
RDFRDF

JavaScriptJavaScript

UR
L

Co
nt

ra
ct

ID

N
S
P
R

Digital
Certificates

Mozilla
registry

Preferences Type
libraries

JSlib

XPIDL
definitions

Class
libraries

RDFlib

Co
m

pu
te

r O
pe

ra
tin

g
Sy

st
em

Se
cu

rit
y

XP
CO

M

JVM

Plugins

Components

JNI OJI

Po
rta

bi
lit

y

XPConnect

AppDevMozilla-01 Page 0 Thursday, December 4, 2003 6:22 PM

1

C H A P T E R

RDFRDF

JavaScriptJavaScript

UR
L

TemplatesOverlays

Overlay
database

XBL
definitions

DOM

EventsFrames

GesturesText Keycodes

MouseKeyboard

Widgets

Desktop
themes

GUI
toolkits

Fonts

Default
CSS

W3C
standards

DTDs

Skins

XBL

Screen

1

Fundamental Concepts

AppDevMozilla-01 Page 1 Thursday, December 4, 2003 6:22 PM

2 Fundamental Concepts Chap. 1

This chapter is an overview of Mozilla architecture and concepts, and it con-
tains only a little code. If you are new to Mozilla, this chapter provides orien-
tation and explains what you get for your time and effort. It explains what the
platform is, how Mozilla fits in with XML technologies, and how it supports
rapid application development. If you already appreciate some of the architec-
ture, skip directly to Chapter 2, XUL Layout.

The “Hands On” session in this chapter contains some trivial program-
ming examples. It pokes around inside an existing Mozilla-based application,
writes a traditional “hello, world” program, and begins the NoteTaker project
that runs throughout this book.

The NPA (Not Perfectly Accurate) diagram at the start of this chapter is a
structural diagram of the Mozilla platform. Each rectangular box is a complex
subsystem that represents a chunk of technology. Each chunk is about equal in
size to one or more software standards. These rectangular boxes are embedded
inside the program that makes up the Mozilla platform; they are not particu-
larly separate. The small stacked rectangles represent files that sit in a com-
puter’s file system. The platform reads and writes to these files as necessary.

Without knowing anything much yet, it can be seen from the NPA dia-
gram that there is a fundamental split in the platform. On the right (the

front

)
are the more user-oriented, XML-like technologies like events, CSS (Cascad-
ing Style Sheet) styles, and the DOM (Document Object Model). URLs (Uni-
form Resource Locaters), the basis of the World Wide Web, are a key access
point to these technologies. On the left (the

back

) are the more system-ori-
ented, object-like technologies, such as components. Contract IDs (a Mozilla
concept) are a key access point to these technologies. The two halves of the
platform are united by a programming language, JavaScript, and a data for-
mat, RDF (the Resource Description Framework). JavaScript is very well
suited to the technologies inside the Mozilla Platform.

It is easy to see these two parts of the platform. Open a window on any
Mozilla-based product, for example the Netscape 7.0 Web browser or email cli-
ent, and everything you see in that window will be made from XML. Writing a
small piece of JavaScript code that submits an HTML form to a Web server is
a trivial example of using objects associated with the back of the platform.

The view provided by the NPA diagram does not translate into a tricky or
radical programming system. Programming with the Mozilla Platform is the
same as with any programming environment—you type lines of code into a
file. Unlike the restrictive environment of a Web page, you are free to work
with a very broad range of services.

1.1 U

NDERSTANDING

 M

OZILLA

 P

RODUCT

 N

AMES

The word

Mozilla

 was originally a project name. Proposed by Jamie Zawinski,
an employee of Netscape Communications, in the 1990s,

Mozilla

 was also the
name of the green reptile mascot for that project. It is a contraction of “Mosaic

AppDevMozilla-01 Page 2 Thursday, December 4, 2003 6:22 PM

1.1 Understanding Mozilla Product Names 3

Killer,” coined in the spirit of competitive software projects. The Mosaic
browser was the predecessor of the Netscape 1.0 browser.

