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Introduction

When I graduated from college with a degree in computer science, it’s 
fair to say I had a layperson’s understanding of the science and theory 
of creating software. I had studied databases, algorithms, compilers, 
graphics, CPU architecture, operating systems, concurrency, and more. 
And I had, to some extent, a framework that related these technologies 
to each other.

Because I was writing software outside of classes—mostly for sum-
mer jobs—I also knew that translating academic knowledge into build-
ing a product was a distinct challenge. More accurately, it presented 
challenges, plural. Selecting and implementing the right algorithm 
was generally the easy part. Working with a large code base, creating 
a functional user experience, testing for quality and performance, and 
coordinating with a whole team operating in parallel on the same prod-
uct—these were hard things to do.

Upon graduation, I worked at a series of jobs developing soft-
ware products. Most of them did not result in successful products, but 
that didn’t stop me from learning from those experiences. If the cli-
ches about learning from failure are correct, I learned a lot during that 
stretch of time.

Over the course of several different projects, I noticed that I often 
had a better view of the product as a system—that is, of the compo-
nents within it and how they relate—than most of my peers. Although 
I didn’t appreciate it at the time, this ability to see and reason about the 
“big picture” is a relatively rare but quite useful skill set.

To comprehensively address all the components of a software sys-
tem and how they relate is to practice architecture. Obviously, the term 
architecture is not unique to software—indeed, it’s borrowed from the 
realm of buildings, and can be applied to products of all types. Houses 
have an architecture, and so do cars, TVs, and rockets. Had I grown up 
to be a rocket scientist, I expect I’d have found myself more interested 
in how all the different parts of a rocket fit together than the design of 
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a specific valve or nozzle. But we’ll never know for sure, given that I 
ended up in the software field.

Over my decades in the industry, the complexity of the software we 
produce has grown immensely. When I started, a viable software prod-
uct—that is, something that could be sold for a profit—fit on a floppy 
disk, ran on one machine at a time, and didn’t connect to the Internet. 
Today, a software product running “in the cloud” might easily consist 
of hundreds of coordinating programs running at multiple, geographi-
cally distributed sites, updated multiple times a day, and expected 
to operate forever without interruption (an expectation of which we 
admittedly sometimes fall short). The nature of a software product has 
evolved radically in a short time.

This evolution has made software architecture both more difficult 
and more critical than ever. More difficult because there are orders of 
magnitude more components and relationships to keep track of. More 
critical because, unless these relationships are managed effectively, the 
complexity of a system will inevitably become a limiting factor on its 
dependability and the velocity of further development. For most prod-
ucts, this is the beginning of the end. And I’ve seen it happen.

Software architecture isn’t just about managing complexity, but if 
I had to pick the most valuable outcome of architecture as a discipline, 
that would be it. Complexity undermines everything that software 
should do for us. It creates unpredictable behavior, and thus under-
mines user trust. It leads to defects, harming dependability. It propa-
gates failures, turning small errors into large outages. And it hampers 
understanding, eventually defeating any attempt to return to a simpler 
state or structure. Complexity is software’s enemy, and a disciplined 
architecture practice its best defense.

Later in my career, I had the privilege and responsibility of leading 
architecture teams for a couple of large, complex software products. 
Neither product was entirely new; both had been around for more than 
a decade. I began by doing the sorts of things that are part of any archi-
tect’s job description: understanding the system’s current architecture, 
assessing its suitability for the current and anticipated requirements, 
and proposing and evaluating changes. I’ll have more to say about how 
to do these things later in the book.
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Although those activities are clearly necessary, equating them 
with software architecture is like saying I knew how to write software 
because I’d taken some computer science classes. It’s a great start, but 
there’s a whole lot more to making software architecture an integral 
and successful part of software development. And that’s what this book 
is about: how to practice architecture in a software development orga-
nization.

Focus
This is not a book of software architectures. There are no explanations 
of client–server, domain-driven design, sense–compute–control, and 
other architectural styles. I do not discuss how to select a database tech-
nology, regionalize your deployments, or design for scale. Those are all 
important topics. There are many books, blogs, and other resources 
about them; there are many architects well versed in these topics.

But just as knowing how to implement a merge sort algorithm falls 
short of what’s required to write an application, simple familiarity with 
a given architecture is woefully inadequate to create a system that uses 
it. And while adopting that merge sort might be the scope of a task that 
falls to a single engineer, system architecture inevitably involves a larger 
cast of characters.

