
 char *def;
 unsigned long length;
 unsigned long max_length;
 unsigned int name_length;
 unsigned int org_name_length;
 unsigned int table_length;
 unsigned int org_table_length;
 unsigned int db_length;
 unsigned int catalog_length;
 unsigned int def_length;
 unsigned int flags;
 unsigned int decimals;
 unsigned int charsetnr;
 enum enum_field_types type;
 } MYSQL_FIELD;

 MYSQL_FIELD structure members have the following meanings. String-valued members
are null-terminated.

 ■ char *name

 The column name. For a column calculated as the result of an expression, name
is that expression in string form. If a column or expression is given an alias, name
is the alias name. For example, the following query results in name values of
 "mycol" , "4*(mycol+1)" , "mc" , and "myexpr" :

 SELECT mycol, 4*(mycol+1), mycol AS mc, 4*(mycol+1) AS myexpr ...

 For a procedure parameter, name is the parameter name.

 ■ char *org_name

 This member is like name , except that column aliases are ignored. That is,
 org_name represents the original column name. For a column calculated as the
result of an expression, org_name is an empty string.

 ■ char *table

 The name of the table that the column comes from. For a column selected from
a view, table is the view name. If the table or view was given an alias, table is
the alias name. For a column calculated as the result of an expression, table is an
empty string. For example, if you issue a query like the following, the table name
for the first column is mytbl , whereas the table name for the second column is the
empty string:

 SELECT mycol, mycol+0 FROM mytbl ...

 For a procedure parameter, table is the procedure name.

22_9780321833877_xg.indd 107722_9780321833877_xg.indd 1077 3/1/13 10:04 AM3/1/13 10:04 AM

1078 Appendix G C API Reference

 ■ char *org_table

 This member is similar to table , except that table aliases are ignored. That is,
 org_table represents the original table name. For a column selected from a view,
 table is the underlying table name. For a column calculated as the result of an
expression, org_table is an empty string.

 ■ char *db

 The database in which the table containing the column is located. For a column
calculated as the result of an expression, db is an empty string. For a procedure
parameter, db is the database containing the procedure.

 ■ char *catalog

 The catalog name. This value is always "def" .

 ■ char *def

 The default value for the column. This member of the MYSQL_FIELD structure is
set only for result sets obtained by calling mysql_list_fields() (a deprecated
function), and is NULL otherwise.

 Default values for table columns also can be obtained by executing a SHOW
COLUMNS FROM tbl_name statement and examining the result set.

 ■ unsigned long length

 The length of the column, as specified in the CREATE TABLE statement used to
create the table. For a column calculated as the result of an expression, the length
is determined from the elements in the expression.

 ■ unsigned long max_length

 The length of the longest column value present in the result set. For example,
if a string column in a result set contains the values "Bill" , "Jack" , and
 "Belvidere" , the value of max_length for the column is 9.

 Result set values are returned as strings, so this length refers to the longest string
representation of the values in the result, even for nonstring columns.

 Because the max_length value can be determined only after all the rows have been
seen, it is meaningful only for result sets created with mysql_store_result() .
 max_length is 0 for result sets created with mysql_use_result() .

 ■ unsigned int name_length , org_name_length , table_length , org_table_
length , db_length , catalog_length , def_length

 The lengths of the name , org_name , table , org_table , db , catalog , and def
members, respectively.

22_9780321833877_xg.indd 107822_9780321833877_xg.indd 1078 3/1/13 10:04 AM3/1/13 10:04 AM

1079G.2 C API Data Structures

 ■ unsigned int flags

 The flags member specifies attributes for the columns. Within the flags value,
attributes are represented by individual bits, which may be tested using the
bitmask constants shown in Table G.1 . For example, to determine whether a
column’s values are UNSIGNED , test the flags value like this:

 if (field->flags & UNSIGNED_FLAG)
 printf ("%s values are UNSIGNED\n", field->name);

 Table G.1 MYSQL_FIELD flags Member Values

 flags Value Meaning

 AUTO_INCREMENT_FLAG Column has the AUTO_INCREMENT attribute

 BINARY_FLAG Column has the BINARY attribute

 MULTIPLE_KEY_FLAG Column is a part of a nonunique index

 NOT_NULL_FLAG Column cannot contain NULL values

 NO_DEFAULT_VALUE_FLAG Column definition has no DEFAULT clause

 NUM_FLAG Column is numeric

 PRI_KEY_FLAG Column is a part of a PRIMARY KEY

 UNIQUE_KEY_FLAG Column is a part of a UNIQUE index

 UNSIGNED_FLAG Column has the UNSIGNED attribute

 ZEROFILL_FLAG Column has the ZEROFILL attribute

 NUM_FLAG is true for columns that have a type of MYSQL_TYPE_DECIMAL , MYSQL_
TYPE_NEWDECIMAL , MYSQL_TYPE_TINY , MYSQL_TYPE_SHORT , MYSQL_TYPE_LONG ,
 MYSQL_TYPE_FLOAT , MYSQL_TYPE_DOUBLE , MYSQL_TYPE_NULL , MYSQL_TYPE_
LONGLONG , MYSQL_TYPE_INT24 , or MYSQL_TYPE_YEAR .

 The NO_DEFAULT_VALUE_FLAG is true if there is no DEFAULT clause in the column
definition, except for columns that permit NULL or that have the AUTO_INCREMENT
attribute. Such columns have an implicit default of NULL or the next sequence
value, respectively.

 A few flags constants indicate column data types rather than column attributes;
they are now deprecated because you should use field->type to determine the
data type. Table G.2 lists these deprecated constants.

22_9780321833877_xg.indd 107922_9780321833877_xg.indd 1079 3/1/13 10:04 AM3/1/13 10:04 AM

1080 Appendix G C API Reference

 Table G.2 Deprecated MYSQL_FIELD flags Member Values

 flags Value Meaning

 BLOB_FLAG Column contains BLOB or TEXT values

 ENUM_FLAG Column contains ENUM values

 SET_FLAG Column contains SET values

 TIMESTAMP_FLAG Column contains TIMESTAMP values

 ■ unsigned int decimals

 The number of decimals for numeric columns, zero for nonnumeric columns.
For example, the decimals value is 3 for a DECIMAL(8,3) column, but 0 for a
 BLOB column. As of MySQL 5.6.4, this member also indicates fractional seconds
precision for temporal columns.

 ■ unsigned int charsetnr

 The character set/collation number. If you must distinguish whether a string
column contains binary or nonbinary (character) data, charsetnr is 63 for binary
strings.

 ■ enum enum_field_types type

 The data type. For a column calculated as the result of an expression, the type
is determined from the types of the elements in the expression. For example, if
 mycol is a VARCHAR(20) column, type is MYSQL_TYPE_VAR_STRING , whereas type
for LENGTH(mycol) is MYSQL_TYPE_LONGLONG . The possible type values are listed
in mysql_com.h and shown in Table G.3 .

 Table G.3 MYSQL_FIELD type Member Values

 type Value SQL Data Type

 MYSQL_TYPE_TINY TINYINT

 MYSQL_TYPE_SHORT SMALLINT

 MYSQL_TYPE_INT24 MEDIUMINT

 MYSQL_TYPE_LONG INT

 MYSQL_TYPE_LONGLONG BIGINT

 MYSQL_TYPE_DECIMAL DECIMAL , NUMERIC

 MYSQL_TYPE_NEWDECIMAL DECIMAL , NUMERIC

 MYSQL_TYPE_DOUBLE DOUBLE , REAL

 MYSQL_TYPE_FLOAT FLOAT

22_9780321833877_xg.indd 108022_9780321833877_xg.indd 1080 3/1/13 10:04 AM3/1/13 10:04 AM

1081G.2 C API Data Structures

type Value SQL Data Type

 MYSQL_TYPE_STRING CHAR

 MYSQL_TYPE_VAR_STRING VARCHAR

 MYSQL_TYPE_BLOB BLOB , TEXT

 MYSQL_TYPE_ENUM ENUM

 MYSQL_TYPE_SET SET

 MYSQL_TYPE_DATE DATE

 MYSQL_TYPE_DATETIME DATETIME

 MYSQL_TYPE_TIME TIME

 MYSQL_TYPE_TIMESTAMP TIMESTAMP

 MYSQL_TYPE_YEAR YEAR

 MYSQL_TYPE_GEOMETRY Spatial type

 MYSQL_TYPE_BIT BIT

 MYSQL_TYPE_NULL NULL

 ■ MYSQL_RES

 Statements such as SELECT or SHOW that return data to the client do so by means of a
result set, represented as a MYSQL_RES structure. This structure contains information
about the rows returned by the query.

 After a statement generates a result set, you can call API functions to get result data (the
data values in each row of the set) or metadata (information about the result, such as
how many columns there are, their types, their lengths, and so forth).

 ■ MYSQL_ROW

 The MYSQL_ROW type contains the values for one row of data, represented as an array of
strings. All values are returned in string form (even numbers), except that if a value in a
row is NULL , it is represented in the MYSQL_ROW structure by a C NULL pointer.

 The number of values in a row is given by mysql_num_fields() . The i -th column
value in a row is given by row[i] . Values of i range from 0 to mysql_num_fields(res_
set) −1, where res_set is a pointer to a MYSQL_RES result set.

 The MYSQL_ROW type is already a pointer, so you define a row variable like this:

 MYSQL_ROW row; /* correct */

 Not like this:

 MYSQL_ROW *row; /* incorrect */

22_9780321833877_xg.indd 108122_9780321833877_xg.indd 1081 3/1/13 10:04 AM3/1/13 10:04 AM

1082 Appendix G C API Reference

 Values in a MYSQL_ROW array have a terminating null byte, so nonbinary values may
be treated as null-terminated strings. However, data values that may contain binary
data might contain null bytes internally and should be treated as counted strings.
To get a pointer to an array that contains the lengths of the values in the row, call
 mysql_fetch_lengths() like this:

 unsigned long *length;
 length = mysql_fetch_lengths (res_set);

 The length of the i -th column value in a row is given by length[i] . If the column value
is NULL , the length is zero.

 ■ MYSQL_STMT

 A prepared statement handler. To create a handler, call mysql_stmt_init() . This
function returns a pointer to the new handler, which can be used to prepare a
statement, execute it, and so on. When you’re done with the handler, pass it to
 mysql_stmt_close() , after which the handler should no longer be used.

 ■ MYSQL_BIND

 This structure is used with prepared statements and has both input and output purposes.

 For input, MYSQL_BIND structures contain data to be transmitted to the server to be
bound to the parameters of a prepared statement before the statement is executed. Set up
an array of structures, then bind them to the statement by calling mysql_stmt_bind_
param() before calling mysql_stmt_execute() to execute the statement. The array
must contain one MYSQL_BIND structure per parameter.

 Input strings are assumed to be represented in the character set indicated by the
 character_set_client system variable. If this differs from the character set of the
column into which the value is stored, conversion into the column character set occurs
on the server side.

 For output, after a prepared statement that produces a result set is executed, MYSQL_BIND
structures are used to fetch data values from the result set. Set up an array of structures,
and then bind them to the statement by calling mysql_stmt_bind_result() before
fetching result set rows with mysql_stmt_fetch() . The array must contain one
 MYSQL_BIND structure per column of the result set.

 Output strings are represented using the character set indicated by the character_set_
results system variable.

 The MYSQL_BIND structure contains several members, but only some of them should be
considered public. The public members are shown here:

 typedef struct st_mysql_bind
 {
 unsigned long *length;
 my_bool *is_null;
 void *buffer;

22_9780321833877_xg.indd 108222_9780321833877_xg.indd 1082 3/1/13 10:04 AM3/1/13 10:04 AM

1083G.2 C API Data Structures

 my_bool *error;
 unsigned long buffer_length;
 enum enum_field_types buffer_type;
 my_bool is_unsigned;
 ...
 } MYSQL_BIND;

 One MYSQL_BIND structure should be bound to each parameter of a prepared statement.
The following list describes the purpose of each MYSQL_BIND member, for both input and
output. True indicates a nonzero value; false indicates a zero value.

 ■ enum enum_field_types buffer_type

 The data type of the C language variable bound to the parameter. This member
must always be set to a MYSQL_TYPE_ XXX value.

 For input, this is the type of the variable containing the value that you are sending
to the server.

 For output, this is the type of the variable into which you want to receive the value
returned by the server.

 Table G.4 and Table G.5 show the buffer_type values that correspond to C
variable data types for input and output, respectively. In both directions, if the C
variable type does not correspond to the SQL type of the value on the server side,
conversion occurs when possible. If the C and SQL types are directly compatible,
no conversion need be performed, which increases performance.

 ■ void *buffer

 A pointer to the variable used to send or receive a data value.

 For input, this points to the variable that holds the data value to be sent to the
server.

 For output, this points to the variable where the value returned by the server
should be stored.

 buffer is always the address of the storage variable. For numeric types, buffer
points to a scalar variable. For string types, it points to a char buffer. For temporal
types, it points to a MYSQL_TIME structure. The variable type is indicated by the
 buffer_type value. If the variable is unsigned , set the is_unsigned value to true.