Since then, the term

Mozilla

 has because increasingly overused. At one
time it stood for a project, a product, and a platform; and

mozilla.org

 came to
stand for an organization. Now, Mozilla is a generic term for a cluster of tech-
nologies, just as Java and .NET are. Other terms are also used for products
and technologies within that cluster. Mozilla’s home on the Web, still referred
to casually as mozilla.org, can be found at

www.mozilla.org

Mozilla first gained public visibility when the Netscape Communicator
5.0 Web application suite was announced as an Open Source project in 1998.
The open source tradition allows for public scrutiny, public contributions, and
free use. As time passed, Mozilla became a catch-all term for everything
related to that 5.0 project. After more time, Mozilla 1.0 was declared ready in
June 2002. That 1.0 release renamed the 5.0 project to

Mozilla 1.0

. The 5.0
status of that project can still be seen in the user-agent string of the browser
(type

about:mozilla

 into the Location bar to inspect this).
Now, versions 6.0, 6.5, 7.0, and onward refer to the still-proprietary

Netscape-branded products, like Netscape Navigator. Versions 1.0, 1.1, 1.2,
and onward refer to the Mozilla Platform version, as well as to the Web appli-
cations built by mozilla.org, that originate from the Netscape Communicator
Web application suite.

In this book, the terms

Mozilla

 and

Mozilla Platform

 mean the same
thing—the platform. Any Mozilla-based application (e.g., an email client) uses
and depends upon a copy of the Mozilla Platform. The platform itself consists
of an executable program, some libraries, and some support files. If the plat-
form executable is run by itself, without starting any application, then nothing
happens.

The separation between the Mozilla Platform and mozilla.org applica-
tions has become more obvious with time. What was once considered to be a
very large application suite is now considered to be a large platform on which
a set of smaller applications are built.

Until at least version 1.4, these smaller applications still carry their
Netscape names—

Navigator

,

Composer

, and

Messenger

. They are also tightly
integrated with each other. On one hand, this integration presents a unified
face to the user, a face rich in functionality. On the other hand, this integration
is inefficient to maintain because changes to one part can affect the other
parts. For that reason, the browser and email applications have been re-
invented as separate nonintegrated products at about version 1.5. These
replacement applications have the names

Mozilla Browser

(project name:
Firebird) and

Mozilla Mail

(project name: Thunderbird). The integrated suite
continues to be available as well.

This split-up of the suite is not a fundamental change of any kind. Both
integrated and de-integrated browsers share the same platform. Toolkits used

AppDevMozilla-01 Page 3 Thursday, December 4, 2003 6:22 PM

4 Fundamental Concepts Chap. 1

by old and new browsers are also very similar. The application logic for old and
new browsers does differ markedly, however.

Because the new nonintegrated applications are still in flux, and because
they are narrow in focus, this book uses the older, integrated applications as a
reference point and teaching tool. Those integrated applications are well
tested, demonstrate nearly all of the platform technology, are better docu-
mented, and are still up-to-date. They are a useful training ground for grasp-
ing Mozilla technology.

In this book,

Classic Browser

 means the established and integrated
mozilla.org browser that is part of an application suite.

Classic Mozilla

means
the whole application suite.

Navigator

means a Netscape-branded browser
such as 7.0 or 4.79. The Classic Browser may display its content using the
Classic theme (which looks like Netscape 4.x suite of products) or the Modern
theme (which looks like the 5.0 suite of products). The Classic theme is there-
fore one step older than the Classic Browser.

A final product of the Mozilla project is

Gecko

, also called the

Gecko Run-
time Engine

. This is a stripped-down version of the platform that contains only
a core set of display technology. It has not yet emerged as a clearly separate
product, but with increased use of this name, it is likely that Gecko will be rec-
ognized separately.

To summarise all that naming detail, this book is about the Mozilla Plat-
form only. It uses the Classic Browser and other parts of Classic Mozilla to
explain how the platform works, but it is about building applications separate
from those applications. The NoteTaker running example adds a tool to the
Classic Browser because it is too small to be an application of its own. If you
download anything for this book, download the 1.4 release of Classic Mozilla,
which contains the version 1.4 Mozilla Platform.

The remainder of this topic looks at some of the other names associated
with Mozilla technology.