This book aims to describe how you can take your architectural 
skills and knowledge and apply them to the much larger, much messier 
process of developing a product. Without focusing on a specific style, it 
defines software architecture, placing it and defining its role among the 
other specializations of a product development team. It identifies the 
many touchpoints that architecture has with the concepts, processes, 
standards, and so on that surround it.

We then dive deeply into the topic of change. Identifying, manag-
ing, and designing changes to a system are core to architecture practice. 
Design sometimes seems like a black box, with conversations going 
in one side and a complete design popping out the other. In reality, 
the whole process of change is ongoing and consists of discrete steps. 



I n t r o d u c t I o n • xix •

Everything we can do to make those steps apparent, to make them vis-
ible, and to steward them along this path will improve the process.

Engineering is about trade-offs, and the process of developing 
and evolving a system through change involves an endless litany of 
design decisions. Each decision opens some pathways and closes oth-
ers—or perhaps it reverses an earlier decision when we discover a path 
has come to a dead end. How these decisions are made is itself a key 
skill. The more good decisions a project team can make, the less time is 
spent backing up. And the more quickly good decisions can be made, 
the more quickly the project can move ahead.

On projects of any significant size, logistics and communication 
also become critical considerations. Which decisions have been made, 
and which ones are pending? What’s the vocabulary we use to describe 
our system? Why did we select the architecture that we’re using? All 
these become concerns of tools, process, and communication.

Finally, we consider the architecture team in an organizational 
context, including the definition of software architect as a discrete 
role. Options for structuring an architecture team are considered, as 
well as how architects should engage with other disciplines within the 
organization. This section also considers how to identify, nurture, and 
develop architectural talent.

Motivation
Software grows ever more complex. We’ve grown accustomed to prod-
ucts that put the information and tools we want to use at our fingertips 
across multiple devices, anywhere on the globe, while supporting bil-
lions of users. The challenges involved in creating and operating these 
systems are far beyond the simple, stand-alone software products of 
just a few decades ago.

Software architecture plays a unique and critical role in this work. 
While only one of many disciplines that work together to conceive, 
realize, and run these massive systems, it uniquely demands an abil-
ity to see the “big picture,” to understand how all the elements of a 
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system come together, and to evolve that structure over time. Over the 
last two decades or so, architects have made great strides in developing 
technologies and techniques to meet these challenges. The better an 
organization is at doing software architecture, the better it will be at 
delivering quality software on time.

Even so, most product development organizations are not as good 
at doing software architecture as they could be. This observation crys-
tallized for me one day when I took on a new role running a team of 
experienced architects on a project that was new to me. At the indi-
vidual level, these architects were all adept at handling the challenges 
of designing software. However, they weren’t packaging their skills to 
benefit the larger effort. They were underinvested in documentation, 
process, and communication.

As a result, that architecture team was underperforming. They 
struggled to prioritize their work, and sometimes engaged with the 
wrong problems. Without a strong decision-making process, they 
struggled to make decisions—and to keep them made. They were 
inconsistent in documenting their work, which sometimes led to work 
being ignored or redone. The project was complex and important; it 
warranted a significant architectural investment. But the team, despite 
having, collectively, more than a hundred years of architectural experi-
ence, was letting the organization down.

When I spoke with the members of my new team, I realized that 
they could see the symptoms—they knew they were struggling—but 
they could not identify the cause. They knew, individually, how to do 
software architecture. But collectively, they did not understand how to 
run an effective software architecture practice. They lacked the struc-
ture necessary to knit their individual efforts into a team effort and to 
integrate that work into the larger organization.

That experience led directly to this book. If these architects, with 
their decades of experience, didn’t understand how to structure an 
effective architectural practice, then it was likely that many others 
struggled with the same issues. And while the endeavor of running 
an architecture team is not entirely ignored in software literature, 
it is also not a topic with extensive coverage. For example, Software 
Architecture: Foundations, Theory, and Practice (Taylor, Medvidovic, 
and Dashofy 2010) devotes 3% of its 675 pages to “People, Roles, and 
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Teams.” I have a reasonably extensive library of books on software 
architecture; this is about par for the course. I decided to fill that gap.

Audience
This book is for software architects, the managers who lead them, and 
their counterparts in product management, user experience, program 
management, and other related disciplines. Building software is a joint 
space in which all these disciplines cooperate. I hope they will all ben-
efit from these explanations of software architecture as a discipline, 
its role in software development, and how architects and architecture 
teams operate.

Practicing architects will find guidance that they can compare to 
their own methods. No matter how numerous their years of experi-
ence, they may yet find something new here. Software architecture is 
too young a field to have a broadly known corpus and consistent or 
regulated practice.