 ■ unsigned long buffer_length

 The actual size in bytes of the buffer pointed to by buffer , both for input and
output. This applies to string types, either binary or nonbinary, which can vary
in length, and to output BIT values. For other data types, the buffer_type value
determines the buffer length.

22_9780321833877_xg.indd 108322_9780321833877_xg.indd 1083 3/1/13 10:04 AM3/1/13 10:04 AM

1084 Appendix G C API Reference

 ■ unsigned long *length

 A pointer to a variable that indicates the number of bytes in the transferred data
value. Like buffer_length , this member needs to be set only for string types and
output BIT values. For numeric and temporal types, the data type determines the
length.

 For input, set the pointed-to variable to indicate how many bytes to send to the
server.

 For output, the pointed-to variable will be set by mysql_stmt_fetch() , and the
return value of that function determines how to interpret the variable value. If
 mysql_stmt_fetch() returns 0 (success), *length is the actual length of the
returned data value. If mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED ,
 *length is the length the value would have had no truncation occurred, and the
actual length is the minimum of *length and buffer_length .

 ■ my_bool *is_null

 A pointer to a variable that indicates whether the data value corresponds to a NULL
value.

 For input, set the pointed-to variable true or false to indicate whether the value
being sent to the server is NULL or NOT NULL . Special cases: If the value bound to
this parameter will never be NULL , you can set is_null to zero rather than to the
address of a my_bool variable. If the value will always be NULL , set buffer_type to
 MYSQL_TYPE_NULL and the other MYSQL_BIND members do not matter.

 For output, the pointed-to variable will be set true or false to indicate whether the
value returned by the server is NULL or NOT NULL .

 ■ my_bool is_unsigned

 A flag that indicates whether the variable pointed to by buffer is an unsigned
C variable, both for input and output. This member need be used only for C data
types that can be unsigned (char and the integer types).

 is_unsigned applies to the C variable bound to the MYSQL_BIND structure, not to
the SQL value on the server side. The client library uses is_unsigned to determine
whether to perform sign conversion between the C and SQL values.

 ■ my_bool *error

 For output, this points to a variable that indicates whether a value was fetched
without truncation. After fetching a row, the pointed-to variable is false if there
was no error, true if there was data truncation such as for a numeric value that
is out of range or a string value that is too long. Truncation checking occurs
by default; this can be changed by calling mysql_options() with the MYSQL_
REPORT_DATA_TRUNCATION option.

22_9780321833877_xg.indd 108422_9780321833877_xg.indd 1084 3/1/13 10:04 AM3/1/13 10:04 AM

1085G.2 C API Data Structures

 Table G.4 shows the buffer_type values to use for C language variables used to
send data values from the server. If the variable is unsigned , set the is_unsigned
value to true. If the SQL value on the server side has the data type shown in the
table, the input value can be used without conversion. For example, if you use
a short int to supply a value for a SMALLINT , no conversion need be done. If
 short int supplies a value for a DECIMAL , a conversion is done.

 Table G.4 Input MYSQL_BIND buffer_type Values

 Input C Variable Type buffer_type Value Compatible SQL Value Type

 signed char MYSQL_TYPE_TINY TINYINT

 short int MYSQL_TYPE_SHORT SMALLINT

 int MYSQL_TYPE_LONG INT

 long long int MYSQL_TYPE_LONGLONG BIGINT

 float MYSQL_TYPE_FLOAT FLOAT

 double MYSQL_TYPE_DOUBLE DOUBLE

 MYSQL_TIME MYSQL_TYPE_TIME TIME

 MYSQL_TIME MYSQL_TYPE_DATE DATE

 MYSQL_TIME MYSQL_TYPE_DATETIME DATETIME

 MYSQL_TIME MYSQL_TYPE_TIMESTAMP TIMESTAMP

 char[] MYSQL_TYPE_STRING TEXT, CHAR, VARCHAR

 char[] MYSQL_TYPE_BLOB BLOB, BINARY, VARBINARY

 MYSQL_TYPE_NULL NULL

 MYSQL_TYPE_STRING and MYSQL_TYPE_BLOB are used for nonbinary and binary strings,
respectively.

 MYSQL_TYPE_NULL should be used only when an input parameter is always NULL .
Otherwise, set the buffer_type value to one of the other MYSQL_TYPE_ XXX values and
set the is_null member appropriately each time you execute the statement to indicate
whether the parameter is NULL .

 Table G.5 shows the buffer_type values to use for C language variables used to receive
data values from the server. If the variable is unsigned , set the is_unsigned value to
true. If the C variable used to retrieve the value has the type shown in the table, the SQL
value received from the server can be used without conversion. If you fetch a SMALLINT
into a short int , no conversion need be done. If you fetch it into a char[] , the value is
converted to string form.

22_9780321833877_xg.indd 108522_9780321833877_xg.indd 1085 3/1/13 10:04 AM3/1/13 10:04 AM

1086 Appendix G C API Reference

 Table G.5 Output MYSQL_BIND buffer_type Values

 Source SQL Value Type buffer_type Value Compatible C Variable Type

 TINYINT MYSQL_TYPE_TINY signed char

 SMALLINT MYSQL_TYPE_SHORT short int

 MEDIUMINT MYSQL_TYPE_INT24 int

 INT MYSQL_TYPE_LONG int

 BIGINT MYSQL_TYPE_LONGLONG long long int

 FLOAT MYSQL_TYPE_FLOAT float

 DOUBLE MYSQL_TYPE_DOUBLE double

 DECIMAL MYSQL_TYPE_NEWDECIMAL char[]

 YEAR MYSQL_TYPE_SHORT short int

 TIME MYSQL_TYPE_TIME MYSQL_TIME

 DATE MYSQL_TYPE_DATE MYSQL_TIME

 DATETIME MYSQL_TYPE_DATETIME MYSQL_TIME

 TIMESTAMP MYSQL_TYPE_TIMESTAMP MYSQL_TIME

 CHAR, BINARY MYSQL_TYPE_STRING char[]

 VARCHAR, VARBINARY MYSQL_TYPE_VAR_STRING char[]

 TINYBLOB, TINYTEXT MYSQL_TYPE_TINY_BLOB char[]

 BLOB, TEXT MYSQL_TYPE_BLOB char[]

 MEDIUMBLOB, MEDIUMTEXT MYSQL_TYPE_MEDIUM_BLOB char[]

 LONGBLOB, LONGTEXT MYSQL_TYPE_LONG_BLOB char[]

 BIT MYSQL_TYPE_BIT char[]

 DECIMAL and BIT values are returned as strings by default. If you specify a char[]
variable to receive a DECIMAL value, you get the string representation of the numeric
value. If you specify a numeric variable instead, the string is converted to numeric form.
To receive a BIT value as a number, cast it to numeric form in your query (for example,
 SELECT my_bit_val+0 ...) and bind an integer variable to the MYSQL_BIND structure.

 To distinguish nonbinary from binary string columns, use mysql_stmt_result_
metadata() to get the result set metadata and check the column charsetnr member.
A value of 63 indicates a binary string; anything else indicates a nonbinary string.

 ■ MYSQL_TIME

 This structure is used to send temporal values to the server or receive them from the
server. To associate a MYSQL_TIME structure with a MYSQL_BIND structure, set the buffer
member of the MYSQL_BIND to the address of a MYSQL_TIME variable.

22_9780321833877_xg.indd 108622_9780321833877_xg.indd 1086 3/1/13 10:04 AM3/1/13 10:04 AM

1087G.2 C API Data Structures

 MYSQL_TIME is used for DATETIME , TIMESTAMP , DATE , and TIME types, but the structure
members that do not apply to a given type are ignored. For example, the month , year ,
and day members do not apply to TIME values, and the hour , minute , and second
members do not apply to DATE values.

 The MYSQL_TIME structure contains several members, but only some of them should be
considered public. The public members are shown here:

 typedef struct st_mysql_time
 {
 unsigned int year;
 unsigned int month;
 unsigned int day;
 unsigned int hour;
 unsigned int minute;
 unsigned int second;
 unsigned long second_part;
 my_bool neg;
 ...
 } MYSQL_TIME

 The members are used as follows:

 ■ year , month , day

 The year, month, and day parts of temporal values that contain a date part.

 ■ hour , minute , second , second_part

 The hour, minute, second, and fractional second parts of temporal values that
contain a time part.

 ■ neg

 A flag that indicates whether the temporal value contained in the MYSQL_TIME
structure is negative.

 G.2.3 Accessor Macros

 mysql.h contains a few macros that enable you to test MYSQL_FIELD members more conve-
niently. IS_NUM() tests the type member; the others listed here test the flags member.

 ■ IS_BLOB() is true if the column is one of the BLOB or TEXT types. However, this macro
tests the deprecated BLOB_FLAG bit of the flags member, so IS_BLOB() is deprecated
as well.

 ■ IS_NOT_NULL() is true if the column cannot contain NULL values:

 if (IS_NOT_NULL (field->flags))
 printf ("Field %s values cannot be NULL\n", field->name);

22_9780321833877_xg.indd 108722_9780321833877_xg.indd 1087 3/1/13 10:04 AM3/1/13 10:04 AM

1088 Appendix G C API Reference

 ■ IS_NUM() is true (nonzero) if values in the column have a numeric type:

 if (IS_NUM (field->type))
 printf ("Field %s is numeric\n", field->name);

 ■ IS_PRI_KEY() is true if the column is part of a PRIMARY KEY :

 if (IS_PRI_KEY (field->flags))
 printf ("Field %s is part of primary key\n", field->name);

 G.3 C API Functions

 Client library functions for the C API are described in detail in the following sections, grouped
by category and listed alphabetically within category. Certain parameter names recur through-
out the function descriptions and have the following conventional meanings:

 ■ conn is a pointer to the MYSQL connection handler for a server connection.

 ■ res_set is a pointer to a MYSQL_RES result set structure.

 ■ field is a pointer to a MYSQL_FIELD column information structure.

 ■ row is a MYSQL_ROW data row from a result set.

 ■ row_num is a row number within a result set, from 0 to one less than the number of rows.

 ■ col_num is a column number within a row of a result set, from 0 to one less than the
number of columns.

 ■ stmt is a handler for a prepared statement.

 For brevity, where these parameters are not mentioned in the descriptions of functions in
which they occur, assume the meanings just given.

 G.3.1 Client Library Initialization and Termination Routines

 This section describes routines that initialize and terminate the C API library. There are actually
two such libraries, but the interface to them is the same so that a given program can use either
one depending on which library you link the program against to produce the executable image:

 ■ libmysqlclient is for programs that connect to a standalone MySQL server.

 ■ libmysqld is for programs that include an embedded server in the program itself.

 Using the mysql_library_init() and mysql_library_end() routines within your program
to initialize and terminate the client library makes it possible to use the same source code to
produce a client for a standalone server or one that uses the embedded server, depending on
which library you select at link time. For information about linking in the appropriate C API
library, see Section G.1 , “Compiling and Linking.”

22_9780321833877_xg.indd 108822_9780321833877_xg.indd 1088 3/1/13 10:04 AM3/1/13 10:04 AM

1089G.3 C API Functions

 ■ void
 mysql_library_end (void);

 Terminates the client library. Call this function after you’re done communicating with
the server. If the program uses the embedded server library, this routine shuts down the
embedded server.

 ■ int
 mysql_library_init (int argc, char **argv, char **groups);

 Initializes the client library. Returns zero for success and nonzero otherwise. This
function must be called before calling any other mysql_ xxx () functions.

 If the program uses the embedded server library, this routine initializes the embedded
server. In this case, the argc and argv arguments are used like the standard arguments
passed to main() in C programs: argc is the argument count; if there are none, argc
should be zero. Otherwise, argc should be the number of arguments passed to the server.
 argv is an array of null-terminated strings containing the arguments. argv[0] will be
ignored.

 The groups argument is an array of null-terminated strings indicating which option file
groups the embedded server should read. The final element of the array should be NULL .
If group itself is NULL , the server reads the [server] and [embedded] option file groups
by default. Specify group names in the groups array without the surrounding ‘ [’ and ‘] ’
characters.

 ■ void
 mysql_server_end (void);

 This routine is a synonym for mysql_library_end() .

 ■ int
 mysql_server_init (int argc, char **argv, char **groups);

 This routine is a synonym for mysql_library_init() .

 G.3.2 Connection Management Routines

 These functions enable you to establish and terminate connections to a server, to set options
affecting how connection establishment occurs, to re-establish connections that have timed
out, and to change aspects of the connection such as the current username or character set.

 A typical sequence involves calling mysql_init() to initialize a connection handler,
 mysql_real_connect() to establish the connection, and mysql_close() to terminate the
connection when you are done with it. If it’s necessary to indicate special options or set up an
encrypted SSL connection, call mysql_options() or mysql_ssl_set() after mysql_init()
and before mysql_real_connect() .