1.1.1 Platform Versions

Fundamental to Mozilla is the Classic Mozilla software release. Many versions
of this combination of platform and Web application suite exist. Classic
Mozilla contains a large subset of all features with which the platform is capa-
ble of dealing. The remaining features are unavailable. The main versions of
Classic Mozilla follow:

Stable or major releases

. These are versions x.0 or x.0.y; they provide
a guarantee that critical features (interfaces) won’t change until the next
major release. Examples: 1.0, 1.01.

Feature or minor releases

. These have versions a.b, where b is greater
than 0. Feature releases provide enhancements and bug fixes to major
releases. Example: 1.4.

AppDevMozilla-01 Page 4 Thursday, December 4, 2003 6:22 PM

1.1 Understanding Mozilla Product Names 5

Alpha, Beta, and Release Candidate releases

. Before version 1.4 is
finished, versions 1.4alpha and 1.4beta are versions of 1.3 that are more
than 1.3, but neither finished nor approved for release as 1.4. The
Release Candidate versions are near-complete beta versions that might
become final releases if they pass last-minute testing.

Talkback releases

. Alternate versions of any release might include
Talkback technology, which captures the browser state when it crashes
and emails the result back to mozilla.org. This is used for mean-time-
between-failures engineering metrics and for debugging purposes.

Nightly and debug releases

. Releases created nightly are compiled
from the very latest changes and are the releases least likely to work.
They are compiled with additional debugging features turned on, which
very technical users can use as analysis tools. Both the platform and
applications contain debugging features.

Custom versions

. Because the source code is freely available, anyone
with a suitable computer can compile the platform. Numerous compile
time options change the set of features included in the final binary files.
By modifying the default set of features, custom platforms run a risk.
The risk is that the majority of forward progress assumes that the
default features are always available. Special custom versions must live
with the fact that they may not keep up with mainstream changes to the
platform and may not run some Mozilla applications.

This book uses final, minor, or major releases of the standard platform.

1.1.2 Example Applications

Some of the better-known Web applications built on the Mozilla platform follow:

Netscape 7.0

. This is the commercial edition of Mozilla and includes fea-
tures to support AOL Time Warner’s business goals in the Web and Inter-
net space. The main technical differences are: support for the AOL
concept of screen name; integration with AOL’s server-side facilities; lack
of popup window suppression; custom cookie handling; and a general
cleanup of the user interface. Netscape 7.0 is based on Mozilla 1.01.
Netscape 6.x is also based on Mozilla; however, it is based on version 0.94
and is highly buggy.

Compuserve 7.0

. AOL also owns this older Web and Internet client-
based service, which still has a large user base. Version 7.0 is a Mozilla
1.01–based tool.

AOL 8.0 for MacOS X

. This is AOL’s flagship Web and Internet client,
with a very large user base and a highly custom interface. With version
8.0, the Macintosh version of AOL has been moved from Internet
Explorer to Mozilla 1.01.

AppDevMozilla-01 Page 5 Thursday, December 4, 2003 6:22 PM

6 Fundamental Concepts Chap. 1

Mozilla Browser

. This mozilla.org Web browser is to be more compact
and streamlined than the Classic Browser.

Two very extensive examples of non-Web applications are given by
OEone and ActiveState.

OEone (

www.oeone.com

) produces products intended to make personal
computers easily useable by novices. Their OEone HomeBase product is a cus-
tom combination of Linux and an enhanced version of the Mozilla platform
called Penzilla. It provides a complete system for interacting with a computer.
Figure 1.1 shows an arrangement of this Mozilla-based desktop.

ActiveState (

www.activestate.com

) produces integrated development
environment (IDE) tools for software developers. Their Komodo product is
based on the Mozilla platform. Figure 1.2 is a screenshot of that product.

In addition to Web and non-Web applications, highly customized applica-
tions are possible. The standard Mozilla Platform provides the same interface
on every desktop, which involves some compromise. There have been a num-
ber of attempts to create browser products that match the exact look and feel
of one specific platform. These are deeply customized offshoots of Mozilla.
Such offshoots use embedding technology not covered in this book:

Fig. 1.1 OEone HomeBase desktop. Used by permission of OEone Corporation
(www.oeone.com).