This book is also for everyone who works with a software archi-
tecture team. As projects expand, roles become differentiated: Prod-
uct managers focus on requirements, testing teams create test plans, 
security teams develop threat models. Everyone has their own area of 
expertise. And yet all of those activities must be stitched back together 
into a cohesive whole—and that requires that everyone see how these 
functions fit together. In short, they must understand the system’s 
architecture. In this book, everyone involved in software projects will 
find an accessible description of the role software architecture plays in 
achieving their goals.

Finally, this book is for the executives responsible for managing or 
creating an architecture team. In explaining how software architecture 
works, it provides the background that executives need to determine if 
their current architectural function is fit-for-purpose and what to look 
for when hiring new talent.
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Success
An effective software architecture function helps product development 
organizations produce better software faster. As a discipline, software 
architecture tackles some of the hardest parts of producing software: 
organizing each system, managing change and complexity, designing 
for efficiency and dependability. Software systems with good architec-
ture work well and continue to work well over time. Systems with poor 
architecture fail—often in spectacular fashion.

A successful software architecture practice also integrates these 
abilities with the broader challenges of product development. Archi-
tects are uniquely positioned to aggregate requirements, and thus 
design a cohesive whole instead of a collection of parts. And thanks to 
that same overarching view, they are also well positioned to communi-
cate to everyone how those pieces come together.

To do that well requires more than a degree in computer science, 
and more than experience with relevant architectural styles. It requires 
the ability to create a predictable, repeatable change process; to make 
decisions expediently and effectively; and to build a team that can do 
these things ever better over time.

Simply put, software architecture has an ever-increasing impact on 
our ability to develop and deliver fit-for-purpose software. I hope this 
book will help guide you and your organization to a more effective soft-
ware architecture practice.

Register your copy of Effective Software Architecture: Building  
Better Software Faster on the InformIT site for convenient access 
to updates and/or corrections as they become available. To start the 
registration process, go to informit.com/register and log in or cre-
ate an account. Enter the product ISBN (9780138249328) and click 
Submit. 

http://informit.com/register
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Chapter 1

Software  
Architecture

An effective software architecture practice helps product develop-
ment organizations produce better software faster. But before we can 
discuss an effective practice, we need an understanding of software 
architecture. It’s a term that’s used frequently in the software industry, 
and often with a certain laxness. Tightening up our definition is impor-
tant, as the practices in this book are closely aligned with a strict and  
complete definition of architecture.

Software architecture is often equated with software design, but 
the two are actually quite distinct. A design is a specific, point-in-time 
arrangement of software components that, collectively, form a software 
system. As we develop each release of that system and determine how 
that release will function, we are designing that release.

What happens when we create the next iteration of that same sys-
tem? We’ll revise its design, of course: That’s how we introduce the 
changes that distinguish one release from the next. But we won’t throw 
it out and start over, either; each subsequent design is related to the 
one that came before.

An architecture is a template for the iterative creation of a set of 
related designs. Architectures are also designed, but they are more 
than a design. Thus, an effective software architecture practice doesn’t 
just create one good design; it lays the foundation for creating tens, 



• 2 • S o f t w a r e  a r c h i t e c t u r e 

hundreds, and thousands of designs. That’s the potential of software 
architecture, and that’s the promise of an effective software architec-
ture practice.

What, then, constitutes an architecture? Standards play an impor-
tant part in architecture, so it feels appropriate to start our discussion 
of architecture with a definition from an IEEE standard:

[An architecture is] the fundamental organization of a system, embod-
ied in its components, their relationships to each other and the envi-
ronment, and the principles governing its design and evolution. [1]

Let’s take this definition apart, piece by piece, to understand it 
thoroughly.

Fundamental Organization

Imagine that you have a software product consisting of a hundred com-
ponents. The precise nature of these components doesn’t matter; they 
could be services, libraries, containers, functions, or plugins. The point 
is that your product is composed of these components, and the interac-
tions between these components realize the features and functions of 
the product.

Now imagine that for each component, you used a random number 
generator to determine its type (service, library, etc.) and its method of 
communication. Often these are linked—for example, a code library is 
designed to be invoked via a local procedure call, and a service is not. 
That’s okay; we’ll pick, randomly, from the methods that reasonably 
apply to each component.

You’ve probably already realized that getting these components 
to work together will be a challenge. Different components require 
different implementation technologies, tooling, and deployment.  
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We’ll have lots of mismatches when we try to wire components up, 
and we’ll have to translate between local calls and remote calls and 
message-passing and function invocation. In starting with randomness, 
we’ve constructed a system that lacks any fundamental organization. 
Fortunately, this system exists only in our imagination.