22_9780321833877_xg.indd 108922_9780321833877_xg.indd 1089 3/1/13 10:04 AM3/1/13 10:04 AM

1090 Appendix G C API Reference

 ■ my_bool
 mysql_change_user (MYSQL *conn,
 const char *user_name,
 const char *password,
 const char *db_name);

 Changes the user and the default database for the connection specified by conn . The
database becomes the default for table references that do not include a database specifier.
If db_name is NULL , no default database is selected.

 mysql_change_user() returns zero for success (the user is permitted to connect to the
server and, if a database was specified, has permission to access it) and nonzero if an error
occurred. If the function fails, the current user and database remain unchanged.

 It is faster to use mysql_change_user() to change the current user than to close the
connection and open it again with different parameters. This function can also be used
to implement persistent connections for a program that serves different users during the
course of its execution.

 ■ void
 mysql_close (MYSQL *conn);

 Closes the connection specified by conn . Call this routine when you are done with a
server session. If the connection handler was allocated automatically by mysql_init() ,
 mysql_close() deallocates it.

 It is unnecessary to call mysql_close() if the attempt to open a connection fails.
However, you might want to do so if mysql_init() allocated the handler, so that it can
be disposed of.

 ■ void
 mysql_get_character_set_info (MYSQL *conn,
 MY_CHARSET_INFO *cs_info);

 Retrieves information about the current client character set. cs_info points to the
 MY_CHARSET_INFO structure into which the information should be placed. The structure
looks like this:

 typedef struct character_set
 {
 unsigned int number; /* character set number */
 unsigned int state; /* character set state */
 const char *csname; /* collation name */
 const char *name; /* character set name */
 const char *comment; /* comment */
 const char *dir; /* character set directory */
 unsigned int mbminlen; /* min. length for multibyte strings */
 unsigned int mbmaxlen; /* max. length for multibyte strings */
 } MY_CHARSET_INFO;

22_9780321833877_xg.indd 109022_9780321833877_xg.indd 1090 3/1/13 10:04 AM3/1/13 10:04 AM

1091G.3 C API Functions

 ■ const char *
 mysql_get_ssl_cipher (MYSQL *conn);

 Returns a null-terminated string containing the name of the SSL cipher used for the
connection, or NULL if there is no cipher.

 ■ MYSQL *
 mysql_init (MYSQL *conn);

 Initializes a connection handler and returns a pointer to it. If the parameter points to an
existing MYSQL handler structure, mysql_init() initializes it and returns its address:

 MYSQL conn_struct, *conn;
 conn = mysql_init (&conn_struct);

 If the parameter is NULL , mysql_init() allocates a new handler, initializes it, and returns
its address:

 MYSQL *conn;
 conn = mysql_init (NULL);

 The second approach is preferable over the first; letting the client library allocate and
initialize the handler itself avoids problems that may arise with shared libraries if you
upgrade MySQL to a newer version that uses a different internal organization for the
 MYSQL structure.

 If mysql_init() fails, it returns NULL . This may happen if mysql_init() cannot
allocate a new handler.

 If mysql_init() allocates the handler, mysql_close() deallocates it automatically
when you close the connection.

 ■ int
 mysql_options (MYSQL *conn,
 enum mysql_option option,
 const void *arg);

 This function enables you to tailor connection behavior more precisely than is possible
with mysql_real_connect() alone. Call it after mysql_init() and before mysql_real_
connect() . You can call mysql_options() multiple times to set several options. If you
call mysql_options() multiple times to set a given option, the most recent option value
applies.

 The option argument specifies which connection option to set. Additional information
needed to set the option, if any, is specified by the arg argument, which is always
interpreted as a pointer. Pass an arg value of NULL for options that require no additional
information. (Assume that this is the case for option descriptions that say nothing about
 arg .) String values of arg should be null-terminated.

 mysql_options() returns zero for success and nonzero if the option value is unknown.

22_9780321833877_xg.indd 109122_9780321833877_xg.indd 1091 3/1/13 10:04 AM3/1/13 10:04 AM

1092 Appendix G C API Reference

 The mysql_options() calls in the following example have the effect of setting
connection options so that mysql_real_connect() reads C:\my.ini.extra for
information from the [client] and [mygroup] groups, connects using a named pipe
and a timeout of 10 seconds, and executes a SET NAMES 'utf8' statement after the
connection has been established.

 MYSQL *conn;
 unsigned int timeout;

 if ((conn = mysql_init (NULL)) == NULL)
 ... deal with error ...
 mysql_options (conn, MYSQL_READ_DEFAULT_FILE, "C:/my.ini.extra");
 mysql_options (conn, MYSQL_READ_DEFAULT_GROUP, "mygroup");
 mysql_options (conn, MYSQL_OPT_NAMED_PIPE, NULL);
 timeout = 10;
 mysql_options (conn, MYSQL_OPT_CONNECT_TIMEOUT, (char *) &timeout);
 mysql_options (conn, MYSQL_INIT_COMMAND, "SET NAMES 'utf8'");
 if (mysql_real_connect (conn, ...) == NULL)
 ... deal with error ...

 The following options are available. Those indicated as applying to use of an embedded
server are ignored if the program is linked against libmysqlclient rather than
 libmysqld .

 ■ MYSQL_DEFAULT_AUTH

 The authentication plugin to use. arg points to a string naming the plugin. This
option was introduced in MySQL 5.5.7.

 ■ MYSQL_INIT_COMMAND

 Specifies a statement to execute after connecting to the server. arg points to a
string containing the statement. The statement is executed after reconnecting
as well (for example, if you call mysql_ping()). Any result set returned by the
statement is discarded.

 ■ MYSQL_OPT_BIND

 For client hosts that have multiple network interfaces, this option enables the
program to specify which one to use for connecting to the server. arg points to
a string containing the hostname or IP address. This option was introduced in
MySQL 5.6.1.

 ■ MYSQL_OPT_COMPRESS

 Requests use of the compressed client/server communication protocol if the client
and server both support it.

 It is also possible to specify compression when you call mysql_real_connect() .

 ■ MYSQL_OPT_CONNECT_TIMEOUT

 Specifies the connection timeout, in seconds. arg points to an unsigned int
containing the timeout value.

22_9780321833877_xg.indd 109222_9780321833877_xg.indd 1092 3/1/13 10:04 AM3/1/13 10:04 AM

1093G.3 C API Functions

 ■ MYSQL_OPT_GUESS_CONNECTION

 If the program includes an embedded server, this option enables the server library
to choose whether to use the embedded server library or a remote server. It
“guesses” the use of a remote server if the hostname is set and is not localhost .
“Guessing” is the default. Use MYSQL_OPT_USE_EMBEDDED_CONNECTION or MYSQL_
OPT_USE_REMOTE_CONNECTION to force the type of connection.

 ■ MYSQL_OPT_LOCAL_INFILE

 Enables or disables the use of LOAD DATA LOCAL . arg is NULL to disable this
capability, or a pointer to an unsigned int that is zero or nonzero to disable or
enable this capability. Attempts to enable LOAD DATA LOCAL are ineffective if the
server has been configured to prohibit it.

 ■ MYSQL_OPT_NAMED_PIPE

 Specifies that the connection to the server should use a named pipe. This option
is for Windows clients only, and only for connections to Windows servers with
named-pipe support enabled.

 ■ MYSQL_OPT_PROTOCOL

 Specifies the protocol to use for connecting to the server, assuming that the
server supports the protocol. arg points to an unsigned int value containing
the protocol code. The permitted codes are MYSQL_PROTOCOL_MEMORY (shared
memory), MYSQL_PROTOCOL_PIPE (Windows named pipe), MYSQL_PROTOCOL_
SOCKET (Unix socket file), and MYSQL_PROTOCOL_TCP (TCP/IP).

 ■ MYSQL_OPT_READ_TIMEOUT

 The timeout for reading from the server, in seconds. arg points to an unsigned
int containing the timeout value. The effective timeout is three times the option
value due to retries if the initial read fails.

 ■ MYSQL_OPT_RECONNECT

 Enables or disables automatic reconnection behavior (off by default) if the
connection goes down. arg points to a my_bool that is set true or false.

 ■ MYSQL_OPT_SSL_CA , MYSQL_OPT_SSL_CAPATH , MYSQL_OPT_SSL_CERT ,
 MYSQL_OPT_SSL_CIPHER , MYSQL_OPT_SSL_CRL , MYSQL_OPT_SSL_CRLPATH ,
MYSQL_OPT_SSL_KEY

 These options specify parameters for SSL connections. The arg value is a string
corresponding to the value for the similarly named command-line option
 --ssl-ca , --ssl-capath , and so forth. See Section F.2.1.1 , “Standard SSL
Options.”

 These options were introduced in MySQL 5.6.3.

22_9780321833877_xg.indd 109322_9780321833877_xg.indd 1093 3/1/13 10:04 AM3/1/13 10:04 AM

1094 Appendix G C API Reference

 ■ MYSQL_OPT_SSL_VERIFY_SERVER_CERT

 Enables or disables verification of the Common Name in the server’s certificate
(disabled by default). The value must match the hostname used for connecting to
the server or the connection attempt fails. This helps prevent man-in-the-middle
exploits. arg points to a my_bool that is set true or false.

 ■ MYSQL_OPT_USE_EMBEDDED_CONNECTION

 If the program includes an embedded server, this option tells the server library to
use the embedded server library rather than a remote server.

 ■ MYSQL_OPT_USE_REMOTE_CONNECTION

 If the program includes an embedded server, this option tells the server library to
use a remote server rather than the embedded server library.

 ■ MYSQL_OPT_WRITE_TIMEOUT

 The timeout for writing to the server, in seconds. arg points to an unsigned int
containing the timeout value. The effective timeout is net_retry_count times the
option value due to retries if the initial write fails.

 ■ MYSQL_PLUGIN_DIR

 The directory where client plugins are located. arg points to a string naming the
directory. This option was introduced in MySQL 5.5.7.

 ■ MYSQL_READ_DEFAULT_FILE

 Specifies an option file to read for connection parameters, rather than the usual
option files that are searched by default if option files are read. arg points to a
string containing the filename. Options will be read from the [client] group
in the file. If you also use MYSQL_READ_DEFAULT_GROUP to specify a group name,
options from that group will be read from the file, too.

 ■ MYSQL_READ_DEFAULT_GROUP

 Specifies an option file group in which to look for option values. arg points
to a string containing the group name. (Specify the group name without the
surrounding ‘ [’ and ‘] ’ characters.) The named group will be read in addition to
the [client] group. If you also name a particular option file with MYSQL_READ_
DEFAULT_FILE , options are read from that file only. Otherwise, the client library
looks for the options in the standard option files.

 If you specify neither MYSQL_READ_DEFAULT_FILE nor MYSQL_READ_DEFAULT_
GROUP , no option files are read.

 ■ MYSQL_REPORT_DATA_TRUNCATION

 Controls whether to report data truncation errors by means of the error member
of MYSQL_BIND structures when the binary protocol for prepared statements is
used. arg points to a my_bool variable that is zero or nonzero to disable or enable
truncation reporting. Reporting is enabled by default.

22_9780321833877_xg.indd 109422_9780321833877_xg.indd 1094 3/1/13 10:04 AM3/1/13 10:04 AM

1095G.3 C API Functions

 ■ MYSQL_SECURE_AUTH

 Controls whether to require secure authentication. arg points to a my_bool
variable that is zero or nonzero to permit or prohibit connecting to a server that
does not support the password hashing improvements implemented in MySQL 4.1.

 ■ MYSQL_SET_CHARSET_DIR

 Specifies the pathname of the directory where character set files are located. arg
points to a string containing the pathname of a directory on the client host. Use
this option when the client needs to access character sets that aren’t compiled into
the client library but for which definition files are available.

 ■ MYSQL_SET_CHARSET_NAME

 Indicates the name of the default character set to use. arg points to a string
containing the character set name, or can be MYSQL_AUTODETECT_CHARSET_NAME
to enable autodetection of the character set from the operating system (for
example, if the client user has the LANG or LC_ALL environment variable set).

 ■ MYSQL_SET_CLIENT_IP

 If the program includes an embedded server that has authentication support,
this option causes the server to treat the connection as having originated from
the IP address given by arg , which points to the number specified as a string (for
example, "192.168.3.12").

 ■ MYSQL_SHARED_MEMORY_BASE_NAME

 Indicates the shared-memory name to use for shared-memory connections. arg
points to a string containing the name. This option is for Windows clients only,
and only for connections to Windows servers with shared-memory support
enabled.

 For Windows pathnames that are specified with the MYSQL_READ_DEFAULT_FILE or
 MYSQL_SET_CHARSET_DIR options, ‘ \ ’ characters can be given either as ‘ / ’ or as ‘ \\ ’.