AppDevMozilla-01 Page 6 Thursday, December 4, 2003 6:22 PM

1.1 Understanding Mozilla Product Names 7

Chimera

. A Macintosh MacOS X browser based on the Cocoa interface,
with traditional Macintosh menus.

Galeon, Nautilus

. Browsing tools integrated closely with the GNU/
Linux GNOME desktop interface. Some of this integration is addressed
in the standard platform with forthcoming support for GTK 2.0.

K-Meleon

. A Microsoft Windows browser that turns Mozilla into an
ActiveX control. Toolbars are very similar to a simple Internet Explorer.

The number of applications based on the Mozilla platform is steadily
growing, with announcements every month or so. The community newscenter

www.mozillazine.org

 is a good place to pick up announcements of new Mozilla
products.

1.1.3 Jargon Buster

Mozilla culture and mozilla.org documentation contains some convoluted
slang. Covering it all is a hopeless task. Refer to

www.mozilla.org/docs/jar-
gon.html

 and to

http://devsupport.mozdev.org/QA/thesaurus/

. A few of the
more visible terms follow:

XP

. Cross platform, meaning portable, as in XPCOM, XPFE, XPInstall,
XPIDL.

FE

. Front end, the graphical display part of Mozilla.

Fig. 1.2 ActiveState’s Komode 2.0 IDE. Used by permission and courtesy of
ActiveState (www.activestate.com).

AppDevMozilla-01 Page 7 Thursday, December 4, 2003 6:22 PM

8 Fundamental Concepts Chap. 1

BE

. Back end, the networking part of Mozilla.

I18n

. Internationalization = I + 18 characters + n. Multilocale support.

L10n

. Localization = L + 10 characters + n. Customizations for a given
locale.

The tree

. The Mozilla source code and compilation system.

Bloat

. The tendency for any program undergoing enhancement to get
bigger.

Landed

. Usually “landed functionality”: adding finished changes to the
tree.

Dogfood

. From “eat your own dog food”: testing where you trial your
own fixes.

Porkjockeys

. Derived from “flying pigs.” Those who seek to redesign
Mozilla radically.

r=ada

. Changes reviewed and accepted by Ada.

sr=ada

. Changes super-reviewed (architecturally reviewed) and
accepted by Ada.

Zarro Boogs

. Zero bugs; no current defect reports.

Finally, there is an endless list of overlapping technical terms for the core
capabilities of Mozilla: Seamonkey, NGLayout, Necko, and more. Very few of
these terms map cleanly to a single, obvious application technology, so they
are generally avoided in this book.

1.2 T

HE

 XML E

NVIRONMENT

XML (the Extensible Markup Language) is a hugely successful standard from
the World Wide Web Consortium (the W3C, at

www.w3.org

). Mozilla has exten-
sive support for XML, so we briefly review what that standard is good for.

The primary goal of XML is to provide a notation for describing and
structuring

content

. Content is just data or information of any kind. The cen-
tral XML standards provide a toolkit of concepts and syntax. That toolkit can
be used to create a set of descriptive terms that apply to one type of content,
like vector graphics. Such a set of terms is called an

application

 of XML. The
most well-known XML application is XHTML, which is the XML version of
plain HTML.

XHTML describes content that contains text, images, and references to
other XHTML documents, commonly known as links. Any particular example
of this content is called an

instance

 or a

document

. Thus, XHTML defines

hypertext

 documents, as opposed to any other kind of document. There are
many other publicly defined XML applications, such as SVG (

vector graphics

content), MathML (

mathematical

content), and RDF (

resource description

con-

AppDevMozilla-01 Page 8 Thursday, December 4, 2003 6:22 PM

1.2 The XML Environment 9

tent). Mozilla’s own XUL specifies

graphical user interface

content. As an XML
example, Listing 1.1 is a trivial SVG document.

Listing 1.1

A document that is an instance of SVG 1.0, an XML application.