No one works this way, and every real system has some fundamen-
tal organization to it. The fundamental organization of a system often 
is, to some extent, imposed by external factors. For example, if you’re 
building a mobile application, your elements will primarily be libraries 
and they’ll mostly communicate via local procedure calls. In contrast, 
if you’re building a cloud-based product, you might organize your sys-
tem around services.

When speaking of the architecture of a system, however, we are 
generally referring to a fundamental organization that goes beyond 
these external constraints. For example, cloud services necessarily 
communicate via the network. Is that communication organized as 
request-response or message-passing? Any system that chooses one 
method over the other is fundamentally organized around that specific 
approach. 

Figure 1.1 illustrates the impact of each approach to establish-
ing a system’s fundamental organization. As illustrated in the leftmost 
diagram, a randomized system consists of different types of compo-
nents (indicated by different shapes) communicating via different 
mechanisms (indicated by different line types), and with arbitrary 
relationships. External constraints tend to dictate component types 
and communication mechanisms, as indicated by the uniformity of 
shapes and line types in the middle diagram. However, external con-
straints rarely impose organization on relationships within the system. 
The final diagram, on the right side of Figure 1.1, illustrates a system 
with a clear fundamental organization. It uses a consistent compo-
nent type, consistent communication mechanism, and has structured  
relationships.
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Figure 1.1 
Levels of fundamental 
organization. a random 
system (left) has a mix 
of component and rela-
tionship types. Most 
systems are subject to 
at least some external 
constraints (middle) on 
those types. organized 
systems (right) bring 
additional consistency 
through further con-
straints.

Random External
Constraints

Fundamentally
Organized

Of a System

We’re going to use the word “system” a lot in this book. The term 
appears in our definition of architecture and has already been men-
tioned half a dozen times in this chapter. But what is a system?

For our purposes, a system is any set of software components that 
work together to provide one or more capabilities. Systems can be 
large: They might contain hundreds or thousands of components and 
execute on a similar number of computers. But they can also be small: 
The embedded software running on a battery-powered wireless sensor 
is also a system.

Systems need not work in isolation. If you are developing wireless 
sensor software, then, for your purposes, the boundaries of your sys-
tem can be set according to which software runs on the sensor. That 
sensor—along with others—will send data to some other system that 
processes that data. For you, the processing system may form part of 
your environment, not your system; it may, for example, be developed 
by a different team.

Systems may also be composed of other systems. In other words, a 
new system can be defined as the composition of two or more smaller 
systems, perhaps with some additional components added to the mix. 
For example, a system of wireless sensors, combined with a system 
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for data processing, can be composed into a single system providing a 
monitoring capability.

Thus, when we use the term system regarding architecture, we’re 
allowing for the system boundaries to be set as befits the relevant scope 
of concern. Every aspect of software architecture covered by this book 
applies to any of these systems, regardless of its scale. Granted, some 
concerns are more readily addressed at smaller scales, so the extent 
and rigor with which you apply architectural practice can be adjusted 
according to the needs of the system at hand.

Embodied in Its Components

The fundamental organization of a system isn’t easy to change. The 
implied decisions regarding technology, communication, structure, 
and so on become embodied in the components that conform to that 
organization. After all, it’s the implementation of this organization in 
the components that gives the whole system form.

It is all too easy to underestimate how deep these decisions run. 
As desktop computing gave way to mobile- and cloud-based solutions, 
companies with deep investments in desktop code looked for options 
to bring their massive investments in these code bases into these new 
forms.

Initially, that challenge might have looked like a porting problem. 
Maybe the code needed to run on a new CPU architecture or adapt to 
a different operating system. Those changes are not necessarily easy to 
make, but they’re not impossible. Furthermore, many of these code 
bases had already been through at least one similar port in the past, 
such as from Windows to macOS.

But the fundamental organization of most desktop applications 
includes much more than just a CPU instruction set or even an operat-
ing system. For example, most of these desktop applications are orga-
nized around the assumption that they have access to a fast, reliable, 
local disk. This point is so foundational that many desktop application 
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architects wouldn’t have even called it out. There was no other option 
to consider; it could go unstated.

As a result, in many of these applications, the assumption of fast 
and reliable access to a disk is embodied not just in every component 
but in every line of code in those components. Need to read some  
configuration data? User preferences? Save progress? No problem!  
A couple of calls to the filesystem API, problem solved.

