
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780138249328
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780138249328
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780138249328

This isn’t just another book about architecture. I’d have titled it “How to be
a software architect.” Goldman guides you on all aspects of the role, from
making decisions that will impact a product for years to come to picking
good names, taking aim at conventional wisdom along the way.

Daniel Jackson
Professor of Computer Science, MIT

Architects often struggle to have the intended impact within their organiza-
tions, despite having the necessary domain expertise and generating good
ideas. Oliver’s book offers key insights and pragmatic advice for individual
architects and architecture teams—helping them to deliver successful
outcomes in real world scenarios.

Dan Foygel
Senior Principal Architect, Adobe

Effective Software Architecture hits home with the most meaningful aspects
of delivering software at scale. The considerations, concepts, and approaches
described apply to everyone I’ve worked with, not just architecture teams.
Oliver offers insights that are well written and immediately useful in both
theory and practice.

Noah Edelstein
VP of Product Management, Smartsheet

The most frustrating projects in my career have been updating systems
where the initial architecture grew without deliberation or documentation.
Oliver Goldman’s Effective Software Architecture dives into why thinking
clearly about software architecture is so important and offers tools to do so.
I wish everybody thought so deeply about architecture!

Andrew Certain
Distinguished Engineer, Amazon Web Services

This page intentionally left blank

Effective Software
Architecture

This page intentionally left blank

Effective Software
Architecture

Building Better
Software Faster

Oliver Goldman

Cover Credit: ArtHead/Shutterstock

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
the publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportuni-
ties (which may include electronic versions; custom cover designs; and content particular
to your business, training goals, marketing focus, or branding interests), please contact
our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2024934795

Copyright © 2024 Pearson Education, Inc.

Hoboken, NJ

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions Depart-
ment, please visit www.pearsoned.com/permissions/.

Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

ISBN-13: 978-0-13-824932-8
ISBN-10: 0-13-824932-6

$PrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/
https://www.pearson.com/report-bias.html

To Gloria, for her love and partnership

This page intentionally left blank

• ix •

Contents

Acknowledgments xiii
About the Author xv
Introduction xvi

Chapter 1: Software Architecture 1
Fundamental Organization 2
Of a System 4
Embodied in Its Components 5
Their Relationships to Each Other 7
Their Relationships to the Environment 9
Principles Governing Its Design 11
And Evolution 14
Summary 16

Chapter 2: Context 17
Concepts 17
Dependability 19
Architecturally Significant Requirements 21
Product Families 23

One Product, Multiple Platforms 24
Product Lines 25
Product Suites 27
Cross-Platform Platforms 28

Building Platforms 30
Standards 32
Summary 34

C o n t e n t s• x •

Chapter 3: Change 35
Stages of Change 36
Types of Change 37
Product-Driven Change 38
Technology-Driven Change 41
Simplicity 43
Investment Mindset 46
Incremental Delivery 50
Architectural Evolution 52
Summary 55

Chapter 4: Process 57
Document the System 58
Work Toward a Vision 61
Write Change Proposals 62
Maintain a Backlog 64
Consider Alternatives 66
Not Doing Things 70
Urgent versus Important 70
Redocument the System 71
Summary 72

Chapter 5: Design 75
How Architecture Accelerates Design 76
How Design Forces Architectural Evolution 79
Decomposition 81
Composition 82
Composition and Platforms 84
Incrementalism 85
Parallelism 86
Organizational Structure 87
Work in the Open 88
Giving Up 91
Done 92
Summary 93

C o n t e n t s • xi •

Chapter 6: Decisions 95
Will More Information Help? 96
What’s Happening in the Meantime? 98
How Many Decisions Are in Play? 99
What’s the Cost of Not Doing It? 100
Can I Live with This Change? 102
What Is the Cost of Getting This Wrong? 104
How Much More Certain Can I Be? 105
Is This My Decision to Make? 106
Am I Aligned? 108
Can I Document It? 109
Summary 110

Chapter 7: Practices 113
Backlog 114
Catalogs 118
Templates 119
Reviews 122
Status 125
Velocity 127
Thinking 130
Summary 132

Chapter 8: Communication 133
Mental Models 134
Writing 136
Talking 139
Information Architecture 142
Naming Things 147
Dictionaries 150
Listening 152
Summary 154

C o n t e n t s• xii •

Chapter 9: The Architecture Team 157
Specialization 158
Structure 160
Leadership 165
Responsibility 166
Talent 169
Diversity 170
Culture 171
Gathering 173
Seminars and Summits 174
Summary 175

Chapter 10: The Product Team 177
Working with Development Methodologies 178
Working with Product Management 180

Helping Out 184
Other Outcomes 186
Setting Boundaries 187

Working with User Experience 188
Working with Program Management 190
Working with Engineering 192

Following Through 195
Working with Testing 197
Working with Operations 200
Summary 203

Conclusion 205
References 211
Index 213

• xiii •

Acknowledgments

This book contains the accumulation of knowledge and experience
gained over decades of education and work. Far more people have
influenced and informed those years than I can enumerate here. There
are, however, some key players who should not go unmentioned.

I’ll begin with my parents, Bernadine and Terry, and my siblings—
Elizabeth, Leah, and Matthew. My parents purchased a Commodore
64 when I was nine and it’s easy to trace my career in software back
to its arrival in our family room. My childhood home was also full of
books, thinking, and lots of word play. Somewhere in there I got the
notion that I’d like to see my name on a book one day. Now the Com-
modore 64 has helped me realize that goal, too.

In high school, two excellent English teachers, Jeff Laing and Rick
Thalman, taught me that I can write—and how to do it. I am forever
grateful for their feedback and encouragement. And a big thank you to
Tom Laeser, who gave me free reign in the computer lab.

At college, I was fortunate to have Mendel Rosenblum as my advi-
sor, as well as the instructor for my operating system classes—those
were my favorites. During the summers and for a time after college I
also had the privilege of working for George Zweig. George put a lot of
trust in a much younger, more impetuous version of me. To this day, I
look back fondly at those early experiences.

I spent the bulk of my career at Adobe, with so many amazing col-
leagues that it’s unfair to mention just a few and impossible to list them
all. Nonetheless, I feel obliged to call out Winston Hendrickson and
Abhay Parasnis as the two managers who gave me the biggest oppor-
tunities; I hope I have lived up to their expectations. Boris Prüßmann,
Dan Foygel, Leonard Rosenthol, Roey Horns, and Stan Switzer were
inspiring collaborators on all manner of projects, including the devel-
opment and refinement of many of the ideas in this text.

• xiv •

Brett Adam, Dan Foygel, Kevin Stewart, and Roey Horns all
reviewed early drafts of this book and provided valuable feedback.
To Manjula Anaskar, Haze Humbert, Menka Mehta, Mary Roth, Jay-
aprakash P., and others behind the scenes at Pearson: Thank you for
taking a chance with a new author and your guidance along the way.
You have helped me achieve one of my lifelong goals and I am deeply
grateful.

Most of all, I want to thank my wife, Gloria, and our four boys.
This book has been written from the comfort of the home we’ve made
together and I wouldn’t have it any other way.

A c k n o w l e d g m e n t s

• xv •

About the Author

Oliver Goldman leads the AEC software architecture practice at
Autodesk. He has thirty years of industry experience delivering innova-
tive products in distributed real-time interaction, scientific computing,
financial systems, mobile application development, and cloud architec-
ture at Adobe and other employers. He holds two degrees in computer
science from Stanford University, is an inventor on over 50 US software
patents, and has previously contributed to Dr. Dobb’s Journal.