 If you use the MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP options with
 mysql_options() to cause mysql_real_connect() to read option files, the following
options are recognized:

 bind-address= address (as of 5.6.1)
 character-sets-dir= charset_directory_path
 compress
 connect-timeout= seconds
 database= db_name
 debug
 default-auth= name (as of 5.5.7)
 default-character-set= charset_name
 disable-local-infile
 host= host_name

22_9780321833877_xg.indd 109522_9780321833877_xg.indd 1095 3/1/13 10:04 AM3/1/13 10:04 AM

1096 Appendix G C API Reference

 init-command= stmt
 interactive-timeout= seconds
 local-infile[={0|1}]
 max-allowed-packet= size
 multi-queries
 multi-results
 multi-statements
 password= your_pass
 pipe
 plugin-dir= dir_name (as of 5.5.7)
 port= port_num
 protocol= protocol_type
 report-data-truncation
 return-found-rows
 secure-auth
 shared-memory-base-name= name
 socket= socket_name
 ssl-ca= file_name
 ssl-capath= dir_name
 ssl-cert= file_name
 ssl-cipher= str
 ssl-crl= file_name (as of 5.6.3)
 ssl-crlpath= dir_name (as of 5.6.3)
 ssl-key= file_name
 timeout= seconds
 user= user_name

 Instances of the host , user , password , database , port , or socket options found in
option files are overridden if the corresponding argument to mysql_real_connect() is
non- NULL .

 The multi-results option is equivalent to passing CLIENT_MULTI_RESULTS
in the flags argument to mysql_real_connect() . Either multi-queries or
 multi-statements is equivalent to passing CLIENT_MULTI_STATEMENTS in the flags
argument to mysql_real_connect() (which also enables CLIENT_MULTI_RESULTS).

 timeout is recognized but obsolete; use connect-timeout instead.

 ■ int
 mysql_ping (MYSQL *conn);

 Checks whether the connection indicated by conn is still up. If not, and auto-reconnect
is enabled, mysql_ping() reconnects using the same parameters that were used
initially to make the connection. Thus, you should not call mysql_ping() without first
successfully having called mysql_real_connect() . Returns zero if the connection was
up or was successfully re-established, or nonzero if an error occurred or if the connection
is down and auto-reconnect is disabled.

22_9780321833877_xg.indd 109622_9780321833877_xg.indd 1096 3/1/13 10:04 AM3/1/13 10:04 AM

1097G.3 C API Functions

 ■ MYSQL *
 mysql_real_connect (MYSQL *conn,
 const char *host_name,
 const char *user_name,
 const char *password,
 const char *db_name,
 unsigned int port_num,
 const char *socket_name,
 unsigned long flags);

 Connects to a server and returns a pointer to the connection handler. conn should be a
pointer to an existing connection handler that has been initialized by mysql_init() .
The return value is the address of the handler for a successful connection, or NULL if an
error occurred.

 If the connection attempt fails, you can pass the conn handler value to mysql_errno()
and mysql_error() to obtain error information. However, do not pass the conn value to
any client library routine that assumes a connection has been established successfully.

 The remaining arguments indicate how to connect to the server. For arguments
specified as NULL or zero, the value can be supplied by options found in an option file
that mysql_real_connect() reads. The client can cause mysql_real_connect() to
read option files by calling mysql_options() with the MYSQL_READ_DEFAULT_FILE or
 MYSQL_READ_DEFAULT_GROUP options.

 host_name indicates the name of the MySQL server host. Table G.6 shows the
connection protocol that the client uses for different kinds of host_name values for
Unix and Windows clients. The table applies unless you have called mysql_options()
with the MYSQL_OPT_PROTOCOL option to specify the protocol explicitly. The name
 "localhost" is special for Unix systems. It indicates that you want to connect using
a Unix socket rather than a TCP/IP connection. To connect to a server running on the
local host using TCP/IP, pass "127.0.0.1" (a string containing the IP address of the
local host’s loopback interface) for the host_name value, rather than passing the string
 "localhost" .

 Table G.6 Client Connection Protocol by Server Hostname Type

 Hostname Value Unix Connection Protocol Windows Connection Protocol

 hostname TCP/IP connection to the named host TCP/IP connection to the named host

 IP address TCP/IP connection to the named host TCP/IP connection to the named host

 localhost Unix socket file connection to the local
host

 Shared-memory connection (if
available) to the local host; otherwise,
a TCP/IP connection

 127.0.0.1 TCP/IP connection to the local host TCP/IP connection to the local host

22_9780321833877_xg.indd 109722_9780321833877_xg.indd 1097 3/1/13 10:04 AM3/1/13 10:04 AM

1098 Appendix G C API Reference

Hostname Value Unix Connection Protocol Windows Connection Protocol

 . (period) Does not apply Named-pipe connection to the local
host

 NULL Unix socket file connection to the local
host

 A named-pipe connection is
attempted first before falling back to
TCP/IP

 user_name is your MySQL username. If this is NULL , the client library sends a default
name. Under Unix, the default is your login name. Under Windows, the default is your
name as specified in the USER environment variable if that variable is set and "ODBC"
otherwise.

 password is your password. If this is NULL , you can connect only if the password is blank
in the user grant table entry that matches your username and the host from which you
are connecting.

 db_name is the default database to use. If this is NULL , no default database is selected.

 port_num is the port number to use for TCP/IP connections. If this is 0, the default port
number is used.

 socket_name is the Unix socket filename to use for connections to "localhost" under
Unix, or the pipe name for named-pipe connections under Windows. If this is NULL , the
default socket or pipe name is used.

 The port number and socket filename are used according to the value of host_name , as
described in Table G.6 .

 The flags value can be one or more of the values shown in the following list, or 0 to
specify no options. These options affect the operation of the server. mysql_com.h lists
other CLIENT_ XXX values besides those in the list, but they are either unused or intended
for internal use, so client programs should not specify them in the flags value.

 ■ CLIENT_COMPRESS

 Requests use of the compressed client/server communication protocol if the client
and server both support it.

 ■ CLIENT_FOUND_ROWS

 For UPDATE statements and the ROW_COUNT() function, the server should return
the number of rows matched rather than the number of rows changed. Use of this
option may hinder the MySQL optimizer and make updates slower.

 ■ CLIENT_IGNORE_SIGPIPE

 Prevents the client library from installing a handler for the SIGPIPE signal. This
can be useful for an application that installs its own handler.

22_9780321833877_xg.indd 109822_9780321833877_xg.indd 1098 3/1/13 10:04 AM3/1/13 10:04 AM

1099G.3 C API Functions

 ■ CLIENT_IGNORE_SPACE

 Normally, names of built-in functions must be followed immediately by the
parenthesis that begins the argument list, with no intervening spaces. This option
tells the server to all spaces between the function name and the argument list,
which also has the side effect of making all function names reserved words.

 ■ CLIENT_INTERACTIVE

 Identifies the client as an interactive client. This tells the server that it can close
the connection after a number of seconds of client inactivity equal to the server’s
 interactive_timeout variable value. Normally, the value of the wait_timeout
variable is used.

 ■ CLIENT_LOCAL_FILES

 Enables the use of LOAD DATA LOCAL . This is ineffective if the server has been
configured to always prohibit LOAD DATA LOCAL .

 ■ CLIENT_MULTI_RESULTS

 Enables multiple result sets to be fetched with the mysql_more_results() and
 mysql_next_result() functions.

 You must specify this option if the program uses a CALL statement to invoke any
stored procedures that return a result set. Otherwise, an error occurs. As of MySQL
5.5.3, this option is enabled by default.

 ■ CLIENT_MULTI_STATEMENTS

 Enables multiple-statement execution. When this capability is turned on, you can
send multiple statements to the server in a single string. This option also enables
 CLIENT_MULTI_RESULTS so that multiple result sets can be fetched.

 ■ CLIENT_NO_SCHEMA

 Prohibits db_name.tbl_name.col_name syntax in SQL statements. If you specify
this option, the server permits references only of the forms tbl_name.col_name ,
 tbl_name , or col_name .

 ■ CLIENT_REMEMBER_OPTIONS

 By default, if mysql_real_connect() fails, any mysql_options() calls made
prior to the connection attempt must be repeated for the next attempt. This flag
makes that unnecessary.

 The flag values are bit values; combine them in additive fashion using either the | or the
 + operator. For example, the following expressions are equivalent:

 CLIENT_COMPRESS | CLIENT_ODBC
 CLIENT_COMPRESS + CLIENT_ODBC

22_9780321833877_xg.indd 109922_9780321833877_xg.indd 1099 3/1/13 10:04 AM3/1/13 10:04 AM

1100 Appendix G C API Reference

 ■ int
 mysql_select_db (MYSQL *conn, const char *db_name);

 Selects the database named by db_name as the default database, which becomes the
default for table references that contain no explicit database specifier. If you do not have
permission to access the database, mysql_select_db() fails.

 mysql_select_db() is most useful for changing databases within the course of a
connection. Normally you specify the initial database when you call mysql_real_
connect() , which is faster than calling mysql_select_db() after connecting.

 mysql_select_db() returns zero for success, and nonzero for failure.

 ■ int
 mysql_set_character_set (MYSQL *conn, const char *cs_name);

 Sets the default character set for the connection (as though a SET NAMES statement had
been executed). cs_name points to a string containing the character set name.

 mysql_set_character_set() returns zero for success, and nonzero for failure.

 ■ my_bool
 mysql_ssl_set (MYSQL *conn,
 const char *key,
 const char *cert,
 const char *ca,
 const char *capath,
 const char *cipher);

 This function is used for setting up a secure connection over SSL to the MySQL server.
If SSL support is not compiled into the client library, mysql_ssl_set() does nothing.
Otherwise, it sets up the information required to establish an encrypted connection
when you call mysql_real_connect() . In other words, to set up a secure connection,
call mysql_ssl_set() first and then mysql_real_connect() .

 mysql_ssl_set() always returns 0; any SSL setup errors result in an error at the time
you call mysql_real_connect() .

 key is the path to the key file. cert is the path to the certificate file. ca is the path
to the certificate authority file. capath is the path to a directory of trusted certificates
for certificate verification. cipher is a string listing the cipher or ciphers to use. Any
parameter that is unused may be passed as NULL .

 For an example that shows how to write a client that can use secure connections, see
 Section 7.6 , “Writing Clients That Include SSL Support.”

 mysql_ssl_set() requires some additional MySQL configuration ahead of time. See
 Section 13.5 , “Setting Up Secure Connections Using SSL,” for the necessary background
information.

22_9780321833877_xg.indd 110022_9780321833877_xg.indd 1100 3/1/13 10:04 AM3/1/13 10:04 AM

1101G.3 C API Functions

 G.3.3 Error-Reporting Routines

 The functions in this section enable you to determine and report the causes of errors.
The possible error codes and messages are listed in the errmsg.h , mysqld_error.h , and
 sql_state.h MySQL header files.

 ■ unsigned int
 mysql_errno (MYSQL *conn);

 Returns an error code for the most recently invoked client library routine that returned a
status. The value is zero if no error occurred and nonzero otherwise.

 if (mysql_errno (conn) == 0)
 printf ("Everything is okay\n");
 else
 printf ("Something is wrong!\n");

 ■ const char *
 mysql_error (MYSQL *conn);

 Returns a null-terminated string that contains an error message for the most recently
invoked client library routine that returned a status. The return value is the empty string
if no error occurred (this is the zero-length string "" , not a NULL pointer). Although
normally you call mysql_error() after you already know an error occurred, the return
value itself can be used to detect the occurrence of an error:

 const char *err = mysql_error (conn);
 if (err[0] == '\0') /* empty string? */
 printf ("Everything is okay\n");
 else
 printf ("Something is wrong!\n");

 ■ const char *
 mysql_sqlstate (MYSQL *conn);

 Returns a null-terminated string that contains an SQLSTATE error code for the most
recently invoked client library routine that returned a status. This code is a five-character
string. SQLSTATE values are taken from the ANSI SQL and ODBC standards. A value
that begins with "00" means “no error.” A value of "HY000" means “general error.”
This value is used for those MySQL errors that have not yet been assigned more-specific
SQLSTATE codes.

 if (strncmp (mysql_sqlstate (conn), "00", 2) == 0)
 printf ("Everything is okay\n");
 else
 printf ("Something is wrong!\n");

22_9780321833877_xg.indd 110122_9780321833877_xg.indd 1101 3/1/13 10:04 AM3/1/13 10:04 AM

1102 Appendix G C API Reference

 G.3.4 Statement Construction and Execution Routines

 The functions in this section enable you to send SQL statements to the server. mysql_hex_
string() and mysql_real_escape_string() help you construct statements by encoding
characters that need special treatment. Unless you have enabled multiple-statement execution
as described later in Section G.3.6 , “Multiple Result Set Routines,” each string sent to the server
for execution must consist of a single SQL statement, and should not end with a semicolon
character (‘ ; ’) or a \g sequence. The ‘ ; ’ and \g terminators are conventions of the mysql client
program, not of the C client library.

 ■ unsigned long
 mysql_hex_string (char *to_str,
 const char *from_str,
 unsigned long from_len);

 Encodes a string that may contain special characters so that it can be used in an SQL
statement.

 The buffer to encode is specified as a counted string. from_str points to the buffer,
and from_len indicates the number of bytes in it. mysql_hex_string() encodes every
character in the buffer using two hexadecimal digits, writes the encoded result into the
buffer pointed to by to_str , and adds a terminating null byte. to_str must point to an
existing buffer that is at least (from_len*2)+1 bytes long.

 mysql_hex_string() returns the length of the encoded string, not counting the
terminating null byte.