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE svg PUBLIC
 "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd"
>
<svg width="500" height="400">
 <rect x="35" y="32" width="300" height="85"/>
 <text x="50" y="67">A Rectangle</text>

</svg>

The first five lines of this example specify the document type; the rest is
the document content. Using an XML application definition, programmers cre-
ate software that can process documents of that application type. Such pro-
cessing can be either quite simple or complex. In the case of Figure 1.1, a
program might take this document and display a rectangle with the words “A
Rectangle” inside it. A Web browser is an example of such a program. Process-
ing of such documents can be very sophisticated. XML documents can be
transformed, transmitted, created, chopped up, and combined, as well as
merely displayed.

The great success of XML rests on the following few simple principles.

1.2.1 Common Underlying Format

All XML documents, regardless of application, have the same underlying for-
mat. This common format makes analysis of all such documents similar. It
saves a great deal of energy that would otherwise be wasted arguing about
syntax. Such arguments typically have little bearing on the actual information
that those formats contain. That saved energy can be put to more important
tasks, and software no longer needs special adaptors to read the special for-
mats of other systems.

A further consequence of this common format is that it promotes reuse
and enhancement of software tools. Common operations on the XML format
are now well known. Consequently, finding or making a tool that processes
XML is easier. Programmers can rely on these features being present in most
modern tools, including Mozilla.

1.2.2 The Open-Closed Principle

The open-closed principle originates from the world of object-oriented (OO)
programming. It captures the idea that a piece of software can be both finished
(closed) and yet still available for further change (open). This thinking also
applies to XML. The core XML standards are finished and certain, as are vari-

AppDevMozilla-01 Page 9 Thursday, December 4, 2003 6:22 PM

10 Fundamental Concepts Chap. 1

ous applications of XML; nevertheless, anyone can create a new XML applica-
tion at any time. This is a highly flexible arrangement. Furthermore, the XML
standards allow partial instances of XML applications (called

document frag-
ments

) to be mixed together in one document. One document might contain
both XHTML and SVG content. That is also highly flexible.

Such flexibility is a highly fluid situation and provides fertile ground for
innovation. Document authors are free to make any instance of a particular
XML application, which is just common sense. Software developers, however,
are free to make any XML application definition. New application definitions
can be the basis for a whole range of new document instances in a new content
or application area.

Mozilla benefits from this flexibility. It implements several innovative
XML applications, primarily XUL (XML User-interface Language) and XBL
(XML Binding Language), upon which many special-purpose XML documents
are based. It allows programmers to process generic XML content and many
specific XML applications, like RDF and XHTML.

1.2.3 Beyond English

Another benefit of XML is its ability to be expressed universally.
The Unicode standard is a list of every character concept used in human

writing. When a Unicode character reference and a font are combined, a visual
character (also called a glyph) can be displayed. XML documents can refer to
any entry in the Unicode standard, so XML is a useful way to express informa-
tion in any language on Earth.

Early successes in the modern world of computing occurred in the
English-speaking part of the West, some at the University of California, Ber-
keley Campus, and some at AT&T. It seemed at the time that eight bits (one
byte) was sufficient to capture all the glyphs in common English text. This
resulted in the ASCII character set, the C language’s

char

 type, and process-
ing technology in the UNIX operating system all being fixed to one byte. This
legacy has created a hurdle for the Unicode standard, which overall requires
two bytes per character. XML is one way around this hurdle since it starts
again from the beginning with a new format based on Unicode standards.

Mozilla is an example of a tool that handles internationalization issues
by relying on XML and Unicode technology. Its main supported language,
JavaScript, is also based on Unicode.

1.2.4 Hierarchical Thinking

The final strength of XML is in its internal structure. Documents created to
XML standards consist of fragments of content nested inside each other, in a
hierarchical way. Hierarchical organization is a concept that humans find easy
to grasp. As the riddle goes, the man from St.Yves had seven wives, each wife

AppDevMozilla-01 Page 10 Thursday, December 4, 2003 6:22 PM

1.3 Platform Concepts 11

with seven sacks, each sack containing seven cats, each cat with seven kittens.
That is hierarchical thinking.

Simple concepts are especially important in computing because working
with computers is an abstract task. Even outside computers (e.g., this book),
hierarchical organization brings order to complex masses of information. For
computer programmers, the hierarchical nature of XML is an easy way to
express solutions to problems and get something done.