• xvi •

Introduction

When I graduated from college with a degree in computer science, it’s
fair to say I had a layperson’s understanding of the science and theory
of creating software. I had studied databases, algorithms, compilers,
graphics, CPU architecture, operating systems, concurrency, and more.
And I had, to some extent, a framework that related these technologies
to each other.

Because I was writing software outside of classes—mostly for sum-
mer jobs—I also knew that translating academic knowledge into build-
ing a product was a distinct challenge. More accurately, it presented
challenges, plural. Selecting and implementing the right algorithm
was generally the easy part. Working with a large code base, creating
a functional user experience, testing for quality and performance, and
coordinating with a whole team operating in parallel on the same prod-
uct—these were hard things to do.

Upon graduation, I worked at a series of jobs developing soft-
ware products. Most of them did not result in successful products, but
that didn’t stop me from learning from those experiences. If the cli-
ches about learning from failure are correct, I learned a lot during that
stretch of time.

Over the course of several different projects, I noticed that I often
had a better view of the product as a system—that is, of the compo-
nents within it and how they relate—than most of my peers. Although
I didn’t appreciate it at the time, this ability to see and reason about the
“big picture” is a relatively rare but quite useful skill set.

To comprehensively address all the components of a software sys-
tem and how they relate is to practice architecture. Obviously, the term
architecture is not unique to software—indeed, it’s borrowed from the
realm of buildings, and can be applied to products of all types. Houses
have an architecture, and so do cars, TVs, and rockets. Had I grown up
to be a rocket scientist, I expect I’d have found myself more interested
in how all the different parts of a rocket fit together than the design of

I n t r o d u C t I o n • xvii •

a specific valve or nozzle. But we’ll never know for sure, given that I
ended up in the software field.

Over my decades in the industry, the complexity of the software we
produce has grown immensely. When I started, a viable software prod-
uct—that is, something that could be sold for a profit—fit on a floppy
disk, ran on one machine at a time, and didn’t connect to the Internet.
Today, a software product running “in the cloud” might easily consist
of hundreds of coordinating programs running at multiple, geographi-
cally distributed sites, updated multiple times a day, and expected
to operate forever without interruption (an expectation of which we
admittedly sometimes fall short). The nature of a software product has
evolved radically in a short time.

This evolution has made software architecture both more difficult
and more critical than ever. More difficult because there are orders of
magnitude more components and relationships to keep track of. More
critical because, unless these relationships are managed effectively, the
complexity of a system will inevitably become a limiting factor on its
dependability and the velocity of further development. For most prod-
ucts, this is the beginning of the end. And I’ve seen it happen.

Software architecture isn’t just about managing complexity, but if
I had to pick the most valuable outcome of architecture as a discipline,
that would be it. Complexity undermines everything that software
should do for us. It creates unpredictable behavior, and thus under-
mines user trust. It leads to defects, harming dependability. It propa-
gates failures, turning small errors into large outages. And it hampers
understanding, eventually defeating any attempt to return to a simpler
state or structure. Complexity is software’s enemy, and a disciplined
architecture practice its best defense.

Later in my career, I had the privilege and responsibility of leading
architecture teams for a couple of large, complex software products.
Neither product was entirely new; both had been around for more than
a decade. I began by doing the sorts of things that are part of any archi-
tect’s job description: understanding the system’s current architecture,
assessing its suitability for the current and anticipated requirements,
and proposing and evaluating changes. I’ll have more to say about how
to do these things later in the book.

I n t r o d u C t I o n• xviii •

Although those activities are clearly necessary, equating them
with software architecture is like saying I knew how to write software
because I’d taken some computer science classes. It’s a great start, but
there’s a whole lot more to making software architecture an integral
and successful part of software development. And that’s what this book
is about: how to practice architecture in a software development orga-
nization.

Focus
This is not a book of software architectures. There are no explanations
of client–server, domain-driven design, sense–compute–control, and
other architectural styles. I do not discuss how to select a database tech-
nology, regionalize your deployments, or design for scale. Those are all
important topics. There are many books, blogs, and other resources
about them; there are many architects well versed in these topics.

But just as knowing how to implement a merge sort algorithm falls
short of what’s required to write an application, simple familiarity with
a given architecture is woefully inadequate to create a system that uses
it. And while adopting that merge sort might be the scope of a task that
falls to a single engineer, system architecture inevitably involves a larger
cast of characters.

This book aims to describe how you can take your architectural
skills and knowledge and apply them to the much larger, much messier
process of developing a product. Without focusing on a specific style, it
defines software architecture, placing it and defining its role among the
other specializations of a product development team. It identifies the
many touchpoints that architecture has with the concepts, processes,
standards, and so on that surround it.

We then dive deeply into the topic of change. Identifying, manag-
ing, and designing changes to a system are core to architecture practice.
Design sometimes seems like a black box, with conversations going
in one side and a complete design popping out the other. In reality,
the whole process of change is ongoing and consists of discrete steps.

I n t r o d u c t I o n • xix •

Everything we can do to make those steps apparent, to make them vis-
ible, and to steward them along this path will improve the process.

Engineering is about trade-offs, and the process of developing
and evolving a system through change involves an endless litany of
design decisions. Each decision opens some pathways and closes oth-
ers—or perhaps it reverses an earlier decision when we discover a path
has come to a dead end. How these decisions are made is itself a key
skill. The more good decisions a project team can make, the less time is
spent backing up. And the more quickly good decisions can be made,
the more quickly the project can move ahead.

On projects of any significant size, logistics and communication
also become critical considerations. Which decisions have been made,
and which ones are pending? What’s the vocabulary we use to describe
our system? Why did we select the architecture that we’re using? All
these become concerns of tools, process, and communication.

Finally, we consider the architecture team in an organizational
context, including the definition of software architect as a discrete
role. Options for structuring an architecture team are considered, as
well as how architects should engage with other disciplines within the
organization. This section also considers how to identify, nurture, and
develop architectural talent.

Motivation
Software grows ever more complex. We’ve grown accustomed to prod-
ucts that put the information and tools we want to use at our fingertips
across multiple devices, anywhere on the globe, while supporting bil-
lions of users. The challenges involved in creating and operating these
systems are far beyond the simple, stand-alone software products of
just a few decades ago.

Software architecture plays a unique and critical role in this work.
While only one of many disciplines that work together to conceive,
realize, and run these massive systems, it uniquely demands an abil-
ity to see the “big picture,” to understand how all the elements of a

I n t r o d u C t I o n• xx •

system come together, and to evolve that structure over time. Over the
last two decades or so, architects have made great strides in developing
technologies and techniques to meet these challenges. The better an
organization is at doing software architecture, the better it will be at
delivering quality software on time.

Even so, most product development organizations are not as good
at doing software architecture as they could be. This observation crys-
tallized for me one day when I took on a new role running a team of
experienced architects on a project that was new to me. At the indi-
vidual level, these architects were all adept at handling the challenges
of designing software. However, they weren’t packaging their skills to
benefit the larger effort. They were underinvested in documentation,
process, and communication.