 Here’s an example:

 to_len = mysql_hex_string (to_str, "\0\\\'\"\n\r\032", 7);
 printf ("to_len = %lu, to_str = %s\n", to_len, to_str);

 The example produces the following output:

 to_len = 14, to_str = 005C27220A0D1A

 The encoded string returned by mysql_hex_string() contains no internal null bytes
but is null-terminated, so you can use it with functions such as strlen() or strcat() .
Note that the result value is not by itself legal as a hexadecimal constant in an SQL
statement. To construct a legal constant, either add "0x" at the beginning, or add "X'"
at the beginning and "'" at the end.

 ■ int
 mysql_query (MYSQL *conn, const char *stmt_str);

 Given an SQL statement specified as a null-terminated string, mysql_query() sends the
statement to the server to be executed. The string should not contain binary data; in
particular, it should not contain null bytes, because mysql_query() interprets the first
one as the end of the statement. If your statement does contain binary data, use mysql_
real_query() instead.

22_9780321833877_xg.indd 110222_9780321833877_xg.indd 1102 3/1/13 10:04 AM3/1/13 10:04 AM

1103G.3 C API Functions

 mysql_query() returns zero for success, and nonzero for failure. A successful statement
is one that the server accepts as legal and executes without error. Success implies nothing
about the number of rows affected or returned.

 ■ unsigned long
 mysql_real_escape_string (MYSQL *conn,
 char *to_str,
 const char *from_str,
 unsigned long from_len);

 Encodes a string that may contain special characters so that it can be used in an SQL
statement, taking into account the current character set when performing encoding.
 Table G.7 lists the characters that are considered special and how they are encoded. (Note
that the list does not include the SQL pattern characters, ‘ % ’ and ‘ _ ’.)

 Table G.7 mysql_real_escape_string() Character Encodings

 Special Character Encoding

 NUL (zero-valued byte) \0 (backslash-zero)

 Backslash \\ (backslash-backslash)

 Single quote \' (backslash-single quote)

 Double quote \" (backslash-double quote)

 Newline \n (backslash-‘ n ’)

 Carriage return \r (backslash-‘ r ’)

 Control-Z \Z (backslash-‘ Z ’)

 The only characters that MySQL itself requires to be escaped within a string are the
backslash and the quote character that surrounds the string (either ‘ ' ’ or ‘ " ’). mysql_
real_escape_string() escapes the others to produce strings that are easier to read and
to process in log files.

 The buffer to be encoded is specified as a counted string. from_str points to the buffer,
and from_len indicates the number of bytes in it. mysql_real_escape_string() writes
the encoded result into the buffer pointed to by to_str and adds a terminating null
byte. to_str must point to an existing buffer that is at least (from_len*2)+1 bytes long.
(In the worst-case scenario, every character in from_str might need to be encoded as a
two-character sequence, and you also need room for the terminating null byte.)

 mysql_real_escape_string() returns the length of the encoded string, not counting
the terminating null byte.

 The resulting encoded string contains no internal null bytes but is null-terminated, so
you can use it with functions such as strlen() or strcat() .

22_9780321833877_xg.indd 110322_9780321833877_xg.indd 1103 3/1/13 10:04 AM3/1/13 10:04 AM

1104 Appendix G C API Reference

 When you write literal strings in your program, take care not to confuse the lexical
escape conventions of the C programming language with the encoding done by mysql_
real_escape_string() . Consider the following example source code, and the output
produced by it:

 to_len = mysql_real_escape_string (conn, to_str, "\0\\\'\"\n\r\032", 7);
 printf ("to_len = %lu, to_str = %s\n", to_len, to_str);

 The example produces the following output:

 to_len = 14, to_str = \0\\\'\"\n\r\Z

 The printed value of to_str in the output looks very much like the string specified as
the third argument of the mysql_real_escape_string() call in the original source
code, but is in fact quite different.

 ■ int
 mysql_real_query (MYSQL *conn,
 const char *stmt_str,
 unsigned long length);

 Given an SQL statement specified as a counted string, mysql_real_query() sends the
statement to the server to be executed. The statement text is given by stmt_str and its
length by length . The string may contain binary data (including null bytes).

 mysql_real_query() returns zero for success, and nonzero for failure. A successful
statement is one that the server accepts as legal and executes without error. Success
implies nothing about the number of rows affected or returned.

 G.3.5 Result Set Processing Routines

 When a statement produces a result set, the functions in this section enable you to retrieve the
set and access its contents. The mysql_store_result() and mysql_use_result() functions
create the result set and one or the other must be called before using any other functions in
this section. Table G.8 compares the two functions.

 Table G.8 Comparison of mysql_store_result() and mysql_use_result()

 mysql_store_result() mysql_use_result()

 mysql_store_result() itself retrieves all
rows in the result set.

 mysql_use_result() initializes the result set,
but defers row retrieval to mysql_fetch_row() .

 Uses more memory; all rows are buffered on
the client side.

 Uses less memory; one row at a time is stored on
the client side.

 Slower due to overhead involved in allocating
memory for the entire result set.

 Faster because memory need be allocated only for
the current row.

22_9780321833877_xg.indd 110422_9780321833877_xg.indd 1104 3/1/13 10:04 AM3/1/13 10:04 AM

1105G.3 C API Functions

mysql_store_result() mysql_use_result()

 A NULL return from mysql_fetch_row()
indicates the end of the result set, not an
error.

 A NULL return from mysql_fetch_row()
indicates the end of the result set or an error,
because communications failure can disrupt
retrieval of the current row.

 mysql_num_rows() can be called any time
after mysql_store_result() has been
called.

 mysql_num_rows() returns a correct row count
only after all rows have been fetched.

 mysql_affected_rows() is a synonym for
 mysql_num_rows() .

 mysql_affected_rows() cannot be used.

 Random access to result set rows is
possible with mysql_data_seek() ,
 mysql_row_seek() , and
 mysql_row_tell() .

 No random access into result set; rows must be
processed in order as returned by the server.
 mysql_data_seek() , mysql_row_seek() , and
 mysql_row_tell() should not be used.

 Tables are read-locked for no longer than
necessary to fetch the data rows.

 Tables can stay read-locked if the client pauses in
mid-retrieval, locking out other clients attempting
to modify the tables.

 The max_length member of each result set
 MYSQL_FIELD structure indicates the longest
value length in the corresponding result set
column.

 max_length has no meaningful value because it
cannot be known until all rows are retrieved.

 ■ my_ulonglong
 mysql_affected_rows (MYSQL *conn);

 Returns the number of rows affected by the most recent statement, or −1 if an
error occurred. A return value of −1 can also indicate that you (erroneously) called
 mysql_affected_rows() after issuing a statement that returns rows but before retrieving
the result set. This is the C API equivalent of the ROW_COUNT() SQL function; see the
description of that function in Appendix C , “Operator and Function Reference.”

 mysql_affected_rows() returns an unsigned value, so you can detect a negative return
value only by casting the result to a signed value before performing the comparison:

 if ((long) mysql_affected_rows (conn) == -1)
 fprintf (stderr, "Error!\n");

 If you specified that the client should return the number of rows matched for UPDATE
statements, mysql_affected_rows() returns that value rather than the number of rows
modified. (MySQL does not update a row if the columns to be modified are the same as
the new values.) This behavior can be selected by passing CLIENT_FOUND_ROWS in the
 flags argument to mysql_real_connect() .

 mysql_affected_rows() returns a my_ulonglong value; see the note about printing
values of this type in Section G.2.1 , “Scalar Data Types.”

22_9780321833877_xg.indd 110522_9780321833877_xg.indd 1105 3/1/13 10:04 AM3/1/13 10:04 AM

1106 Appendix G C API Reference

 ■ void
 mysql_data_seek (MYSQL_RES *res_set, my_ulonglong row_num);

 Seeks to the result set row indicated by row_num , which can range from 0 to
mysql_num_rows(res_set) −1. The result is unpredictable if row_num is out of range.

 mysql_data_seek() requires that the entire result set has been retrieved into client
memory, so you can use it only for a result set created by mysql_store_result() , not
by mysql_use_result() .

 mysql_data_seek() differs from mysql_row_seek() , which takes a row offset value as
returned by mysql_row_tell() rather than a row number.

 ■ MYSQL_FIELD *
 mysql_fetch_field (MYSQL_RES *res_set);

 Returns a structure containing information (metadata) about a column in the result
set. Following successful execution of a statement that returns rows, the first call to
 mysql_fetch_field() returns information about the first column. Subsequent calls
return information about successive columns following the first, or NULL when no more
columns are left.

 Related functions are mysql_field_tell() to determine the current column position,
or mysql_field_seek() to select a particular column to be returned by the next call to
 mysql_fetch_field() .

 The following example seeks to the first MYSQL_FIELD , then fetches successive column
information structures:

 MYSQL_FIELD *field;
 unsigned int i;

 mysql_field_seek (res_set, 0);
 for (i = 0; i < mysql_num_fields (res_set); i++)
 {
 field = mysql_fetch_field (res_set);
 printf ("column %u: name = %s max_length = %lu\n",
 i, field->name, field->max_length);
 }

 ■ MYSQL_FIELD *
 mysql_fetch_fields (MYSQL_RES *res_set);

 Returns an array of all column information structures for the result set. These may be
accessed as follows:

 MYSQL_FIELD *field;
 unsigned int i;

22_9780321833877_xg.indd 110622_9780321833877_xg.indd 1106 3/1/13 10:04 AM3/1/13 10:04 AM

1107G.3 C API Functions

 field = mysql_fetch_fields (res_set);
 for (i = 0; i < mysql_num_fields (res_set); i++)
 {
 printf ("column %u: name = %s max_length = %lu\n",
 i, field[i].name, field[i].max_length);
 }

 Compare this to the example shown for mysql_fetch_field() . Note that although
both functions return values of the same type, those values are accessed using slightly
different syntax for each function. mysql_fetch_field() returns a pointer to a single
field structure; mysql_fetch_fields() returns a pointer to an array of field structures.

 ■ MYSQL_FIELD *
 mysql_fetch_field_direct (MYSQL_RES *res_set, unsigned int col_num);

 Given a column index, returns the information structure for that column. The value
of col_num can range from 0 to mysql_num_fields(res_set) −1. The result is
unpredictable if col_num is out of range.

 The following example accesses MYSQL_FIELD structures directly:

 MYSQL_FIELD *field;
 unsigned int i;

 for (i = 0; i < mysql_num_fields (res_set); i++)
 {
 field = mysql_fetch_field_direct (res_set, i);
 printf ("column %u: name = %s max_length = %lu\n",
 i, field->name, field->max_length);
 }

 ■ unsigned long *
 mysql_fetch_lengths (MYSQL_RES *res_set);

 Returns a pointer to an array of unsigned long values representing the lengths of the
column values in the current result set row. You must call mysql_fetch_lengths()
each time you call mysql_fetch_row() or your lengths will be out of synchrony with
your data values.

 The length for NULL values is zero, but a zero length does not by itself indicate a NULL
data value. An empty string also has a length of zero, so you must check whether the
data value is a NULL pointer to distinguish between the two cases.

 The following example displays lengths and values for the current row, printing the word
“NULL” if the value is NULL :

 unsigned long *length;

 length = mysql_fetch_lengths (res_set);

22_9780321833877_xg.indd 110722_9780321833877_xg.indd 1107 3/1/13 10:04 AM3/1/13 10:04 AM

1108 Appendix G C API Reference

 for (i = 0; i < mysql_num_fields (res_set); i++)
 {
 printf ("length is %lu, value is %s\n",
 length[i], (row[i] != NULL ? row[i] : "NULL"));
 }

 ■ MYSQL_ROW
 mysql_fetch_row (MYSQL_RES *res_set);

 Returns a pointer to the next result set row, represented as an array of strings (except that
 NULL column values are represented as NULL pointers). The i -th value in the row is the
 i -th member of the value array. Values of i range from 0 to mysql_num_fields(res_
set) −1.

 Values for all data types, even numeric types, are returned as strings. To perform a
numeric calculation with a value, you must convert it yourself—for example, with
 atoi() , atof() , or sscanf() .

 mysql_fetch_row() returns NULL when there are no more rows in the data set.
(If you use mysql_use_result() to initiate a row-by-row result set retrieval,
 mysql_fetch_row() also returns NULL if a communications error occurred.)

 Data values are null-terminated, but you should not treat values that can contain binary
data as null-terminated strings. Treat them as counted strings instead. To do this, you
need the column value lengths, obtained by calling mysql_fetch_lengths() .

 The following code shows how to loop through a row of data values and determine
whether each value is NULL :

 MYSQL_ROW row;
 unsigned int i;

 while ((row = mysql_fetch_row (res_set)) != NULL)
 {
 for (i = 0; i < mysql_num_fields (res_set); i++)
 {
 printf ("column %u: value is %s\n",
 i, (row[i] == NULL ? "NULL" : "not NULL"));
 }
 }

 To determine the types of the column values, use the column metadata stored in the
 MYSQL_FIELD column information structures, obtained by calling mysql_fetch_
field() , mysql_fetch_fields() , or mysql_fetch_field_direct() .