Moving this data to the cloud breaks this assumption, and every 
line of code that depends on it. The data might exist, but retrieving it 
might be slow (because it’s over the network) and unreliable (because 
it’s over the network). Or it might be impossible right now (because the 
network is down), although later it will be possible again.

Figure 1.2 illustrates how these assumptions become embodied in 
a system’s components. On the left, components in a desktop applica-
tion connect directly and independently to a file system; they assume 
and depend on fast and immediate access to their data.

Figure 1.2 
the fundamental orga-
nization of a system is 
embodied in its com-
ponents. on the left, 
the organization of the 
system around a file 
system is embodied in 
every component. on 
the right, that’s been 
shifted to a cache that 
mediates access to 
data.

File System Cache

File System

Cloud

Components can be written to deal with this uncertainty, but they 
must embody a different fundamental organization. They must be 
aware that data has a source that may be slow to access or even inac-
cessible. As a result, they tend to be organized around a local cache 
instead, and a good deal of time and attention go into managing how 
data moves between the cache and storage.
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On the right side of Figure 1.2, an alternative organization binds 
components to a cache that, in turn, mediates between local and cloud 
storage. In this architecture, components also embody the assumption 
that their data may or may not be in the cache. When a cache miss 
occurs, accessing their data will be either slow (it’s retrieved over the 
network) or impossible (if the network is down).

Organizing around a filesystem abstraction doesn’t really help 
resolve this problem. It’s not too hard to build a filesystem abstraction 
that can bridge the differences between different desktop operating 
systems, or even between mobile and desktop operating systems. But 
it’s the wrong abstraction for data in the cloud because it continues to 
assume fast, local access. These foundational assumptions can be just 
as easily embodied in interfaces and abstractions as code.

To be clear, how an architecture’s foundational organization is 
embodied in its components is about much more than storage and file 
systems. This is one example of how an architecture lays down assump-
tions, and those assumptions can become wired into each line of code 
in each component. We’ll return to this point more than once, as it’s a 
key aspect of what makes architecture valuable—and difficult.

Their Relationships to Each Other

As programmers, we tend to place an emphasis on components over 
connections. The components feel material—as much as anything in 
software ever does—because they consist of the code we write. Com-
ponents can be compiled, packaged, distributed, and delivered. They 
feel almost tangible.

But components aren’t interesting on their own. Software comes 
to life when those components are connected to each other in mean-
ingful ways. How and which connections are formed should therefore 
be intentional, not happenstance.

Some well-known architectures place relationships front and  
center. The Unix shell architecture, for example, consists of two  
primitives: programs and streams. Streams are directional; they have 
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an input side and an output side. Programs read zero or more inputs 
and write zero or more outputs. The shell’s job is to link outputs and 
inputs, from one program to the next, forming pipelines through which 
data flows.

The Unix architecture doesn’t have much to say about how these 
programs operate. They can be written in different languages, handle 
binary data or textual data, and so on. Most of the programs are rela-
tively small, focused on a single job. (The emphasis on small, narrow 
programs is a Unix architectural principle—more on principles in a 
moment.)

The relationships between the programs get more attention. By 
default, every program has one input stream (stdin) and two output 
streams. The output streams are divided into the “standard” output 
(stdout) and a special stream for errors (stderr). It’s possible but some-
what tedious to deal with more streams, whether for input or output.

The beauty of this approach is that it’s simple yet powerful. Pro-
grams written at different times by different authors can be readily 
combined by the user to achieve new and unexpected outcomes. And 
it’s possible not because of constraints on the programs, but rather 
because of their relationships with each other.

This result, in which components are combined post-development 
to achieve a new result, is an example of network effects. Network 
effects are exciting because they produce a combinatorial explosion of 
value for linear inputs. And while this book isn’t really about platforms 
and network effects, there is a deep connection between platforms, 
network effects, and architecture.

However, the combinatorial magic of connections can also work 
against an architecture. In the Unix model, programs can be com-
bined—but they do not intrinsically depend on each other. When a sys-
tem contains many interconnected components that depend on each 
other, these relationships become a hindrance, not a help.

When relationships are not governed, the dependency count tends 
to grow. And while these dependencies may be introduced one at a 
time, the complexity of the resulting system can grow much more 
quickly. It can quickly grow beyond anyone’s ability to comprehend, 
let alone manage.



• 9 •t h e i r  r e l a t i o n s h i p s  t o  t h e  e n v i r o n m e n t 

If you have ever worked on a system that had components that 
couldn’t be touched for fear of breaking some other component, then 
you’ve worked on a system where the relationships between compo-
nents have become too entangled. These scenarios demonstrate how 
managing relationships is just as fundamental as managing the compo-
nents themselves.