As a result, that architecture team was underperforming. They
struggled to prioritize their work, and sometimes engaged with the
wrong problems. Without a strong decision-making process, they
struggled to make decisions—and to keep them made. They were
inconsistent in documenting their work, which sometimes led to work
being ignored or redone. The project was complex and important; it
warranted a significant architectural investment. But the team, despite
having, collectively, more than a hundred years of architectural experi-
ence, was letting the organization down.

When I spoke with the members of my new team, I realized that
they could see the symptoms—they knew they were struggling—but
they could not identify the cause. They knew, individually, how to do
software architecture. But collectively, they did not understand how to
run an effective software architecture practice. They lacked the struc-
ture necessary to knit their individual efforts into a team effort and to
integrate that work into the larger organization.

That experience led directly to this book. If these architects, with
their decades of experience, didn’t understand how to structure an
effective architectural practice, then it was likely that many others
struggled with the same issues. And while the endeavor of running
an architecture team is not entirely ignored in software literature,
it is also not a topic with extensive coverage. For example, Software
Architecture: Foundations, Theory, and Practice (Taylor, Medvidovic,
and Dashofy 2010) devotes 3% of its 675 pages to “People, Roles, and

I n t r o d u c t I o n • xxi •

Teams.” I have a reasonably extensive library of books on software
architecture; this is about par for the course. I decided to fill that gap.

Audience
This book is for software architects, the managers who lead them, and
their counterparts in product management, user experience, program
management, and other related disciplines. Building software is a joint
space in which all these disciplines cooperate. I hope they will all ben-
efit from these explanations of software architecture as a discipline,
its role in software development, and how architects and architecture
teams operate.

Practicing architects will find guidance that they can compare to
their own methods. No matter how numerous their years of experi-
ence, they may yet find something new here. Software architecture is
too young a field to have a broadly known corpus and consistent or
regulated practice.

This book is also for everyone who works with a software archi-
tecture team. As projects expand, roles become differentiated: Prod-
uct managers focus on requirements, testing teams create test plans,
security teams develop threat models. Everyone has their own area of
expertise. And yet all of those activities must be stitched back together
into a cohesive whole—and that requires that everyone see how these
functions fit together. In short, they must understand the system’s
architecture. In this book, everyone involved in software projects will
find an accessible description of the role software architecture plays in
achieving their goals.

Finally, this book is for the executives responsible for managing or
creating an architecture team. In explaining how software architecture
works, it provides the background that executives need to determine if
their current architectural function is fit-for-purpose and what to look
for when hiring new talent.

I n t r o d u C t I o n• xxii •

Success
An effective software architecture function helps product development
organizations produce better software faster. As a discipline, software
architecture tackles some of the hardest parts of producing software:
organizing each system, managing change and complexity, designing
for efficiency and dependability. Software systems with good architec-
ture work well and continue to work well over time. Systems with poor
architecture fail—often in spectacular fashion.

A successful software architecture practice also integrates these
abilities with the broader challenges of product development. Archi-
tects are uniquely positioned to aggregate requirements, and thus
design a cohesive whole instead of a collection of parts. And thanks to
that same overarching view, they are also well positioned to communi-
cate to everyone how those pieces come together.

To do that well requires more than a degree in computer science,
and more than experience with relevant architectural styles. It requires
the ability to create a predictable, repeatable change process; to make
decisions expediently and effectively; and to build a team that can do
these things ever better over time.

Simply put, software architecture has an ever-increasing impact on
our ability to develop and deliver fit-for-purpose software. I hope this
book will help guide you and your organization to a more effective soft-
ware architecture practice.

Register your copy of Effective Software Architecture: Building
Better Software Faster on the InformIT site for convenient access
to updates and/or corrections as they become available. To start the
registration process, go to informit.com/register and log in or cre-
ate an account. Enter the product ISBN (9780138249328) and click
Submit.

http://informit.com/register

• 1 •

Chapter 1

Software
Architecture

An effective software architecture practice helps product develop-
ment organizations produce better software faster. But before we can
discuss an effective practice, we need an understanding of software
architecture. It’s a term that’s used frequently in the software industry,
and often with a certain laxness. Tightening up our definition is impor-
tant, as the practices in this book are closely aligned with a strict and
complete definition of architecture.

Software architecture is often equated with software design, but
the two are actually quite distinct. A design is a specific, point-in-time
arrangement of software components that, collectively, form a software
system. As we develop each release of that system and determine how
that release will function, we are designing that release.

What happens when we create the next iteration of that same sys-
tem? We’ll revise its design, of course: That’s how we introduce the
changes that distinguish one release from the next. But we won’t throw
it out and start over, either; each subsequent design is related to the
one that came before.

An architecture is a template for the iterative creation of a set of
related designs. Architectures are also designed, but they are more
than a design. Thus, an effective software architecture practice doesn’t
just create one good design; it lays the foundation for creating tens,

• 2 • S o f t w a r e a r c h i t e c t u r e

hundreds, and thousands of designs. That’s the potential of software
architecture, and that’s the promise of an effective software architec-
ture practice.

What, then, constitutes an architecture? Standards play an impor-
tant part in architecture, so it feels appropriate to start our discussion
of architecture with a definition from an IEEE standard:

[An architecture is] the fundamental organization of a system, embod-
ied in its components, their relationships to each other and the envi-
ronment, and the principles governing its design and evolution. [1]

Let’s take this definition apart, piece by piece, to understand it
thoroughly.

Fundamental Organization

Imagine that you have a software product consisting of a hundred com-
ponents. The precise nature of these components doesn’t matter; they
could be services, libraries, containers, functions, or plugins. The point
is that your product is composed of these components, and the interac-
tions between these components realize the features and functions of
the product.

Now imagine that for each component, you used a random number
generator to determine its type (service, library, etc.) and its method of
communication. Often these are linked—for example, a code library is
designed to be invoked via a local procedure call, and a service is not.
That’s okay; we’ll pick, randomly, from the methods that reasonably
apply to each component.

You’ve probably already realized that getting these components
to work together will be a challenge. Different components require
different implementation technologies, tooling, and deployment.

• 3 •f u n d a m e n t a l o r g a n i z a t i o n

We’ll have lots of mismatches when we try to wire components up,
and we’ll have to translate between local calls and remote calls and
message-passing and function invocation. In starting with randomness,
we’ve constructed a system that lacks any fundamental organization.
Fortunately, this system exists only in our imagination.

No one works this way, and every real system has some fundamen-
tal organization to it. The fundamental organization of a system often
is, to some extent, imposed by external factors. For example, if you’re
building a mobile application, your elements will primarily be libraries
and they’ll mostly communicate via local procedure calls. In contrast,
if you’re building a cloud-based product, you might organize your sys-
tem around services.

When speaking of the architecture of a system, however, we are
generally referring to a fundamental organization that goes beyond
these external constraints. For example, cloud services necessarily
communicate via the network. Is that communication organized as
request-response or message-passing? Any system that chooses one
method over the other is fundamentally organized around that specific
approach.

Figure 1.1 illustrates the impact of each approach to establish-
ing a system’s fundamental organization. As illustrated in the leftmost
diagram, a randomized system consists of different types of compo-
nents (indicated by different shapes) communicating via different
mechanisms (indicated by different line types), and with arbitrary
relationships. External constraints tend to dictate component types
and communication mechanisms, as indicated by the uniformity of
shapes and line types in the middle diagram. However, external con-
straints rarely impose organization on relationships within the system.
The final diagram, on the right side of Figure 1.1, illustrates a system
with a clear fundamental organization. It uses a consistent compo-
nent type, consistent communication mechanism, and has structured
relationships.

