MACGLOBL.DOT

6/23/2014

 TIME 10:43 AM

Secure Coding in C and C++
 Second Edition

Copyright © 2013 Pearson Education, Inc.
ISBN-10: 0321822137
ISBN-13: 9780321822130
Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the CD or programs accompanying it.

When reviewing corrections, always check the print number of your book. Corrections are made to printed books with each subsequent printing.
Corrections for all Printings
	Pg
	Error
	Correction

	42
	Example 2.1 Reading fromstdin()
	Example 2.1 Reading from stdin

	43
	Reading data from unbounded sources (such as stdin()) creates an interesting problem for a programmer
	Reading data from unbounded sources (such as stdin) creates an interesting problem for a programmer.

	46
	The extraction operation can be limited to a specified number of characters (thereby avoiding the possibility of an out-of-bound s write) if the field width inherited member (ios_base::width) is set to a value greater than 0. In this case, the extraction ends one character before the count of characters extracted reaches the value of field width, leaving space for the ending null character. After a call to this extraction operation, the value of the field width is reset to 0.
	This paragraph is duplicative and should be removed.

	63
	Return Addr Caller —main 4 bytes) "W>*!" (return to line 6 was line 3)
	Return Addr Caller —main (4 bytes) "j>∗!" (return to line 6 was line 3)

	65
	cd 50
	cd 80

	66
	int $0x50
	int $0x80

	68
	int $80
	int $0x80

	91
	Example 2.15 shows the Open Watcom implementation of the strcp_s() function. The runtime-constraint error checks are followed by comments.
	Example 2.14 shows the Open Watcom implementation of the strcp_s() function. The runtime-constraint error checks are followed by comments.

	92
	However, the destination string is set to the null string and a nonzero value is returned if either the source or destination pointer is NULL or if the maximum length of the destination buffer is equal to 0 or greater than RSIZE_MAX.
	The strcat_s() function returns 0 on success. A runtime-constraint violation occurs if the source or destination string is a null pointer, copying takes place between overlapping objects, the maximum length of the destination buffer is equal to 0 or greater than RSIZE_MAX, the destination string is not properly null-terminated, or there is insufficient space remaining in the destination string to copy the source string. If there is a runtime-constraint violation, and the destination string is not a null pointer and the maximum length of the destination buffer is equal to 0 or greater than RSIZE_MAX, then the destination string is set to the null string.

	115
	memcpy_s(pBuff, 4096);
	memcpy_s(pBuff, ...);

	122
	2. For a loop limited by upper bound, a loop limited by Hi, or a loop limited by null terminator, the buffer must be at a lower memory address than the target function or object pointer. For a loop limited by lower bound or a loop limited by Lo, the buffer must be at a lower memory address than the target function or object pointer.
	2. For a loop limited by upper bound, a loop limited by Hi, or a loop limited by null terminator, the buffer must be at a lower memory address than the target function or object pointer. For a loop limited by lower bound or a loop limited by Lo, the buffer must be at a higher memory address than the target function or object pointer.

	183
	Size of last 4 bytes or prev (occur 3 times)
	Size or last 4 bytes of foregoing

	185
	There are, however, well-known techniques that are not difficult to adapt to exploit common programming flaws in dynamic memory management. Buffer overflows, for example, can be used to corrupt data structures used by the memory manager to execute arbitrary code. Both the unlink and frontlink techniques described in this section can be used for this purpose.
	There are, however, well-known techniques that are not difficult to adapt to exploit common programming flaws in dynamic memory management. Buffer overflows, for example, can be used to corrupt data structures used by the memory manager to execute arbitrary code. Both the unlink technique and the frontlink technique described in the next section can be used for this purpose.

	253
	For example, for an implementation in which the width of int is greater than the width of short, the following code has implementation-defined behavior or may raise an implementation-defined signal:
	For example, for an implementation in which the width of long int is greater than the width of signed char, the following code has implementation-defined behavior or may raise an implementation-defined signal:

	253
	The following code can be used, for example, to convert from a signed int to a signed char:
	The following code can be used, for example, to convert from a signed long int to a signed char:

	255
	Table 5.9, Row for “char to unsigned long” conversion, Method column:

Sign-extend to unsigned long; convert long to unsigned long
	Table 5.9, Row for “char to unsigned long” conversion, Method column:

Sign-extend to long; convert long to unsigned long

	255
	Table 5.9, From column in all four instances: char
	Table 5.9, From column in all four instances: signed char

	227
	C requires that unsigned integer types represent values using a pure binary system with no offset. This means that the value of the binary number is
[image: image1.jpg]

	C requires that unsigned integer types represent values using a pure binary system with no offset. This means that the value of the binary number is
[image: image2.jpg]

	270
	[image: image3.jpg]

	[image: image4.jpg]+2'

0

*y> (-

	288
	table[pos] = value; is equivalent to (table + (pos * sizeof(int))) = value;
	table[pos] = value; is equivalent to
*(int *)((char *)table + (pos * sizeof(int))) = value

	365
	If the platform were to write a 16-bit short int, it might do so by writing first the upper 8 bits in one instruction and then the lower 8 bits in a second instruction. If two threads simultaneously perform a write to the same short int, it might receive the lower 8 bytes from one thread but the upper 8 bytes from the other thread.
	If the platform were to write a 16-bit short int, it might do so by writing first the upper 8 bits in one instruction and then the lower 8 bits in a second instruction. If two threads simultaneously perform a write to the same short int, it might receive the lower 8 bits from one thread but the upper 8 bits from the other thread.

This errata sheet is intended to provide updated technical information. Spelling and grammar misprints are updated during the reprint process, but are not listed on this errata sheet.

Updated 01/00/2012