 ■ unsigned int
 mysql_field_count (MYSQL *conn);

22_9780321833877_xg.indd 110822_9780321833877_xg.indd 1108 3/1/13 10:04 AM3/1/13 10:04 AM

1109G.3 C API Functions

 Returns the number of columns for the most recent statement on the given connection.
This function is normally used when mysql_store_result() or mysql_use_result()
return NULL . mysql_field_count() tells you whether a result set should have been
returned. A return value of zero indicates no result set and no error. (This happens for
 INSERT and UPDATE statements, for example.) A nonzero value indicates that columns
were expected and that, because none were returned, an error occurred.

 The following example illustrates how to use mysql_field_count() for error-detection
purposes:

 res_set = mysql_store_result (conn);
 if (res_set) /* a result set was returned */
 {
 /* ... process rows here, then free result set ... */
 mysql_free_result (res_set);
 }
 else /* no result set was returned */
 {
 /*
 * does the lack of a result set mean that the statement didn't
 * return one, or that it should have but an error occurred?
 */
 if (mysql_field_count (conn) == 0)
 {
 /*
 * statement generated no result set (it was not a SELECT,
 * SHOW, DESCRIBE, etc.); just report rows-affected value.
 */
 printf ("Number of rows affected: %lu\n",
 (unsigned long) mysql_affected_rows (conn));
 }
 else /* an error occurred */
 {
 printf ("Problem processing the result set\n");
 }
 }

 ■ MYSQL_FIELD_OFFSET
 mysql_field_seek (MYSQL_RES *res_set, MYSQL_FIELD_OFFSET offset);

 Seeks to the column information structure specified by offset . The next call
to mysql_fetch_field() returns the information structure for that column. offset is
 not a column index; it is a MYSQL_FIELD_OFFSET value obtained from an earlier call to
 mysql_field_tell() or from mysql_field_seek() .

 To reset to the first column, use an offset value of zero.

22_9780321833877_xg.indd 110922_9780321833877_xg.indd 1109 3/1/13 10:04 AM3/1/13 10:04 AM

1110 Appendix G C API Reference

 ■ MYSQL_FIELD_OFFSET
 mysql_field_tell (MYSQL_RES *res_set);

 Returns the current column information structure offset. This value can be passed to
 mysql_field_seek() .

 ■ void
 mysql_free_result (MYSQL_RES *res_set);

 Deallocates the memory used by the result set. You must call mysql_free_result() for
each result set you work with, typically generated by calling mysql_store_result() or
 mysql_use_result() .

 For result sets generated by calling mysql_use_result() , mysql_free_result()
automatically fetches and discards any unfetched rows.

 ■ my_ulonglong
 mysql_insert_id (MYSQL *conn);

 Returns the value stored into an AUTO_INCREMENT column by the most recently executed
 INSERT or UPDATE statement on the given connection. This applies to an automatically
generated AUTO_INCREMENT value or an explicit value stored in the column. (This differs
from the LAST_INSERT_ID() SQL function, which returns only automatically generated
values.)

 An INSERT can insert multiple rows, and different kinds of values can be stored in the
 AUTO_INCREMENT column (an automatically generated value, the result of LAST_INSERT_
ID(expr) , or an explicit value), so the precedence is as follows:

 ■ The first successfully inserted automatically generated value, if any.

 ■ The last LAST_INSERT_ID(expr) value, if any. (In this case, this value is returned
even if the table contains no AUTO_INCREMENT column.)

 ■ The last explicit value.

 mysql_insert_id() returns zero if no statement has been executed or if the previous
statement did not involve an AUTO_INCREMENT column or did not successfully insert
any rows. (A zero return value is distinct from any valid AUTO_INCREMENT value because
such values are positive.) The value of mysql_insert_id() is undefined if the previous
statement produced an error.

 Call mysql_insert_id() immediately after issuing the statement that involves an
AUTO_INCREMENT column. If you issue another statement before calling mysql_insert_
id() , its value may be reset. Note that this behavior differs from the LAST_INSERT_ID()
SQL function. mysql_insert_id() is maintained in the client and is set for each
statement. The value of LAST_INSERT_ID() is maintained in the server and persists from
statement to statement, until you generate another AUTO_INCREMENT value.

22_9780321833877_xg.indd 111022_9780321833877_xg.indd 1110 3/1/13 10:04 AM3/1/13 10:04 AM

1111G.3 C API Functions

 The value returned by mysql_insert_id() is session-specific and is not affected by
 AUTO_INCREMENT activity of other sessions.

 mysql_insert_id() returns a my_ulonglong value; see the note about printing values
of this type in Section G.2.1 , “Scalar Data Types.”

 ■ unsigned int
 mysql_num_fields (MYSQL_RES *res_set);

 Returns the number of columns in the result set. mysql_num_fields() is often used to
iterate through the columns of the current row of the set, as illustrated by the following
example:

 MYSQL_ROW row;
 unsigned int i;

 while ((row = mysql_fetch_row (res_set)) != NULL)
 {
 for (i = 0; i < mysql_num_fields (res_set); i++)
 {
 /* do something with row[i] here ... */
 }
 }

 ■ my_ulonglong
 mysql_num_rows (MYSQL_RES *res_set);

 Returns the number of rows in the result set. If you generate the result set with
mysql_store_result() , you can call mysql_num_rows() any time thereafter:

 if ((res_set = mysql_store_result (conn)) != NULL)
 {
 /* mysql_num_rows() can be called now */
 }

 If you generate the result set with mysql_use_result() , mysql_num_rows() doesn’t
return the correct value until you have fetched all the rows:

 if ((res_set = mysql_use_result (conn)) != NULL)
 {
 /* mysql_num_rows() cannot be called yet */
 while ((row = mysql_fetch_row (res_set)) != NULL)
 {
 /* mysql_num_rows() still cannot be called */
 }
 /* mysql_num_rows() can be called now */
 }

 mysql_num_rows() returns a my_ulonglong value; see the note about printing values of
this type in Section G.2.1 , “Scalar Data Types.”

22_9780321833877_xg.indd 111122_9780321833877_xg.indd 1111 3/1/13 10:04 AM3/1/13 10:04 AM

1112 Appendix G C API Reference

 ■ MYSQL_ROW_OFFSET
 mysql_row_seek (MYSQL_RES *res_set, MYSQL_ROW_OFFSET offset);

 Seeks to a particular result set row. mysql_row_seek() is similar to mysql_data_seek() ,
except that the offset value is not a row number, but either a MYSQL_ROW_OFFSET value
obtained from a call to mysql_row_tell() or mysql_row_seek() , or zero to seek to the
first row.

 mysql_row_seek() returns the previous row offset.

 mysql_row_seek() requires that the entire result set has been retrieved into client
memory, so you can use it only for a result set created by mysql_store_result() , not
by mysql_use_result() .

 ■ MYSQL_ROW_OFFSET
 mysql_row_tell (MYSQL_RES *res_set);

 Returns an offset representing the current row position in the result set. This is
not a row number; the value may be passed only to mysql_row_seek() , not to
 mysql_data_seek() .

 mysql_row_tell() requires that the entire result set has been retrieved into client
memory, so you can use it only for a result set created by mysql_store_result() , not
by mysql_use_result() .

 ■ MYSQL_RES *
 mysql_store_result (MYSQL *conn);

 Following successful statement execution, returns the result set and stores it in the
client. Returns NULL if the statement returns no data or an error occurred. When mysql_
store_result() returns NULL , call mysql_field_count() or one of the error-reporting
functions to determine whether a result set was not expected or whether an error
occurred. For an example, see the description of mysql_field_count() .

 When you are done with the result set, pass it to mysql_free_result() to deallocate it.

 See the comparison of mysql_store_result() and mysql_use_result() in Table G.8 .

 ■ MYSQL_RES *
 mysql_use_result (MYSQL *conn);

 Following successful statement execution, initiates result set retrieval but retrieves no
data rows itself. You must call mysql_fetch_row() to fetch the rows one by one.
Returns NULL if the statement returns no data or an error occurred. When mysql_use_
result() returns NULL , call mysql_field_count() or one of the error-reporting
functions to determine whether a result set was not expected or whether an error
occurred. For an example, see the description of mysql_field_count() .

22_9780321833877_xg.indd 111222_9780321833877_xg.indd 1112 3/1/13 10:04 AM3/1/13 10:04 AM

1113G.3 C API Functions

 When you are done with the result set, pass it to mysql_free_result() to deallocate
it. That is all that is necessary to finish statement processing, because mysql_free_
result() automatically retrieves and discards any unfetched rows before releasing the
result set.

 See the comparison of mysql_store_result() and mysql_use_result() in Table G.8 .

 G.3.6 Multiple Result Set Routines

 The routines in this section are used when multiple-statement execution capability is enabled.
To use this capability, specify the CLIENT_MULTI_STATEMENTS flag when you open the connec-
tion with mysql_real_connect() . To enable multiple-statement execution for an already-
open connection, call the mysql_set_server_option() function.

 To send to the server the statements to be executed, call mysql_real_query() or mysql_
query() . The statements should be sent as a single string, separated by semicolons.

 For an example that shows how to use these routines, see Section 7.7 , “Using Multiple-
Statement Execution.”

 ■ my_bool
 mysql_more_results (MYSQL *conn);

 Returns nonzero if more statement results exist to be read and zero otherwise. To begin
processing the next result, you must call mysql_next_result() .

 ■ int
 mysql_next_result (MYSQL *conn);

 Initiates processing for the next result if one exists. After calling this function, process
the result as you normally would for single-statement execution.

 mysql_next_result() returns zero if more results are available, −1 if not, and a value
greater than zero if an error occurred.

 G.3.7 Information Routines

 These functions provide information about the client, server, protocol version, and the current
connection. The values returned by most of these are retrieved from the server at connect time
and stored within the client library.

 ■ const char *
 mysql_character_set_name (MYSQL *conn);

 Returns a null-terminated string containing the name of the default character set for the
given connection; for example, "latin1" .

22_9780321833877_xg.indd 111322_9780321833877_xg.indd 1113 3/1/13 10:04 AM3/1/13 10:04 AM

1114 Appendix G C API Reference

 ■ const char *
 mysql_get_client_info (void);

 Returns a null-terminated string describing the client library version; for example,
 "5.5.30" .

 ■ unsigned long
 mysql_get_client_version (void);

 Returns an integer that indicates the client library version. The format of the return value
is the same as for mysql_get_server_version() .

 ■ const char *
 mysql_get_host_info (MYSQL *conn);

 Returns a null-terminated string describing the given connection, such as "Localhost
via Unix socket" , "host3.example.com via TCP/IP" , ". via named pipe" , or
 "Shared memory" .

 ■ unsigned int
 mysql_get_proto_info (MYSQL *conn);

 Returns an integer indicating the client/server protocol version used for the given
connection.

 ■ const char *
 mysql_get_server_info (MYSQL *conn);

 Returns a null-terminated string describing the server version; for example,
 "5.5.30-debug-log" . The value consists of a version number, possibly followed by one
or more suffixes. This is the same information returned by the VERSION() SQL function.

 ■ unsigned long
 mysql_get_server_version (MYSQL *conn);

 Returns an integer that indicates the server version in XYYZZ format, where X.YY and ZZ
represent the series number, and release within the series. For example, if the version is
MySQL 5.5.30, this function returns 50530 .

 ■ const char *
 mysql_info (MYSQL *conn);

 Returns a null-terminated string containing information about the effect of the
most recently executed statement of the following types. The string format is given
immediately following each statement:

 ALTER TABLE ...
 Records: 0 Duplicates: 0 Warnings: 0
 INSERT INTO ... SELECT ...

22_9780321833877_xg.indd 111422_9780321833877_xg.indd 1114 3/1/13 10:04 AM3/1/13 10:04 AM

1115G.3 C API Functions

 Records: 0 Duplicates: 0 Warnings: 0
 INSERT INTO ... VALUES (...),(...),...
 Records: 0 Duplicates: 0 Warnings: 0
 LOAD DATA ...
 Records: 0 Deleted: 0 Skipped: 0 Warnings: 0
 UPDATE ...
 Rows matched: 0 Changed: 0 Warnings: 0

 The numbers vary according to the statement you execute, of course.

 mysql_info() returns non- NULL for INSERT INTO … VALUES only if the statement
contains more than one value list. For statements not shown in the preceding list,
 mysql_info() always returns NULL .

 The string returned by mysql_info() is in the language used by the server, so you can’t
necessarily count on being able to parse it by looking for certain words.