• 4 • S o f t w a r e a r c h i t e c t u r e

Figure 1.1
Levels of fundamental
organization. a random
system (left) has a mix
of component and rela-
tionship types. Most
systems are subject to
at least some external
constraints (middle) on
those types. organized
systems (right) bring
additional consistency
through further con-
straints.

Random External
Constraints

Fundamentally
Organized

Of a System

We’re going to use the word “system” a lot in this book. The term
appears in our definition of architecture and has already been men-
tioned half a dozen times in this chapter. But what is a system?

For our purposes, a system is any set of software components that
work together to provide one or more capabilities. Systems can be
large: They might contain hundreds or thousands of components and
execute on a similar number of computers. But they can also be small:
The embedded software running on a battery-powered wireless sensor
is also a system.

Systems need not work in isolation. If you are developing wireless
sensor software, then, for your purposes, the boundaries of your sys-
tem can be set according to which software runs on the sensor. That
sensor—along with others—will send data to some other system that
processes that data. For you, the processing system may form part of
your environment, not your system; it may, for example, be developed
by a different team.

Systems may also be composed of other systems. In other words, a
new system can be defined as the composition of two or more smaller
systems, perhaps with some additional components added to the mix.
For example, a system of wireless sensors, combined with a system

• 5 •e m b o d i e d i n i t s c o m p o n e n t s

for data processing, can be composed into a single system providing a
monitoring capability.

Thus, when we use the term system regarding architecture, we’re
allowing for the system boundaries to be set as befits the relevant scope
of concern. Every aspect of software architecture covered by this book
applies to any of these systems, regardless of its scale. Granted, some
concerns are more readily addressed at smaller scales, so the extent
and rigor with which you apply architectural practice can be adjusted
according to the needs of the system at hand.

Embodied in Its Components

The fundamental organization of a system isn’t easy to change. The
implied decisions regarding technology, communication, structure,
and so on become embodied in the components that conform to that
organization. After all, it’s the implementation of this organization in
the components that gives the whole system form.

It is all too easy to underestimate how deep these decisions run.
As desktop computing gave way to mobile- and cloud-based solutions,
companies with deep investments in desktop code looked for options
to bring their massive investments in these code bases into these new
forms.

Initially, that challenge might have looked like a porting problem.
Maybe the code needed to run on a new CPU architecture or adapt to
a different operating system. Those changes are not necessarily easy to
make, but they’re not impossible. Furthermore, many of these code
bases had already been through at least one similar port in the past,
such as from Windows to macOS.

But the fundamental organization of most desktop applications
includes much more than just a CPU instruction set or even an operat-
ing system. For example, most of these desktop applications are orga-
nized around the assumption that they have access to a fast, reliable,
local disk. This point is so foundational that many desktop application

• 6 • S o f t w a r e a r c h i t e c t u r e

architects wouldn’t have even called it out. There was no other option
to consider; it could go unstated.

As a result, in many of these applications, the assumption of fast
and reliable access to a disk is embodied not just in every component
but in every line of code in those components. Need to read some
configuration data? User preferences? Save progress? No problem!
A couple of calls to the filesystem API, problem solved.

Moving this data to the cloud breaks this assumption, and every
line of code that depends on it. The data might exist, but retrieving it
might be slow (because it’s over the network) and unreliable (because
it’s over the network). Or it might be impossible right now (because the
network is down), although later it will be possible again.

Figure 1.2 illustrates how these assumptions become embodied in
a system’s components. On the left, components in a desktop applica-
tion connect directly and independently to a file system; they assume
and depend on fast and immediate access to their data.

Figure 1.2
the fundamental orga-
nization of a system is
embodied in its com-
ponents. on the left,
the organization of the
system around a file
system is embodied in
every component. on
the right, that’s been
shifted to a cache that
mediates access to
data.

File System Cache

File System

Cloud

Components can be written to deal with this uncertainty, but they
must embody a different fundamental organization. They must be
aware that data has a source that may be slow to access or even inac-
cessible. As a result, they tend to be organized around a local cache
instead, and a good deal of time and attention go into managing how
data moves between the cache and storage.

• 7 •t h e i r r e l a t i o n s h i p s t o e a c h o t h e r

On the right side of Figure 1.2, an alternative organization binds
components to a cache that, in turn, mediates between local and cloud
storage. In this architecture, components also embody the assumption
that their data may or may not be in the cache. When a cache miss
occurs, accessing their data will be either slow (it’s retrieved over the
network) or impossible (if the network is down).

Organizing around a filesystem abstraction doesn’t really help
resolve this problem. It’s not too hard to build a filesystem abstraction
that can bridge the differences between different desktop operating
systems, or even between mobile and desktop operating systems. But
it’s the wrong abstraction for data in the cloud because it continues to
assume fast, local access. These foundational assumptions can be just
as easily embodied in interfaces and abstractions as code.

To be clear, how an architecture’s foundational organization is
embodied in its components is about much more than storage and file
systems. This is one example of how an architecture lays down assump-
tions, and those assumptions can become wired into each line of code
in each component. We’ll return to this point more than once, as it’s a
key aspect of what makes architecture valuable—and difficult.

Their Relationships to Each Other

As programmers, we tend to place an emphasis on components over
connections. The components feel material—as much as anything in
software ever does—because they consist of the code we write. Com-
ponents can be compiled, packaged, distributed, and delivered. They
feel almost tangible.

But components aren’t interesting on their own. Software comes
to life when those components are connected to each other in mean-
ingful ways. How and which connections are formed should therefore
be intentional, not happenstance.

Some well-known architectures place relationships front and
center. The Unix shell architecture, for example, consists of two
primitives: programs and streams. Streams are directional; they have

• 8 • S o f t w a r e a r c h i t e c t u r e

an input side and an output side. Programs read zero or more inputs
and write zero or more outputs. The shell’s job is to link outputs and
inputs, from one program to the next, forming pipelines through which
data flows.

The Unix architecture doesn’t have much to say about how these
programs operate. They can be written in different languages, handle
binary data or textual data, and so on. Most of the programs are rela-
tively small, focused on a single job. (The emphasis on small, narrow
programs is a Unix architectural principle—more on principles in a
moment.)

The relationships between the programs get more attention. By
default, every program has one input stream (stdin) and two output
streams. The output streams are divided into the “standard” output
(stdout) and a special stream for errors (stderr). It’s possible but some-
what tedious to deal with more streams, whether for input or output.

The beauty of this approach is that it’s simple yet powerful. Pro-
grams written at different times by different authors can be readily
combined by the user to achieve new and unexpected outcomes. And
it’s possible not because of constraints on the programs, but rather
because of their relationships with each other.

This result, in which components are combined post-development
to achieve a new result, is an example of network effects. Network
effects are exciting because they produce a combinatorial explosion of
value for linear inputs. And while this book isn’t really about platforms
and network effects, there is a deep connection between platforms,
network effects, and architecture.

However, the combinatorial magic of connections can also work
against an architecture. In the Unix model, programs can be com-
bined—but they do not intrinsically depend on each other. When a sys-
tem contains many interconnected components that depend on each
other, these relationships become a hindrance, not a help.

When relationships are not governed, the dependency count tends
to grow. And while these dependencies may be introduced one at a
time, the complexity of the resulting system can grow much more
quickly. It can quickly grow beyond anyone’s ability to comprehend,
let alone manage.