Their Relationships to the  
Environment

Systems never operate in a vacuum. In some cases, they may be the 
only software running on the hardware at hand, in which case that 
hardware is their primary environmental concern. However, most of 
the time, systems run on top of or as part of some other system.

For example, consider the relationship between a program (a sys-
tem) and the operating system on which it runs (also a system). Operat-
ing systems impose a fundamental organization on the programs they 
host. This organization is inescapable: The programs are started by the 
operating system and, to a lesser or greater extent, the operating sys-
tem monitors and controls the program during execution and through 
termination. Without some basic agreement between the two, these 
programs would never run.

Operating systems vary immensely in regard to how much of the 
fundamental organization of a program they define. In the Unix model, 
for example, the imposed organization is quite limited. Programs are 
started by invoking a function with a well-known name (“main”) and 
set of arguments, so those elements must exist. To be sure, the typical 
structure of Unix programs encompasses many conventions and APIs. 
But very little of that is truly required. As a result, Unix successfully 
and easily supports writing programs of many types, languages, and 
structures.

The iOS platform, by comparison, is much more opinionated. iOS 
applications do not have a single entry point but rather a whole set 
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of functions they are expected to respond to. Much of this has to do 
with the life cycle of these applications. In the Unix model, programs 
start, run until they’re done with the task at hand, and then exit. On 
iOS, applications are started, brought to the foreground, moved to the 
background, stopped to preserve resources, restarted due to user inter-
actions or notifications, and so on. It’s much more complicated!

On Unix, you can use the fundamental organization of an iOS 
program if you want to. Again, Unix doesn’t impose its organization; 
the program designer has significant discretion. But on iOS, your  
application largely needs to be fundamentally organized around a 
model dictated by iOS. This relationship of the program to the iOS 
environment becomes a major driver of the program’s architecture.

Relationships to Multiple Environments

More opinionated environments create tension with code reuse. Building 
complex applications is expensive, and many software producers would 
like to write a system once and use it in multiple environments. From an 
architect’s perspective, the problem of managing the relationship to the 
systems’ environment becomes one of managing the relationship to mul-
tiple environments.

This can be difficult to accomplish when environments impose different—
and in the worst case, conflicting—fundamental organizations. There are a 
few standard ways in which this issue is tackled:

• Ignore the environment and organize the software in some other way. 
As a rule, it’s expensive to develop systems this way because a good 
deal of time and effort go into reproducing behaviors that you could get 
“for free” from the environment. Furthermore, those reproductions are 
never perfect, and differences tend to look like defects to your users.

• Create an abstraction layer that adapts two or more environments to a 
single model. This strategy can work well for systems that don’t need 
deep integration with capabilities provided by the environment. For 
example, it often works well with games. The abstraction layer might be 
part of the system, or it might be externalized. These layers are some-
times products themselves.

• Split the system into two subsystems: an “environment-specific” core 
that is written separately for each target, and an “environment-agnostic”  
edge that is shared across each. While this may sound superficially 
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like the abstraction layer approach, it is a discrete strategy because  
the environment capabilities are not abstracted. In this case, the  
environment-specific layer becomes as deep as necessary (but, ideally, 
no more than that) to connect with the environment-agnostic logic.

As with engineering in general, there’s no universal correct answer to the 
challenge of managing these environmental relationships.

Principles Governing Its Design

Until this point, the IEEE definition of architecture has focused on 
describing a system’s current state: its fundamental organization, its 
components, their relationships. Now, it turns its attention to why it’s 
organized this way, has these components, and includes these relation-
ships.

Design is a decision-making activity in which each choice deter-
mines some aspect of form and function. Principles are rules or beliefs 
that guide decisions. Thus, architectural principles are the rules and 
beliefs that guide decisions about a system, helping determine its fun-
damental organization.

Good architectural principles assert what’s important to the  
system—perhaps reliability, security, scalability, and so on—and guide 
design toward those qualities. For example, a principle might assert 
that a notification delivery system should favor speed over reliability. 
In turn, that can support a decision to use a faster but less-reliable  
message-passing technology.