1.3 P

LATFORM

 C

ONCEPTS

Let’s now turn to the nature of the Mozilla Platform itself. A software platform
is a piece of software that programmers use as a stepping stone. By standing
on the features of the platform (relying on the software), the task of creating
high-level functionality is made easier. Programmers need not waste time
making basic functionality using languages like C.

The four big stepping stones in Mozilla are XUL, JavaScript, RDF, and
XPCOM. XUL is an XML dialect used to construct user interfaces, JavaScript
is a scripting language with syntax akin to C, RDF is an XML dialect used to
store data, and XPCOM (Cross Platform Component Object Model) is an object
discovery and management system. Those four items are discussed exten-
sively throughout this book. Here we look at the overall environment in which
they live.

From beginning to end, the Mozilla Platform’s main strength is in build-
ing visual, interactive applications. It is not intended to be used to write driv-
ers, servers, or batch processing systems. It can easily provide a front end for
such systems.

1.3.1 Architecture

Netscape Web products prior to Mozilla were built in a hurry and were not as
structured or as open as might be desired. This history heavily limited the use
and future of those products, and held Netscape back when its 4.x products
were competing with Microsoft’s Internet Explorer and Outlook Express for
functionality.

Since then, Netscape, mozilla.org, and volunteer programmers have had
the time, the talent, and the freedom to break a lot of that early technology down
into smaller, more flexible pieces. They have also replaced some poorly conceived
technology with better solutions. These pieces together make up the modern
Mozilla Platform and are better organized than in the past. This flexibility qual-
ifies Mozilla as a platform rather than as a highly customizable product.

1.3.1.1 A Layered Approach

The Mozilla Platform attempts to meet the
needs of several different types of programmers, and the result is that it has
been conceived as a set of semi-independent layers.

AppDevMozilla-01 Page 11 Thursday, December 4, 2003 6:22 PM

12 Fundamental Concepts Chap. 1

The lowest layer of the platform manages and implements a large set of
objects. These objects all cooperate inside a single executable according to a
built-in mediation system. Mozilla needs a mediation system that is highly
portable, since it runs on many platforms. In the end, a custom system was
designed for the purpose. It is called XPCOM and is at the core of the plat-
form. Direct access to XPCOM is only possible from the C and C++ languages.
The XPCOM system is written very carefully so that it compiles and runs on
many different operating systems. Files holding objects managed by XPCOM
can be seen in the

components

 directory of the standard Mozilla installation.
On top of XPCOM is a very thin layer called XPConnect. XPConnect pro-

vides a JavaScript interface to XPCOM. The JavaScript language is a flexible
and loosely typed language that can manipulate XPCOM objects very easily
and in a portable way. This layer provides an application programmer with an
accessible and large object library. That library consists of all the XPCOM
objects in the platform. Debug releases of the platform include a testing tool
called

xpcshell

, which allows programmers to code directly at this level,
although that is less commonly done.

Some of the objects available in the platform are large and sophisticated
and can process XML content. These objects can present a high-level view of
XML content to the programmer. Such views are based on the W3C DOM
standards, available at

www.w3.org

. This means that instead of parsing XML
text directly with handmade JavaScript programs, a programmer can ask a
sophisticated object to swallow and digest an XML document and in return
receive a high-level set of interfaces, like the DOM 1 Document interface. In
this way, JavaScript scripts need only to consult the XPCOM object broker for
a few powerful objects. From then on, scripts can work directly on the large set
of DOM objects produced when those few objects are given an XML document.

This DOM layer of functionality is common in most programming envi-
ronments where XML is processed, including in XHTML Web pages when
Dynamic HTML scripts are created. In a Web page, there is no hint that these
objects originate from XPCOM, but that is still the case. It is common for this
DOM layer to be slightly enhanced so that it includes other useful objects, like
the window and navigator objects present in Web-based JavaScript. Some-
times security constraints are imposed as well. All this is done in Mozilla, and
that slightly enhanced layer provides an environment for a number of XML-
based content types, plus HTML. Most importantly, Mozilla’s own XUL has
such an environment. This layer is the starting point for the GUIs (graphical
user interfaces) that application developers need to create. An example of the
DOM Layer can be seen in any HTML page that contains Dynamic HTML
scripting.