• 9 •t h e i r r e l a t i o n s h i p s t o t h e e n v i r o n m e n t

If you have ever worked on a system that had components that
couldn’t be touched for fear of breaking some other component, then
you’ve worked on a system where the relationships between compo-
nents have become too entangled. These scenarios demonstrate how
managing relationships is just as fundamental as managing the compo-
nents themselves.

Their Relationships to the
Environment

Systems never operate in a vacuum. In some cases, they may be the
only software running on the hardware at hand, in which case that
hardware is their primary environmental concern. However, most of
the time, systems run on top of or as part of some other system.

For example, consider the relationship between a program (a sys-
tem) and the operating system on which it runs (also a system). Operat-
ing systems impose a fundamental organization on the programs they
host. This organization is inescapable: The programs are started by the
operating system and, to a lesser or greater extent, the operating sys-
tem monitors and controls the program during execution and through
termination. Without some basic agreement between the two, these
programs would never run.

Operating systems vary immensely in regard to how much of the
fundamental organization of a program they define. In the Unix model,
for example, the imposed organization is quite limited. Programs are
started by invoking a function with a well-known name (“main”) and
set of arguments, so those elements must exist. To be sure, the typical
structure of Unix programs encompasses many conventions and APIs.
But very little of that is truly required. As a result, Unix successfully
and easily supports writing programs of many types, languages, and
structures.

The iOS platform, by comparison, is much more opinionated. iOS
applications do not have a single entry point but rather a whole set

• 10 • S o f t w a r e a r c h i t e c t u r e

of functions they are expected to respond to. Much of this has to do
with the life cycle of these applications. In the Unix model, programs
start, run until they’re done with the task at hand, and then exit. On
iOS, applications are started, brought to the foreground, moved to the
background, stopped to preserve resources, restarted due to user inter-
actions or notifications, and so on. It’s much more complicated!

On Unix, you can use the fundamental organization of an iOS
program if you want to. Again, Unix doesn’t impose its organization;
the program designer has significant discretion. But on iOS, your
application largely needs to be fundamentally organized around a
model dictated by iOS. This relationship of the program to the iOS
environment becomes a major driver of the program’s architecture.

Relationships to Multiple Environments

More opinionated environments create tension with code reuse. Building
complex applications is expensive, and many software producers would
like to write a system once and use it in multiple environments. From an
architect’s perspective, the problem of managing the relationship to the
systems’ environment becomes one of managing the relationship to mul-
tiple environments.

This can be difficult to accomplish when environments impose different—
and in the worst case, conflicting—fundamental organizations. There are a
few standard ways in which this issue is tackled:

• Ignore the environment and organize the software in some other way.
As a rule, it’s expensive to develop systems this way because a good
deal of time and effort go into reproducing behaviors that you could get
“for free” from the environment. Furthermore, those reproductions are
never perfect, and differences tend to look like defects to your users.

• Create an abstraction layer that adapts two or more environments to a
single model. This strategy can work well for systems that don’t need
deep integration with capabilities provided by the environment. For
example, it often works well with games. The abstraction layer might be
part of the system, or it might be externalized. These layers are some-
times products themselves.

• Split the system into two subsystems: an “environment-specific” core
that is written separately for each target, and an “environment-agnostic”
edge that is shared across each. While this may sound superficially

• 11 •P r i n c i p l e s G o v e r n i n g i t s D e s i g n

like the abstraction layer approach, it is a discrete strategy because
the environment capabilities are not abstracted. In this case, the
environment-specific layer becomes as deep as necessary (but, ideally,
no more than that) to connect with the environment-agnostic logic.

As with engineering in general, there’s no universal correct answer to the
challenge of managing these environmental relationships.

Principles Governing Its Design

Until this point, the IEEE definition of architecture has focused on
describing a system’s current state: its fundamental organization, its
components, their relationships. Now, it turns its attention to why it’s
organized this way, has these components, and includes these relation-
ships.

Design is a decision-making activity in which each choice deter-
mines some aspect of form and function. Principles are rules or beliefs
that guide decisions. Thus, architectural principles are the rules and
beliefs that guide decisions about a system, helping determine its fun-
damental organization.

Good architectural principles assert what’s important to the
system—perhaps reliability, security, scalability, and so on—and guide
design toward those qualities. For example, a principle might assert
that a notification delivery system should favor speed over reliability.
In turn, that can support a decision to use a faster but less-reliable
message-passing technology.

Principles can also accelerate decision making by designating
a preferred approach out of many available options. For example, a
principle might state that horizontal scaling is preferred over vertical
scaling. We may be tempted to think of software engineering as driven
purely by facts and analysis—that is, a system either does or does not
meet its requirements—but often many designs may meet the require-
ments. Thus, design also involves judgment calls in which we choose
among a set of acceptable alternatives.

• 12 • S o f t w a r e a r c h i t e c t u r e

Importantly, principles govern not just what we can do, but also
what we cannot do. For example, consider a system composed of
a set of services. A reasonable principle for the design of this system
might hold that each service should be individually deployable without
downtime. On the one hand, this principle frees architects for indi-
vidual services, allowing them to determine when and how they will
deploy updates. On the other hand, it constrains them: Their deploy-
ment strategy must not require that other services are updated at the
same time, or that those services are temporarily disabled during the
update. Thus, this principle simultaneously opens up some options for
consideration while closing off others.

Without constraints, teams may spend too much time exploring
a potential design space, which tends to slow down decision making
while producing only marginally better outcomes. It’s a classic case of
diminishing returns: Each new option takes significant time to explore,
yet doesn’t deliver meaningful benefits over options already consid-
ered. A constraint that limits this exploration will save substantial
time and effort while producing just as good a result. Of course, for
this approach to work, the constrained designed space must encom-
pass suitable outcomes—so these principles do need to be carefully
considered.

Too much freedom in choice also tends to result in a lack of
alignment, thus undermining the system’s fundamental organization.
Schematically, suppose that three or four subsystems need to choose
between approach A and approach B. If both approaches are roughly
equivalent and no further guidance is available, the system is likely
to end up with a mix of the two approaches. Because that outcome
increases overall system complexity with a corresponding benefit, it’s
a net-negative and should be avoided. A principle that guides all of
these decisions toward the same option speeds decision making and
constrains the outcome, driving simplicity and alignment.

When we’re not intentional about setting our principles, they tend
to be set for us. And that means that we typically end up with implied
principles such as “working within current organization boundaries,”
“minimizing scope,” and “fastest time to market.” None of these prin-
ciples speaks to developing a better product, and they won’t produce

• 13 •P r i n c i p l e s G o v e r n i n g i t s D e s i g n

one. Establishing and adhering to principles developed through an
intentional process is one of the more impactful activities an architect
can undertake.

Architecture versus Design

No part of the IEEE definition better illuminates the difference between
architecture and design than its assertion that principles govern design.

Any reasonably complex system contains hundreds or thousands of
designs. These are typically arranged hierarchically: a high-level design for
the system, somewhat more detailed designs for subsystems, and so on.
Services, libraries, interfaces, classes, schemas—each of these requires
a design.

These designs relate to each other because they describe system ele-
ments that must work together. When we consider the hierarchy of a
system, we often approach design in a top-down manner for this reason.
First, we’ll create subsystems, defining the boundaries and their basic
behaviors. Then, within each subsystem, we’ll divide it further.