 ■ const char *
 mysql_stat (MYSQL *conn);

 Returns a null-terminated string containing server status information, or NULL if an error
occurred. The format of the string is subject to change. Currently it looks something
like this:

 Uptime: 2153150 Threads: 6 Questions: 1306220 Slow queries: 271 Opens: 1260
 Flush tables: 1 Open tables: 64 Queries per second avg: 0.607

 Interpret these values as follows:

 ■ Uptime : The number of seconds the server has been running

 ■ Threads : The number of threads running in the server

 ■ Questions : The number of statements the server has executed

 ■ Slow queries : The number of statements that took longer to process than the
time indicated by the server’s long_query_time variable

 ■ Opens : The number of tables the server has opened

 ■ Flush tables : The number of FLUSH , REFRESH , and RELOAD statements that have
been executed

 ■ Open tables : The number of tables the server has open

 ■ Queries per second : The ratio of Questions to Uptime

 Not coincidentally, the information returned by the mysql_stat() function is the same
as that reported by the mysqladmin status command. (mysqladmin itself invokes this
function to get the information.)

22_9780321833877_xg.indd 111522_9780321833877_xg.indd 1115 3/1/13 10:04 AM3/1/13 10:04 AM

1116 Appendix G C API Reference

 ■ unsigned long
 mysql_thread_id (MYSQL *conn);

 Returns the connection ID the server associates with the current session (the same value
returned by the CONNECTION_ID() SQL function). You can use this value as an identifier
for the KILL statement.

 Unless you know that automatic reconnect is disabled, do not invoke mysql_thread_
id() until just before you need its value. If you retrieve the value and store it, the value
may be incorrect when you use it later. This can happen if your session goes down and
then is re-established (for example, with mysql_ping()) because the server assigns the
new session a different identifier.

 ■ unsigned int
 mysql_warning_count (MYSQL *conn);

 Returns the number of warnings generated by the most recent statement that generates
such messages.

 G.3.8 Transaction Control Routines

 The functions in this section provide control over transaction processing.

 ■ my_bool
 mysql_autocommit (MYSQL *conn, my_bool mode);

 Enables autocommit for the current session if mode is true (nonzero), and disables
autocommit otherwise. Returns zero for success, and nonzero otherwise.

 ■ my_bool
 mysql_commit (MYSQL *conn);

 Commits the current transaction. Returns zero for success, and nonzero otherwise. This
function is affected by the value of the completion_type system variable.

 ■ my_bool
 mysql_rollback (MYSQL *conn);

 Rolls back the current transaction. Returns zero for success, and nonzero otherwise. This
function is affected by the value of the completion_type system variable.

 G.3.9 Prepared Statement Routines

 The routines in this section implement the binary client/server protocol for the prepared state-
ment API. They are grouped into the following sections:

 ■ Error-reporting routines to get error codes and messages

22_9780321833877_xg.indd 111622_9780321833877_xg.indd 1116 3/1/13 10:04 AM3/1/13 10:04 AM

1117G.3 C API Functions

 ■ Routines to construct SQL statements and send them to the server

 ■ Result set processing routines to handle results from statements that return data

 The initial implementation of prepared statements supported only the following statements:
 CREATE TABLE , DELETE , DO , INSERT , REPLACE , SELECT , SET , UPDATE , and most variations of
 SHOW . The list of supported statements has expanded since. See the MySQL Reference Manual
for the current list.

 G.3.9.1 Prepared Statement Error-Reporting Routines

 The functions in this section enable you to determine and report the causes of prepared
statement errors. To see the possible error codes and messages, check the errmsg.h ,
 mysqld_error.h , and sql_state.h MySQL header files.

 ■ unsigned int
 mysql_stmt_errno (MYSQL_STMT *stmt);

 Returns an error code for the most recently invoked prepared statement routine that
returned a status. The value is zero if no error occurred and nonzero otherwise.

 if (mysql_stmt_errno (stmt) == 0)
 printf ("Everything is okay\n");
 else
 printf ("Something is wrong!\n");

 ■ const char *
 mysql_stmt_error (MYSQL_STMT *stmt);

 Returns a null-terminated string that contains an error message for the most recently
invoked prepared statement routine that returned a status. The return value is the
empty string if no error occurred (this is the zero-length string "" , not a NULL pointer).
Although normally you call mysql_stmt_error() after you already know an error
occurred, the return value itself can be used to detect the occurrence of an error:

 const char *err = mysql_stmt_error (stmt);
 if (err[0] == '\0') /* empty string? */
 printf ("Everything is okay\n");
 else
 printf ("Something is wrong!\n");

 ■ const char *
 mysql_stmt_sqlstate (MYSQL_STMT *stmt);

 Returns a null-terminated string that contains an SQLSTATE error code for the most
recently invoked prepared statement routine that returned a status. This code is a five-
character string. SQLSTATE values are taken from the ANSI SQL and ODBC standards.

22_9780321833877_xg.indd 111722_9780321833877_xg.indd 1117 3/1/13 10:04 AM3/1/13 10:04 AM

1118 Appendix G C API Reference

A value that begins with "00" means “no error.” A value of "HY000" means “general
error.” This value is used for those MySQL errors that have not yet been assigned more-
specific SQLSTATE codes.

 if (strncmp (mysql_stmt_sqlstate (stmt), "00", 2) == 0)
 printf ("Everything is okay\n");
 else
 printf ("Something is wrong!\n");

 G.3.9.2 Prepared Statement Construction and Execution Routines

 The functions in this section enable you to send prepared SQL statements to the server. Each
string must consist of a single SQL statement, and should not end with a semicolon character
(‘ ; ’) or a \g sequence. ‘ ; ’ and \g are conventions of the mysql client program, not of the C
client library.

 For an example program that demonstrates many of these functions, see Section 7.8 , “Using
Server-Side Prepared Statements.”

 ■ my_bool
 mysql_stmt_bind_param (MYSQL_STMT *stmt, MYSQL_BIND *bind_array);

 Given a prepared statement handler, stmt , the mysql_stmt_bind_param() function
binds a set of data values to the ‘ ? ’ placeholders in the statement. bind_array is the
address of an array of MYSQL_BIND structures. There must be one structure in the array
for each placeholder in the prepared statement. mysql_stmt_bind_param() returns zero
if the bind operation was successful and nonzero otherwise.

 ■ my_bool
 mysql_stmt_close (MYSQL_STMT *stmt);

 Closes the prepared statement handler, deallocates any resources associated with it, and
cancels any results that might be pending for it. mysql_stmt_close() returns zero for
success and nonzero otherwise.

 After closing a statement handler, do not attempt to use it for further operations.

 If the server still has prepared statements associated with a given client session when the
session terminates, it discards those statements.

 ■ MYSQL_STMT *
 mysql_stmt_init (MYSQL *conn);

 Allocates and initializes a MYSQL_STMT handler. Returns a pointer to the handler, or NULL
if the handler could not be allocated.

 You should release the handler with mysql_stmt_close() when you are done with it.

 ■ int
 mysql_stmt_execute (MYSQL_STMT *stmt);

22_9780321833877_xg.indd 111822_9780321833877_xg.indd 1118 3/1/13 10:04 AM3/1/13 10:04 AM

1119G.3 C API Functions

 Executes the prepared statement associated with the given statement handler. Returns
zero if the statement was executed successfully and nonzero otherwise.

 Before executing the statement, you must bind data values to it by calling
 mysql_stmt_bind_param() if the statement contains any ‘ ? ’ placeholders.

 Following successful statement execution, process the statement result according
to whether it returns a result set. For statements that return no result set, call
 mysql_stmt_affected_rows() to determine the number of rows inserted, deleted,
or updated. For statements that return a result set, metadata becomes available and
can be retrieved with mysql_stmt_result_metadata() . To fetch the results, use
 mysql_stmt_bind_result() to bind result buffers to columns, mysql_stmt_fetch() to
retrieve rows, and mysql_stmt_free_result() to free the result set.

 ■ int
 mysql_stmt_prepare (MYSQL_STMT *stmt,
 const char *stmt_str,
 unsigned long length);

 Given an SQL statement specified as a counted string, mysql_stmt_prepare() sends the
statement to the server to be prepared for later execution and associates the statement
handler, stmt , with the prepared statement. The statement text is given by stmt_str
and its length by length . The string may contain binary data (including null bytes).

 mysql_stmt_prepare() returns zero for success, and nonzero for failure.

 The statement can contain ‘ ? ’ characters as parameter markers to indicate where data
values should be bound to the statement when it is executed later.

 ■ my_bool
 mysql_stmt_reset (MYSQL_STMT *stmt);

 Reset the prepared statement handler to the state that it has after calling
 mysql_stmt_prepare() .

 ■ MYSQL_RES *
 mysql_stmt_result_metadata (MYSQL_STMT *stmt);

 After a successful call to mysql_stmt_execute() , mysql_stmt_result_metadata()
returns metadata about the columns that result from the statement if it is one that
returns a result set. The return value is a pointer to a MYSQL_RES result set structure. The
structure is similar to that for a nonprepared statement that you obtain after invoking
 mysql_store_result() , except that it contains no data. To obtain information about
the columns, pass the structure pointer to functions that take a MYSQL_RES argument
such as mysql_fetch_field() , mysql_fetch_fields() , and mysql_num_fields() .
When you are done with the structure, pass it to mysql_free_result() to dispose of it.

 If the prepared statement is not one that returns a result set, mysql_stmt_result_
metadata() returns NULL to indicate that no metadata information is available.

22_9780321833877_xg.indd 111922_9780321833877_xg.indd 1119 3/1/13 10:04 AM3/1/13 10:04 AM

1120 Appendix G C API Reference

 ■ my_bool
 mysql_stmt_send_long_data (MYSQL_STMT *stmt,
 unsigned int param_num,
 const char *data,
 unsigned long length);

 This function can be used to send long BLOB or TEXT values a piece at a time. The
 param_num value indicates which parameter the call applies to, in the range from 0 to
 mysql_stmt_param_count(stmt) −1. data is a pointer to the buffer containing the data
to send, and length indicates how many bytes to send.

 G.3.9.3 Prepared Statement Result Set Processing Routines

 When prepared statement execution produces a result set, the functions in this section enable
you to retrieve the set and access its contents.

 For an example program that demonstrates many of these functions, see Section 7.8 , “Using
Server-Side Prepared Statements.”

 ■ my_ulonglong
 mysql_stmt_affected_rows (MYSQL_STMT *stmt);

 This function is the prepared statement equivalent of mysql_affected_rows() , except
that you call it after invoking mysql_stmt_execute() . For statements that return no
result set, mysql_stmt_affected_rows() returns the number of rows inserted, deleted,
or updated by executing the statement. For statements that return a result set, this
function acts like mysql_num_rows() .

 mysql_stmt_affected_rows() returns a my_ulonglong value; see the note about
printing values of this type in Section G.2.1 , “Scalar Data Types.”

 ■ my_bool
 mysql_stmt_attr_get (MYSQL_STMT *stmt,
 enum enum_stmt_attr_type attr_type,
 void *attr);

 Gets a prepared statement handler attribute. See the description of mysql_stmt_attr_
set() for a description of the permitted attr_type attribute values. attr is a pointer to
a variable into which the attribute value should be written.

 my_bool attr;
 if (mysql_stmt_attr_get (stmt, STMT_ATTR_UPDATE_MAX_LENGTH, &attr) == 0)
 printf ("Attribute gotten successfully\n");
 else
 printf ("Attribute not gotten successfully\n");

 mysql_stmt_attr_get() returns zero if the attribute was obtained successfully, and
nonzero if the attribute type is unknown.

22_9780321833877_xg.indd 112022_9780321833877_xg.indd 1120 3/1/13 10:04 AM3/1/13 10:04 AM

1121G.3 C API Functions

 ■ my_bool
 mysql_stmt_attr_set (MYSQL_STMT *stmt,
 enum enum_stmt_attr_type attr_type,
 const void *attr);

 Sets a prepared statement handler attribute. attr_type indicates which attribute to set,
and attr is a pointer to a variable that contains the value of the attribute.

 attr_type may be any of the following values:

 ■ STMT_ATTR_UPDATE_MAX_LENGTH controls whether mysql_stmt_store_result()
calculates the max_length metadata value for result set columns. To enable or
disable this attribute, pass an attr value that points to a my_bool that is set to
true or false. By default, max_length calculation is disabled.

 ■ STMT_ATTR_CURSOR_TYPE indicates the type of cursor to use for the statement
when mysql_stmt_execute() is called. arg points to an unsigned long that can
be set to CURSOR_TYPE_NO_CURSOR (the default) or CURSOR_TYPE_READ_ONLY .

 ■ STMT_ATTR_PREFETCH_ROWS indicates now many rows to fetch at a time from the
server when a cursor is used. arg points to an unsigned long that is set to the
number of rows. The value should be at least 1 (the default).

 The following example enables max_length calculations for result sets:

 my_bool attr = 1;
 if (mysql_stmt_attr_set (stmt, STMT_ATTR_UPDATE_MAX_LENGTH, &attr) == 0)
 printf ("Attribute set successfully\n");
 else
 printf ("Attribute not set successfully\n");

 mysql_stmt_attr_set() returns zero if the attribute was set successfully, and nonzero if
the attribute is unknown.