Principles can also accelerate decision making by designating 
a preferred approach out of many available options. For example, a 
principle might state that horizontal scaling is preferred over vertical 
scaling. We may be tempted to think of software engineering as driven 
purely by facts and analysis—that is, a system either does or does not 
meet its requirements—but often many designs may meet the require-
ments. Thus, design also involves judgment calls in which we choose 
among a set of acceptable alternatives.
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Importantly, principles govern not just what we can do, but also 
what we cannot do. For example, consider a system composed of 
a set of services. A reasonable principle for the design of this system 
might hold that each service should be individually deployable without 
downtime. On the one hand, this principle frees architects for indi-
vidual services, allowing them to determine when and how they will 
deploy updates. On the other hand, it constrains them: Their deploy-
ment strategy must not require that other services are updated at the 
same time, or that those services are temporarily disabled during the 
update. Thus, this principle simultaneously opens up some options for 
consideration while closing off others.

Without constraints, teams may spend too much time exploring 
a potential design space, which tends to slow down decision making 
while producing only marginally better outcomes. It’s a classic case of 
diminishing returns: Each new option takes significant time to explore, 
yet doesn’t deliver meaningful benefits over options already consid-
ered. A constraint that limits this exploration will save substantial 
time and effort while producing just as good a result. Of course, for 
this approach to work, the constrained designed space must encom-
pass suitable outcomes—so these principles do need to be carefully  
considered.

Too much freedom in choice also tends to result in a lack of 
alignment, thus undermining the system’s fundamental organization. 
Schematically, suppose that three or four subsystems need to choose 
between approach A and approach B. If both approaches are roughly 
equivalent and no further guidance is available, the system is likely 
to end up with a mix of the two approaches. Because that outcome 
increases overall system complexity with a corresponding benefit, it’s 
a net-negative and should be avoided. A principle that guides all of 
these decisions toward the same option speeds decision making and 
constrains the outcome, driving simplicity and alignment.

When we’re not intentional about setting our principles, they tend 
to be set for us. And that means that we typically end up with implied 
principles such as “working within current organization boundaries,” 
“minimizing scope,” and “fastest time to market.” None of these prin-
ciples speaks to developing a better product, and they won’t produce 
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one. Establishing and adhering to principles developed through an 
intentional process is one of the more impactful activities an architect 
can undertake.

Architecture versus Design

No part of the IEEE definition better illuminates the difference between 
architecture and design than its assertion that principles govern design.

Any reasonably complex system contains hundreds or thousands of 
designs. These are typically arranged hierarchically: a high-level design for 
the system, somewhat more detailed designs for subsystems, and so on. 
Services, libraries, interfaces, classes, schemas—each of these requires 
a design.

These designs relate to each other because they describe system ele-
ments that must work together. When we consider the hierarchy of a 
system, we often approach design in a top-down manner for this reason. 
First, we’ll create subsystems, defining the boundaries and their basic 
behaviors. Then, within each subsystem, we’ll divide it further.

Each of those items (services, etc.) requires its own design, but they are 
not created in a vacuum. They must fit within the larger design of the sub-
system. They must cooperate with their peers to realize the subsystem. 
Finally, they must articulate their own interior structure.

Of course, these designs don’t all pop into existence, fully formed, at the 
same moment in time. We work in teams, so designs proceed in parallel. 
We expand, update, and revise so new designs are created, and existing 
designs are revised, over time. Unless we’ve mothballed a system, design 
is an ongoing process.

Architecture manages those designs over time. To do that, architects must 
think about more than just the designs. They must establish governing 
principles such that those myriad designs will come together into a coher-
ent whole, both at each point in time and over the course of time.

This is not to say that architects shouldn’t do design. Establishing prin-
ciples for a project does no good if those principles can’t be realized in the 
designs, and the only way this can be known is if we put them into prac-
tice. But an architect can’t spend all their time on design because then 
they won’t be practicing architecture.
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And Evolution

The systems we build aren’t static. Release cadences vary, but any suc-
cessful system must evolve to stay relevant. This may occur through the 
accumulation of small changes, less-frequent major changes, or some 
combination of the two. But it must happen.

And so also everything we’ve described so far—the organization 
of a system, its components and their relationships, its principles and 
designs—must also evolve. How does that happen?

Ideally, that evolution will be governed with intention, by a set of 
carefully considered, fit-for-purpose principles. We can understand 
architectural principles as working in two ways: governing design and 
governing the evolution of design. One set of principles; two methods 
of operation.

For example, we might hold a principle that services should be 
loosely coupled via well-defined interfaces (a commonly adopted prin-
ciple for anyone designing cloud software). This is entirely reasonable, 
and quite actionable when designing those services.

However, it tells us little about the evolution of those services. As 
we add functionality and even new services, we can maintain this prop-
erty, and that acts as a sort of basic constraint on their evolution. But 
it doesn’t address critical questions such as how to modify an existing 
interface, when to add functionality to existing services, or when to cre-
ate a new service.