Each of those items (services, etc.) requires its own design, but they are
not created in a vacuum. They must fit within the larger design of the sub-
system. They must cooperate with their peers to realize the subsystem.
Finally, they must articulate their own interior structure.

Of course, these designs don’t all pop into existence, fully formed, at the
same moment in time. We work in teams, so designs proceed in parallel.
We expand, update, and revise so new designs are created, and existing
designs are revised, over time. Unless we’ve mothballed a system, design
is an ongoing process.

Architecture manages those designs over time. To do that, architects must
think about more than just the designs. They must establish governing
principles such that those myriad designs will come together into a coher-
ent whole, both at each point in time and over the course of time.

This is not to say that architects shouldn’t do design. Establishing prin-
ciples for a project does no good if those principles can’t be realized in the
designs, and the only way this can be known is if we put them into prac-
tice. But an architect can’t spend all their time on design because then
they won’t be practicing architecture.

• 14 • S o f t w a r e a r c h i t e c t u r e

And Evolution

The systems we build aren’t static. Release cadences vary, but any suc-
cessful system must evolve to stay relevant. This may occur through the
accumulation of small changes, less-frequent major changes, or some
combination of the two. But it must happen.

And so also everything we’ve described so far—the organization
of a system, its components and their relationships, its principles and
designs—must also evolve. How does that happen?

Ideally, that evolution will be governed with intention, by a set of
carefully considered, fit-for-purpose principles. We can understand
architectural principles as working in two ways: governing design and
governing the evolution of design. One set of principles; two methods
of operation.

For example, we might hold a principle that services should be
loosely coupled via well-defined interfaces (a commonly adopted prin-
ciple for anyone designing cloud software). This is entirely reasonable,
and quite actionable when designing those services.

However, it tells us little about the evolution of those services. As
we add functionality and even new services, we can maintain this prop-
erty, and that acts as a sort of basic constraint on their evolution. But
it doesn’t address critical questions such as how to modify an existing
interface, when to add functionality to existing services, or when to cre-
ate a new service.

Adding new functionality to an existing system is one of the easiest
forms of system evolution, and yet it can still go wrong. For example,
suppose that two teams are both expanding their services with new
functions. One team might choose to add a new service, favoring a
larger set of smaller services. The other team might add new functions
to an existing service.

When scenarios like this occur, the evolution of the system is
proceeding in such a way as to undermine its fundamental organi-
zation. The problem here isn’t that one approach was right and the
other wrong. In the abstract, either approach could be an appropriate
response to the need to expand the system’s functionality. The damage

• 15 •a n d e v o l u t i o n

arises from the differing responses, which make the system unnecessar-
ily more complex. The principles governing the evolution of a system
should head this off by articulating which approach will be used.

Adding new functionality is perhaps the easiest version of the evo-
lutionary problem. A much harder version occurs when the principles
themselves need to change. For example, perhaps an earlier principle
focused on speed of delivery, so it favored designs that added code to a
single, monolithic service. Later, the team might have adopted a prin-
ciple of developing smaller, more loosely coupled services that can be
independently updated and deployed.

Often this problem arises when teams shift from unstated design
principles focused on minimizing change and quick delivery to inten-
tional principles concerned with dependability, maintainability, and
quality. When this happens, it’s not enough to apply the new principles
to new and updated designs. Properties such as security, scalability,
and cost tend to be constrained by their weakest link—that is, the com-
ponents that don’t address these concerns. At the limit, to realize these
kinds of principles requires every existing design to be reworked.

This is one of the hardest problems to solve in software develop-
ment: how to evolve a system from one set of principles to another. At
the same time, it’s also one of the most common problems because the
principles we care about when we’re getting the first version or two
out the door are often very different from what we care about once we
have a successful, proven product. Our priorities quite naturally shift
from shipping quickly to creating a quality, sustainable product.

One response to this challenge is a grand “re-architecture” project
in which every element of the system is rebuilt to align with these new
priorities. But this approach is not evolutionary—it’s revolutionary. It’s
also rarely successful because it requires development teams to make a
sustained investment in the old and the new at the same time. Add in
the overhead of running both efforts, and you’ve easily tripled the cost
of ongoing development. Few teams can sustain this kind of investment.

The good news is that an effective software architecture practice
can address even this most challenging scenario. An effective software
architecture team can lay out an evolutionary path for change. The
key is to understand evolution not as something foisted on a system

• 16 • S o f t w a r e a r c h i t e c t u r e

under duress, but rather as the natural state of the system. An effective
architectural process makes change intrinsic, predictable, and control-
lable. Ultimately, the ability to govern the evolution of a system is the
essence of architecture’s role.

Summary

Software systems consist of components and their relationships. A sys-
tem’s architecture is the organization of its components and relation-
ships, along with the principles that govern their design and evolution.
An architecture describes a system in both its current and future states.

When a system’s organization is not governed, decisions tend to
be driven by external factors. Often these involve respecting report-
ing structures, minimizing the scope of change, and shipping quickly.
These can be important factors, but they can work against creating a
system with a clear fundamental organization.

We can better manage a system’s fundamental organization by
applying principles to its design and evolution. These architectural
principles don’t need to replace other factors—shipping quicky may
still be important—but they need to be part of the conversation.
Software architecture, like any engineering discipline, involves trade-
offs between competing goals.

Evolution is intrinsic to software architecture. Teams that use
architectural principles to drive change over time—including adopting
new principles when appropriate—can evolve their systems to deliver
new capabilities and improve the security, dependability, maintainabil-
ity, and other aspects of their system.

Ultimately, architecture’s role in software development is to take a
holistic and intentional view of the system. It begins by identifying the
fundamental organization of a system, describing its components and
relationships. It sets principles that govern design to realize that funda-
mental organization. Most of all, it’s about establishing the principles
via which those designs, components, and relationships will change
over time.

This page intentionally left blank

• 213 •

Index

A
abstraction layer, 10
accountability, versus authority, 49
acronyms, 148
adding items to backlog, 115–116
ADR (architectural decision record), 110
API

concurrent request handling, 77–78, 80
testing, 197

in-app purchase, 26
application. See also platform; product/s

core, 25, 27
cross-platform, 28–30
edges, 25, 27
multi-platform, 28
versus platform, 84

approvers, 126–127
architecture/architectural

assumptions, 5–7
backlog, 64–65, 114–118
change, 35–36. See also change

conceptual, 36
detailed, 36
incremental delivery, 50–52
motivational, 36
product-driven, 38–40
stages of, 36–37
technology-driven, 41–42
tenuous invariants, 44

complexity, 43–45
components, 5–7
concepts, 18–19
constraints, 80
cross-platform, 28–30
decision records, 110
dependable, 20–21
versus design, 1–2, 13
engaging with product management, 184–186
engineering team, working with, 192–195
evolution, 52–55, 79–80
experimentation, 79–80
fundamental organization, 2–3
IEEE definition, 2, 13
information, 142–143

categories, 143–144
taxonomy, 144–145

mental model, 134–136
MVC (model-view-controller), 25
operations, working with, 200–202
platform, 24–25, 30–31. See also platform/s
practice, 113, 205
principles, 11–13
product line, 25–26
product suite, 27–28
program management, working with, 190–192

recovery, 60, 206–207
relationships, 7–9
requirements, 21–23
review, 54–55. See also review
simplicity, 43–46
standards, 2, 32–33

de facto, 32
formal, 32
“in house”, 32
layering, 33–34

system, 4–5
team, 157–158

centralized, 161, 162
culture, 171–173
diversity, 170–171
getting together physically, 173–174
hybrid model, 161–162
leadership, 162, 165–166
responsibilities, 166–169
seminars, 174–175
specialization, 158–160
structure, 160–164
substructure, 164
summit, 175
talent, 169–170
virtual, 161

testing, working with, 197–200
Unix, 7–8
user experience, working with, 188–189
vision, 61–62
working with product management, 180–184

artifacts. See also information
categories, 143–144
labeling, 146
taxonomy, 144–145
updating, 146

assumptions, architecture, 5–7
asynchronous

communication, 137
review, 123, 124

authority, versus accountability, 49
awareness, 193–194

B
backlog, 114, 115

adding items, 115–116
architectural, 64–65
change proposals, 114
issue tracking, 115–116
item description, 115–116
periodic review, 117
rejected items, 116
revisiting, 116
upcoming projects, 117
updating, 116