 ■ my_bool
 mysql_stmt_bind_result (MYSQL_STMT *stmt, MYSQL_BIND *bind_array);

 Given a prepared statement handler, stmt , the mysql_stmt_bind_result() function
specifies an array of MYSQL_BIND structures to be used for fetching result set rows.
 bind_array is the address of an array of MYSQL_BIND structures. There must be one
structure in the array for each column in the result set. Each time you call mysql_stmt_
fetch() to retrieve a result set row, the column values are returned in the MYSQL_BIND
structures. mysql_stmt_bind_result() returns zero if the bind operation was successful
and nonzero otherwise.

 You must bind the structures to the result set columns before retrieving rows, and the
buffers pointed to by the structures must be large enough to store the retrieved values.
It is permitted to call mysql_stmt_bind_result() during result set retrieval to bind
columns to different MYSQL_STMT structures; mysql_stmt_fetch() uses the most recent
bindings.

22_9780321833877_xg.indd 112122_9780321833877_xg.indd 1121 3/1/13 10:04 AM3/1/13 10:04 AM

1122 Appendix G C API Reference

 ■ void
 mysql_stmt_data_seek (MYSQL_STMT *stmt, my_ulonglong row_num);

 Seeks to the result set row indicated by row_num , which can range from 0 to
mysql_stmt_num_rows(stmt) −1. The result is unpredictable if row_num is out of range.

 mysql_stmt_data_seek() requires that the entire result set has been retrieved into
client memory, so you can use it only if you have called mysql_stmt_store_result()
after executing the statement.

 mysql_stmt_data_seek() differs from mysql_stmt_row_seek() , which takes a row
offset value as returned by mysql_stmt_row_tell() rather than a row number.

 ■ unsigned int
 mysql_stmt_field_count (MYSQL_STMT *stmt);

 This function can be called after invoking mysql_stmt_prepare() with the statement
handler. It returns the number of columns in the result set that will be generated when
you execute the statement. If the statement will not produce a result set (for example, if
it is an INSERT or UPDATE), mysql_stmt_field_count() returns zero.

 ■ int
 mysql_stmt_fetch (MYSQL_STMT *stmt);

 After a successful call to mysql_stmt_execute() to execute a prepared statement that
returns a result set, optionally followed by a call to mysql_stmt_store_result() to
retrieve the result set into client memory, call mysql_stmt_fetch() to retrieve rows of
the result. The buffers into which you want to fetch result columns first must be bound
to MYSQL_BIND structures by calling mysql_stmt_bind_result() .

 mysql_stmt_fetch() returns zero if a row was fetched successfully, MYSQL_NO_DATA if
there are no more rows to fetch, MYSQL_DATA_TRUNCATED if data truncation occurred,
and 1 if an error occurred. After a successful fetch, the column values are available in the
 MYSQL_BIND structures bound to the result. Truncation checking occurs by default; this
can be changed by calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION
option.

 ■ int
 mysql_stmt_fetch_column (MYSQL_STMT *stmt,
 MYSQL_BIND *bind,
 unsigned int col_num,
 unsigned long offset);

 This function fetches data for a single column from the current result set row. Returns
zero for success and nonzero if an error occurred. bind is a MYSQL_BIND structure that
should be set up to indicate the kind of value to retrieve, the buffer into which to
retrieve it, and the length (amount) of the data to retrieve. col_num indicates which

22_9780321833877_xg.indd 112222_9780321833877_xg.indd 1122 3/1/13 10:04 AM3/1/13 10:04 AM

1123G.3 C API Functions

column to fetch. Its value can range from 0 to mysql_stmt_field_count(stmt) −1.
 offset indicates the offset into the column value at which value retrieval should begin;
0 indicates the start of the value.

 ■ my_bool
 mysql_stmt_free_result (MYSQL_STMT *stmt);

 Deallocates the memory used by the result set associated with the given statement
handler. Returns zero for success and nonzero otherwise. Any unfetched rows are
discarded. You must call mysql_stmt_free_result() for each result set generated by
the handler.

 ■ my_ulonglong
 mysql_stmt_insert_id (MYSQL_STMT *stmt);

 This function is the prepared-statement equivalent of mysql_insert_id() . It is
used after you call mysql_stmt_execute() to execute a statement that generates an
 AUTO_INCREMENT value.

 mysql_stmt_insert_id() returns a my_ulonglong value; see the note about printing
values of this type in Section G.2.1 , “Scalar Data Types.”

 ■ int
 mysql_stmt_next_result (MYSQL_STMT *stmt);

 This function is used following execution of a prepared CALL statement that invokes a
stored procedure. The results from the procedure begin with result sets from statements
such as SELECT , if there are any. Then, if the procedure has OUT or INOUT parameters,
there is a single-row result set that contains their final values, in the order they appear in
the procedure definition. Finally, there is always a status packet that signals the end of
the results.

 Following retrieval of each part of the procedure results, invoke mysql_stmt_next_
result() to determine whether there are any more results to process. It returns zero if
more results are available, −1 if not, and a value greater than zero if an error occurred.
For an example program that shows how this works, see Section 7.9 , “Using Prepared
 CALL Support.”

 This function was introduced in MySQL 5.5.3.

 ■ my_ulonglong
 mysql_stmt_num_rows (MYSQL_STMT *stmt);

 Returns the number of rows in the result set, if you have fetched the result into client
memory by calling mysql_stmt_store_result() . Otherwise, mysql_stmt_num_rows()
returns zero.

 mysql_stmt_num_rows() returns a my_ulonglong value; see the note about printing
values of this type in Section G.2.1 , “Scalar Data Types.”

22_9780321833877_xg.indd 112322_9780321833877_xg.indd 1123 3/1/13 10:04 AM3/1/13 10:04 AM

1124 Appendix G C API Reference

 ■ int
 mysql_stmt_store_result (MYSQL_STMT *stmt);

 Normally, result sets produced by executing a prepared statement are unbuffered and
calling mysql_stmt_fetch() fetches rows one at a time from the server. Calling
 mysql_stmt_store_result() after executing the statement and before fetching the
result set causes the result to be retrieved and buffered in client memory, so that calls to
 mysql_stmt_fetch() return rows from the buffered result. Calling mysql_stmt_store_
result() also makes the result set “seekable”, and enables you to use mysql_stmt_
data_seek() , mysql_stmt_row_seek() , and mysql_stmt_row_tell() . These functions
operate by positioning the row cursor of a result set buffered in client memory.

 For performance reasons, the max_length value in the result set metadata for each
column is not calculated by default. To have this value calculated when you call
 mysql_stmt_store_result() , use the mysql_stmt_set_attr() function to enable the
statement handler’s STMT_ATTR_UPDATE_MAX_LENGTH_FLAG attribute.

 You can fetch rows of the result set by calling mysql_stmt_fetch() without calling
 mysql_stmt_store_result() first. In this case, rows are retrieved from the server one
by one.

 Calling mysql_stmt_store_result() after executing a statement that produces no
result set has no effect.

 ■ unsigned long
 mysql_stmt_param_count (MYSQL_STMT *stmt);

 After a successful call to mysql_stmt_prepare() to prepare a statement, mysql_stmt_
param_count() returns the number of parameters in the statement (indicated by ‘ ? ’
placeholders), and zero if there are none.

 ■ MYSQL_ROW_OFFSET
 mysql_stmt_row_seek (MYSQL_STMT *stmt, MYSQL_ROW_OFFSET offset);

 Seeks to a particular result set row. mysql_stmt_row_seek() is similar to
mysql_stmt_data_seek() , except that the offset value is not a row number, but
either a MYSQL_ROW_OFFSET value obtained from a call to mysql_stmt_row_tell()
or mysql_stmt_row_seek() , or zero to seek to the first row.

 mysql_stmt_row_seek() returns the previous row offset.

 mysql_stmt_row_seek() requires that the entire result set has been retrieved into client
memory, so you can use it only if you have called mysql_stmt_store_result() after
executing the statement.

 ■ MYSQL_ROW_OFFSET
 mysql_stmt_row_tell (MYSQL_STMT *stmt);

22_9780321833877_xg.indd 112422_9780321833877_xg.indd 1124 3/1/13 10:04 AM3/1/13 10:04 AM

1125G.3 C API Functions

 Returns an offset representing the current row position in the result set. This is not a row
number; the value may be passed only to mysql_stmt_row_seek() , not to mysql_stmt_
data_seek() .

 mysql_stmt_row_tell() requires that the entire result set has been retrieved into client
memory, so you can use it only if you have called mysql_stmt_store_result() after
executing the statement.

 G.3.10 Administrative Routines

 The functions in this section enable you to control aspects of server operation.

 ■ int
 mysql_refresh (MYSQL *conn, unsigned int options);

 This function is similar in effect to the SQL FLUSH and RESET statements, except that you
can tell the server to flush several kinds of things at once. mysql_refresh() returns zero
for success, and nonzero for failure.

 The options value should be composed of one or more of the values shown in the
following list. You must have the RELOAD privilege to perform these operations.

 ■ REFRESH_GRANT

 Reloads the grant table contents. This is equivalent to issuing a FLUSH PRIVILEGES
statement.

 ■ REFRESH_HOSTS

 Flushes the host cache. This is equivalent to issuing a FLUSH HOSTS statement.

 ■ REFRESH_LOG

 Flushes the log files by closing and reopening them. This applies to whatever logs
the server has open, and is equivalent to issuing a FLUSH LOGS statement.

 ■ REFRESH_MASTER

 Tells a replication master server to delete the binary log files listed in the binary log
index file and to truncate the index. This is equivalent to issuing a RESET MASTER
statement.

 ■ REFRESH_SLAVE

 Tells a replication slave server to forget its position in the master logs. This is
equivalent to issuing a RESET SLAVE statement.

 ■ REFRESH_STATUS

 Reinitializes the status variables to zero. This is equivalent to issuing a FLUSH
STATUS statement.

22_9780321833877_xg.indd 112522_9780321833877_xg.indd 1125 3/1/13 10:04 AM3/1/13 10:04 AM

1126 Appendix G C API Reference

 ■ REFRESH_TABLES

 Closes all open tables. This is equivalent to issuing a FLUSH TABLES statement.

 ■ REFRESH_THREADS

 Flushes the thread cache. There is no equivalent SQL statement for this operation.

 The option flags are bit values; combine them in additive fashion using either the | or
the + operator. For example, the following expressions are equivalent:

 REFRESH_LOG | REFRESH_TABLES
 REFRESH_LOG + REFRESH_TABLES

 ■ int
 mysql_set_server_option (MYSQL *conn,
 enum enum_mysql_set_option option);

 Sets a server option and returns zero if the option was set successfully, or nonzero
otherwise. The permitted options are MYSQL_OPTION_MULTI_STATEMENTS_ON
or MYSQL_OPTION_MULTI_STATEMENTS_OFF , which enable or disable multi-statement
execution capability, respectively.

 Enabling multiple-statement execution with MYSQL_OPTION_MULTI_STATEMENTS_ON does
 not also enable multiple result sets. This differs from the CLIENT_MULTI_STATEMENTS
option to mysql_real_connect() , which also enables CLIENT_MULTI_RESULTS .

 ■ int
 mysql_shutdown (MYSQL *conn, enum mysql_enum_shutdown_level level);

 Instructs the server to shut down. You must have the SHUTDOWN privilege to do this. The
value of the second argument should be SHUTDOWN_DEFAULT . mysql_shutdown() returns
zero for success, and nonzero for failure.

 G.3.11 Threaded Client Routines

 The routines in this section are used for writing multi-threaded clients.

 ■ void
 mysql_thread_end (void);

 Frees any thread-specific variables initialized by mysql_thread_init() . To avoid
memory leaks, you should call this function explicitly to terminate any threads that you
create.

 ■ my_bool
 mysql_thread_init (void);

22_9780321833877_xg.indd 112622_9780321833877_xg.indd 1126 3/1/13 10:04 AM3/1/13 10:04 AM

1127G.3 C API Functions

 Initializes thread-specific variables. This function should be called for any thread you
create that will call MySQL functions. In addition, you should call mysql_thread_end()
before terminating the thread.

 ■ unsigned int
 mysql_thread_safe (void);

 Returns 1 if the client library was compiled to be thread-safe, and 0 otherwise.

 G.3.12 Debugging Routines

 These functions enable you to generate debugging information on either the client or server
end of the connection. To use them, MySQL must have been built with debugging support.

 ■ void
 mysql_debug (const char *debug_str);

 Performs a DBUG_PUSH operation using the string debug_str . The format of the string is
described in the MySQL Reference Manual.

 ■ int
 mysql_dump_debug_info (MYSQL *conn);

 Instructs the server to write debugging information to the log. You must have the SUPER
privilege to do this. mysql_dump_debug_info() returns zero for success, and nonzero
for failure.

22_9780321833877_xg.indd 112722_9780321833877_xg.indd 1127 3/1/13 10:04 AM3/1/13 10:04 AM

22_9780321833877_xg.indd 112822_9780321833877_xg.indd 1128 3/1/13 10:04 AM3/1/13 10:04 AM