Adding new functionality to an existing system is one of the easiest 
forms of system evolution, and yet it can still go wrong. For example, 
suppose that two teams are both expanding their services with new 
functions. One team might choose to add a new service, favoring a 
larger set of smaller services. The other team might add new functions 
to an existing service.

When scenarios like this occur, the evolution of the system is 
proceeding in such a way as to undermine its fundamental organi-
zation. The problem here isn’t that one approach was right and the 
other wrong. In the abstract, either approach could be an appropriate 
response to the need to expand the system’s functionality. The damage 
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arises from the differing responses, which make the system unnecessar-
ily more complex. The principles governing the evolution of a system 
should head this off by articulating which approach will be used.

Adding new functionality is perhaps the easiest version of the evo-
lutionary problem. A much harder version occurs when the principles 
themselves need to change. For example, perhaps an earlier principle 
focused on speed of delivery, so it favored designs that added code to a 
single, monolithic service. Later, the team might have adopted a prin-
ciple of developing smaller, more loosely coupled services that can be 
independently updated and deployed.

Often this problem arises when teams shift from unstated design 
principles focused on minimizing change and quick delivery to inten-
tional principles concerned with dependability, maintainability, and 
quality. When this happens, it’s not enough to apply the new principles 
to new and updated designs. Properties such as security, scalability, 
and cost tend to be constrained by their weakest link—that is, the com-
ponents that don’t address these concerns. At the limit, to realize these 
kinds of principles requires every existing design to be reworked.

This is one of the hardest problems to solve in software develop-
ment: how to evolve a system from one set of principles to another. At 
the same time, it’s also one of the most common problems because the 
principles we care about when we’re getting the first version or two 
out the door are often very different from what we care about once we 
have a successful, proven product. Our priorities quite naturally shift 
from shipping quickly to creating a quality, sustainable product.

One response to this challenge is a grand “re-architecture” project 
in which every element of the system is rebuilt to align with these new 
priorities. But this approach is not evolutionary—it’s revolutionary. It’s 
also rarely successful because it requires development teams to make a 
sustained investment in the old and the new at the same time. Add in 
the overhead of running both efforts, and you’ve easily tripled the cost 
of ongoing development. Few teams can sustain this kind of investment.

The good news is that an effective software architecture practice 
can address even this most challenging scenario. An effective software 
architecture team can lay out an evolutionary path for change. The 
key is to understand evolution not as something foisted on a system 
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under duress, but rather as the natural state of the system. An effective  
architectural process makes change intrinsic, predictable, and control-
lable. Ultimately, the ability to govern the evolution of a system is the 
essence of architecture’s role.

Summary

Software systems consist of components and their relationships. A sys-
tem’s architecture is the organization of its components and relation-
ships, along with the principles that govern their design and evolution. 
An architecture describes a system in both its current and future states.

When a system’s organization is not governed, decisions tend to 
be driven by external factors. Often these involve respecting report-
ing structures, minimizing the scope of change, and shipping quickly. 
These can be important factors, but they can work against creating a 
system with a clear fundamental organization.

We can better manage a system’s fundamental organization by 
applying principles to its design and evolution. These architectural 
principles don’t need to replace other factors—shipping quicky may 
still be important—but they need to be part of the conversation.  
Software architecture, like any engineering discipline, involves trade-
offs between competing goals.

Evolution is intrinsic to software architecture. Teams that use 
architectural principles to drive change over time—including adopting 
new principles when appropriate—can evolve their systems to deliver 
new capabilities and improve the security, dependability, maintainabil-
ity, and other aspects of their system.

Ultimately, architecture’s role in software development is to take a 
holistic and intentional view of the system. It begins by identifying the 
fundamental organization of a system, describing its components and 
relationships. It sets principles that govern design to realize that funda-
mental organization. Most of all, it’s about establishing the principles 
via which those designs, components, and relationships will change 
over time.
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humility, 172
hybrid team model, 161–162, 165–166

I
IEEE, definition of architecture, 2, 13
implementation, 17–18, 20, 21, 38, 59, 100,167, 

193, 196. See also change/s
documenting, 168–169
MVC (model-view-controller) architecture, 25
standards, 32–33

important work, 71
incremental

delivery, 50–52
design, 85–86

information, 133. See also names



I n d e x• 216 •

architecture, 142–143
categories, 143–144
discoverability, 147
labels, 146
taxonomy, 144–145
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