I n d e x• 214 •

bindings, component, 198–200
blog post, approved proposal, 146
budget, 129
building

blocks, 31
platforms, 30–31

C
calendar, 130–131
capability

product management, 180–181
trajectory, 39

catalogs, 118
centralized architecture team, 161, 162
change/s, 35–36, 92–93, 126. See also decision

making
architectural evolution, 52–55
conceptual, 36, 66
design over time, 36
detailed, 36
failure, 59
incremental delivery, 50–52
investment mindset, 48–49
maintain a backlog, 64–65
management, 57–58
meta-, 64
motivational, 36
name, 150
operationalization, documenting, 168–169
organizational, 207
potential, 51, 182
process, 208
product-driven, 38–40
proposal, 62–64, 66, 92, 97–98, 109–110,114,

180
alternatives, 66–69
approved, 126, 141–142
involving the engineering team, 194–196
organizing, 125–126
pull request, 72
sharing, 123
status, 125–127

rate of, 39–40
review, 122–123, 124–125

approved items, 126
approvers, 126–127
comments, 123–124
common baseline, 123
items under review, 126

short-term approach, 46–48
simplicity and, 43–46
stages of, 36–37
technical debt, 103–104
technology-driven, 41–42
tenuous invariants, 44
trajectory of a capability, 39–40
types of, 37–38

checklist
architecturally significant requirements, 23
template as, 121
work, 119–121

Chief Architect, 176
code/coding, 101

versus architecture, 1–2
documentation, 58
names, 148
requirements for engineers, 196
reuse, 10–11

collaboration tools, 137–138
communication

acknowledgment, 154
asynchronous, 137
collaboration tools, 137–138
feedback, 88, 89–91, 134
good names, 147–148
listening, 152–154
mental model, 135–136
verbal, 139

long-running conversations, 141
topic-driven conversations, 140

working in the open, 89–91
writing, 133–134, 136–139
written, information architecture, 142–147

complexity, 43–45, 59–60, 81–82, 205
component/s, 5–7

bindings, 198–200
catalogs, 118
dependency, 8, 97, 98–99
relationship to each other, 7–9, 83

composition, 82–84
concept/ual, 17–19

change, 37, 66
model, 135
product management, 185
proposal, 66–69

constraints, 3, 12
architectural, 80
design, 77–78

continuous learning, 170
conversations, 139

long-running, 141
topic-driven, 140

Conway’s law, 87–88
core, application, 25, 27
cost/s

of making the wrong decision, 104–105
ongoing, 101
operational, 70

criticism, 91
cross-platform platforms, 28–30
culture, team, 171–173
customer focus, 173

D
data model catalog, 118
de facto standards, 32
debt

financial, 103
technical, 103–104

decision document, 109–110
decision making, 95, 96

alignment with architectural principles,
108–109

“big” decisions, 108–109
compromise, 102–103
cost of getting it wrong, 104–105

I n d e x • 215 •

delegating, 107
dependencies, 99–100
engineering, 192–193
information gathering, 96–98
inputs, 95
keeping the status quo, 100–101
outputs, 95
principles, 11–13
product management, 187–188
responsibility, 106–107
right-versus-wrong framing, 104–105
stakeholders, 106–107
timeliness, 98–99
uncertainty, 105–106

decomposition, 81–82, 86–87. See also
components

delegating, decision making, 107
deliverable/delivery

discrete, 25–26
incremental, 50–52
single, 26

dependability, 19–21, 120
dependency/ies, 8, 97, 98–99

in decision making, 99–100
task, 191–192

deployment, software, 201–202
design, 75–76, 89. See also architecture

architectural evolution, 79–80
versus architecture, 13
composition, 82–85
concepts, 18
constraints, 12, 77–78
Conway’s law, 87–88
decomposition, 81–82
engineering, 76–77
feedback, 88–91
incremental, 85–86
over time, 36
requirements, 40
starting over, 91–92
working in the open, 89–91

developer/development
accountability versus authority, 49
building a platform, 30–31
incremental delivery, 50–52
platform, 84–85
short-term approach, 46–48
talent, 169–170
velocity, 44

dictionaries, 150–152
discrete deliverables, 25–26
diversity, team, 170–171
document/s and documentation, 58–59, 60,

133–134. See also proposal
ADR (architectural decision record), 110
change proposal, 62–64
collaboration tools, 137–138
decision, 109–110
dictionaries, 150–152
implementation, 168–169
information architecture, 142–147
model, 186–187
PDF, 183–184
sharing, 139

status, 120, 125–127
summary, 120
templates, 119–122
updating, 60, 71–72, 146
vision, 61–62, 64
writing, 136–139, 197–198

E
edge, application, 25, 27
engineering

coding requirements, 196
decision making, 192–193
design, 76–77
involving in change proposals, 194–196
software

flexibility, 77–78
skills, 158

team, 192–195
environment, selecting, 29–30
estimates, 128–129, 194
evaluation, proposal, 70
evolution, 47

architectural, 52–55, 79–80
capability, 39–40
system, 14–16
technology, 53–54

experimentation, 79–80
external constraints, 3

F-G
feature, needless re-creation, 59–60. See also

concept/ual
feedback, 88, 89–91, 134
financial debt, 103
flexibility, software engineering, 77–78
formal standards, 32
fundamental organization, 2–3, 14–15

conflicting, 10–11
operating system, 9–10

future proofing, 44–45

H
“in house” standards, 32
HTTP, 33–34
human resources team, 169–170
humility, 172
hybrid team model, 161–162, 165–166

I
IEEE, definition of architecture, 2, 13
implementation, 17–18, 20, 21, 38, 59, 100,167,

193, 196. See also change/s
documenting, 168–169
MVC (model-view-controller) architecture, 25
standards, 32–33

important work, 71
incremental

delivery, 50–52
design, 85–86

information, 133. See also names

I n d e x• 216 •

architecture, 142–143
categories, 143–144
discoverability, 147
labels, 146
taxonomy, 144–145

gathering, 96–98
inputs, 95
intermediate platform, 29–30
investment mindset, 48–49
iOS, 9–10

J-K
just-in-time design, 180

L
labeling, artifact, 146
layering standards, 33–34
leadership, architecture team, 162, 165–166
learning, continuous, 170
licensing, 26
listening, 152–154
local cache, 6–7
logging, 199
long-running conversations, 141
long-term vision, 51–52