Some XPCOM objects perform their own sophisticated GUI display
tasks, notably layout and rendering. The Gecko portion of the Mozilla Plat-
form is a collection of objects that do this. These high-level objects automate
the display of XML documents, graphics, and text. When an application pro-
grammer needs to display some content, a script can throw the content to

AppDevMozilla-01 Page 12 Thursday, December 4, 2003 6:22 PM

1.3 Platform Concepts 13

these layout and rendering objects and display automatically happens without
any further programmer effort. This topmost, visual aspect of the platform can
be seen in any Web browser window.

Finally, XML content and XPCOM objects can be tied together. This can
be done with an XBL binding, an XUL template, or other less obvious
approaches. These Mozilla-specific tactics extend the automatic processing
done by sophisticated XPCOM objects so that even high-level tasks require
only small amounts of scripting. The “tabbed navigation” feature of the
Mozilla browser is an example of a tag/object combination created in XBL.

If that were all of the Mozilla Platform, then the platform would be no
more than a JavaScript interpreter and a huge object library—not much dif-
ferent than Perl, Tcl, Visual Basic, or even Java. The platform, however, also
includes at the topmost level an application shell. This shell is a mass of plat-
form code that binds many of the XPCOM objects together into an executable
program. This program is able to automate and coordinate many tasks, like
connections to server software, basic document management, and installation
processes. The application shell, plus many special-purpose XPCOM objects,
represents a ready-made development framework. It is more immediately
useful than a passive set of libraries that can’t do anything until a program-
mer chooses to use them. The application shell provides the organization and
integration features that allow applications to run on top of the platform. It is
also the platform’s application execution engine. The mozilla (or
mozilla.exe) executable is a copy of the platform wrapped up in an exten-
sive application shell.

A substantial portion of a programmer’s work can be done merely by cre-
ating XML documents. These are then supplied to the application shell.

These layers of the platform do not hide each other from the program-
mer. An application programmer’s script can perform operations at any level,
in any order, subject to security constraints. Common tasks that are in keep-
ing with the interactive, visual orientation of the platform can be achieved
with very little code that exploits the highest layers of the platform. Highly
application-specific tasks require a more traditional programming style in
which lower-level objects are combined for an end result.

The remainder of this discussion of architecture considers some of these
layers in more detail.

1.3.1.2 XPCOM Component Model A great strength of Mozilla is its internal
structure.

At the lowest level, the platform itself is written in the C and C++ pro-
gramming languages. In the case of a simple C/C++ program, adding function-
ality means compiling and linking in more objects or functions. For large
projects, this is an impractical and naïve approach for many reasons.

One reason is that the resulting program will grow huge and inefficient
to run. It is also impractical because keeping track of all the implemented
objects is difficult. Finally, if several different projects are to use the software,

AppDevMozilla-01 Page 13 Thursday, December 4, 2003 6:22 PM

14 Fundamental Concepts Chap. 1

each one might require only a portion of the platform. In other words, each
project must heavily modify the platform for its own ends or live with a miscel-
lany of objects that it has no use for. There needs to be a cleverer approach,
and there is.

An object broker (also called an object directory, object name service, or
object discovery service) is a piece of code that finds objects and makes them
available. If all objects built provide a standard or common interface that the
broker can use, then all members of a large set of objects can be handled the
same way. That imposes some uniformity on objects.

Mozilla objects are organized into individual components. Components
are built out of objects and interfaces. A component registry (a small database)
maintains a list of all the available components. A component name service
that turns a component name into an object (in object-oriented terms it is a
factory) is also available, as are a thousand components and a thousand inter-
faces. Here is an example of a component name, written in Contract ID form.
The trailing digit is a version number:

@mozilla.org/browser/httpindex-service;1

The infrastructure on which these components are standardized is
XPCOM. XPCOM is a little like CORBA and a lot like COM, two other object
broking systems.

CORBA (Common Object Request Broker Architecture) is a system for
gluing together objects written in any of a number of programming languages.
In order to do that it describes all object interfaces using a language-neutral
syntax called IDL (Interface Definition Language). Mozilla includes a variant
of the CORBA IDL specification technology. The Mozilla version is called
XPIDL (Cross Platform IDL). It is a portable (hardware- and operating-
system-independent) language that is used to generate portable code and type
libraries.