M
macros, 31
meetings

review, 124–125
team, 141

mental model, 134–136
mentoring program, 170
meta-changes, 64
methodology, 178–179

-dependent practice, 179–180
-independent practice, 179

mobile computing, 53
model

conceptual, 135, 189
document, 186–187
hybrid team, 161–162
mental, 134–136

multi-platform architecture, product suite, 28
MVC (model-view-controller) architecture, 25

N
names, 147–148

acronyms, 148
changing, 150
code, 148
consistency, 149–150
descriptive, 148
structure, 149
system, 148–149

needless re-creation, 59–60
network effects, 8
nonfunctional requirement, 21
Norman, Don, The Design of Everyday Things,

134–135

O
ongoing costs, 101
open-source projects, 137
operating system, 9–10, 30. See also system
operational cost, 70
operationalization, documenting,

168–169
operations team, 200–202
organizational

change, 207
structure, 87–88

organized system, 3
organizing

artifacts, 143–147
change proposals, 125–126

outputs, 95

P
parallelism, 86–87
PDF, 183–184
platform/s, 24–25

versus application, 84
building, 30–31
and composition, 84–85
cross-, 28–30
development, 84–85
integration, 30
intermediate, 29–30
multi-, 28

practice, 113, 205–206
methodology-dependent, 179–180
methodology-independent, 179

principle/s, 14
aligning with decisions, 108–109
architectural, 11–13
evolving, 15

process/es, 57–58. See also change/s; decision
making; design
architectural recovery, 60
change, 208
change proposal, 62–64
consider alternatives, 66–69
maintain a backlog, 64–65
review, 122–125
updating documentation, 71–72
urgent versus important, 70–71
working toward a vision, 61–62

product/s
backlog, 65
concept, 19
dependability, 19–20
-driven change, 38–40
family, 23
line, 25–26
management, 180

capabilities, 180–181
concepts, 185
requirements, 181–184
reviewing requirements, 186–187
setting boundaries, 187–188

multi-platform, 28
suite, 27–28
team, 177–178

I n d e x • 217 •

program, 9
macros, 31
management, 190–192
Unix, 7–8

projects/project management
long-term vision, 51–52
open-source, 137

proposal/s
blog post, 146
change, 62–64, 92, 97–98, 109–110, 114,180

alternatives, 66–69
approved items, 141–142
involving the engineering team, 194–196
organizing, 125–126
pull request, 72
sharing, 123
status, 125–127

conceptual, 66–69
evaluating, 70

pull request, 72

Q-R
random system, 2–3
recovery, architectural, 60, 206–207
refrigerator, mental model, 134–135
relationships

between components, 7–9, 83
between systems, 9–10

requirements
architecturally significant, 21–23
nonfunctional, 21
product management, 181–184

reviewing, 186–187
setting boundaries, 187–188

standards, 33
trajectory of a capability, 39–40
unstated, 23
user experience, 22

resiliency, 20–21
responsibility assignment matrix, 107
reuse, 10–11, 45, 58, 84
review, 198

asynchronous, 123, 124
backlog, 117
change, 122

approved items, 126
approvers, 126–127
comments, 123–124
common baseline, 123
items under review, 126

cycle, 54–55
meeting, 124–125
participants, 126
requirements, 186

right-versus-wrong framing, 104–105
rigor, 173

S
scheduling work, 129–131
scope of change, 39
seminars, 174–175
services, 14, 24, 29–30
sharing

change proposals, 123
documentation, 137–138, 139

short-term approaches, 46–48
simplicity, 43–46, 82
skills. See specialization
software

architect, 158
architecture, fundamental organization, 2–3
catalog, 118
deployment, 201–202
engineering, flexibility, 77–78
licensing, 26
standards, 32–33

specialization
architecture team, 158–160, 169
software team, 159

stages of change, 36–37
stakeholders

decision making, 106–107
feedback, 89–91

standards, 2, 32–33, 143
and composition, 83–84
de facto, 32
formal, 32
“in house”, 32
layering, 33–34

state, system, 202
status

change proposal, 125–127
document, 120

status quo, maintaining, 100–101
streams, 7–8
structure

architecture team, 160–164
name, 149

substructure, architecture team, 164
subsystem, 10–11, 13
suite. See product, suite
summary, document, 120
system/s, 4–5. See also architecture; design

architecture
assumptions, 5–7
change, 35–36
components, 5–7
versus design, 1–2, 13
fundamental organization, 2–3
IEEE definition, 2, 13
relationships, 7–9
standards, 2
system, 4–5
Unix, 7–8

complexity, 43–45, 59–60, 205
concepts, 17–19
design

versus architecture, 1–2, 13
constraints, 12
principles, 11–13

documentation, 58–59, 60
evolution, 14–16
logging, 199
mental model, 134–136
names, 148–149
operations, 200–202
organized, 3
random, 2–3

I n d e x• 218 •

relationship to multiple environments, 10–11
relationships between, 9–10
simple, 43–46
state, 202
sub, 10–11, 13
testing, 198–199
version, 146

T
tactical approaches, 46–48
talent, architecture team, 169–170
talking, 139–142

conversations, 139
long-running, 141
topic-driven, 140

task dependencies, 191–192
team/s. See also project management

architecture, 157–158
centralized, 161, 162
getting together physically,

173–174
hybrid model, 161–162
leadership, 162, 165–166
specialization, 158–160
structure, 160–164
substructure, 164
talent, 169–170
virtual, 161

choosing an approach, 102–103
culture, 171–173
distributed, 136–137
diversity, 170–171
human resources, 169–170
meetings, 141
operations, 200–202
organizational structure, 87–88
parallelism, 86–87
program management, 190–192
responsibilities, 166–169
seminars, 174–175
summit, 175
testing, 197–200
user experience, 188–189

technical debt, 103–104
technology

-driven change, 41–42
evolution, 53–54

template, 122
change proposal, 119, 125–127
as checklist, 119–120, 121
dictionary, 152
sections, 119–121

tenuous invariant, 44
testing, 43–44, 197–200
thinking, 130–131, 160
timeliness, decision making, 98–99
tools, 113–114

calendar, 130–131
collaboration, 137–138
dictionary, 152
issue tracking, 115–116

topic-driven conversations, 140
trajectory of a capability, 39–40

U
uncertainty, 105–106
Unix, 7–8, 9–10
updating

backlog, 116
documentation, 60, 71–72, 146

urgent work, 70–71, 131
user experience

product suite, 27
requirements, 22
working with the architecture team, 188–189

user interface, windows, 19

V
velocity, 44, 168
verbal communication

conversations, 139
long-running, 141
topic-driven, 140

version, system, 146
virtual team, 161, 173–174
vision, 61–62, 64, 206

W-X-Y-Z
windows, 19
work/ing

backlog, 114–118
checklist, 119–121
dependencies, 191–192
estimation process, 128–129
important, 71
incremental, 85–86
in the open, 88–91, 126
scheduling, 129–130
starting over, 91–92
urgent, 70–71, 131

writing, 133–134, 136–139. See also document/s
and documentation

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	About the Author
	Introduction
	Chapter 1: Software Architecture
	Fundamental Organization
	Of a System
	Embodied in Its Components
	Their Relationships to Each Other
	Their Relationships to the Environment
	Principles Governing Its Design
	And Evolution
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