COM (Common Object Management) is a system for gluing together dif-
ferent objects written under Microsoft Windows. Mozilla also includes a vari-
ant of COM, called XPCOM (Cross Platform COM). XPIDL and XPCOM work
together in Mozilla as a hybrid system that acts on COM-like objects that are
described by CORBA-like specifications. There is no attempt to make XPCOM
a distributed system, like DCOM (Distributed COM). It is restricted to one
computer alone, and currently to one executable. Although object specifica-
tions are CORBA-like, the XPCOM system duplicates the features of COM
quite closely.

Nearly all of Mozilla is reduced to XPCOM components, and nearly all of
these components are scriptable via JavaScript. Many components implement
Web protocols or other networking standards. This component model plus
available network components makes Mozilla look like a miniature version of
Microsoft’s .NET framework. If platform components are written in C/C++, as
most are, then they must be written according to strict portability guidelines,
just as XPCOM is.

AppDevMozilla-01 Page 14 Thursday, December 4, 2003 6:22 PM

1.3 Platform Concepts 15

1.3.1.3 Support for XML Software support for XML standards is a matter of
degree. A program might merely be able to read an XML document, like a file
filter, or it may have its entire purpose dedicated to XML analysis, like an
XML database server. Mozilla lies somewhere between these two extremes.

Mozilla does a better job of supporting XML standards than just reading
documents of that format. Mozilla has considerable infrastructure for manage-
ment of retrieved XML documents; in particular, it has a simple but sophisti-
cated processing model for RDF. The best way to view Mozilla’s XML support
is as a system that can get XML from here and put it there . To assist that pro-
cess, a number of transformation techniques can be applied. Example tech-
niques include merging and filtering documents, managing document
fragments, and performing fine-grained insert, update, and delete operations
on the document structure and its content.

A fairly complete list of Mozilla-supported XML applications is: XML,
XML Namespaces, XLink, XHTML (and HTML), MathML, SVG, XSLT
(Extensible Stylesheet Language Transformations), RDF, SOAP, WSDL (Web
Services Description Language), and XML Schema.

Mozilla also supports two XML applications unique to the platform: XUL
and XBL. XUL documents specify arrangements of graphical widgets. XBL
documents represent bindings that blend together a JavaScript object and
XML content into a new piece of content. XUL is a crucial technology for appli-
cation developers. Look at any Classic Mozilla window or dialog box—every-
thing you see (except for any displayed HTML) is XUL content.

Mozilla supports DTDs (document type definitions) for many of these
standards. It supports XML Schema definitions for none of them. Of the sup-
ported standards, the only ones that are intended for visual display are
XHTML/HTML, SVG, MathML, XUL, and XBL. The rest are used only for
data processing purposes.

1.3.1.4 Gecko Content Display Model To show the user XML content, some
kind of display system is required. That is the job of the rendering objects
inside the platform that form part of the Gecko display subsystem.

The rules that determine the layout of XML documents (and particularly
layout of HTML) have been shifting in the last few years. Where those rules
used to appear in standards such as HTML, they now are collected into the
styling standards, such as CSS, DSSSL (Document Style Semantics and Spec-
ification Language), and XSL-FO (XSL Formatting Objects). This trend is
reflected in the Mozilla Platform, where all layout is controlled by a modern
CSS2 implementation, which includes many Mozilla-specific enhancements.
The powerful CSS2 engine inside Mozilla is also the heart of the Gecko layout
system. Mozilla also uses CSS2 for printing.

XML documents are not immutable. If delivered from a remote location,
they can arrive incrementally. If acted on by a programmer, they may grow or
shrink. Modern display tools need a sophisticated content model to support all
kinds of dynamic content changes during display. Mozilla has a third-generation

AppDevMozilla-01 Page 15 Thursday, December 4, 2003 6:22 PM

16 Fundamental Concepts Chap. 1

content display system, also part of Gecko, whose architecture is contrasted
against earlier approaches in this short list. Although the list refers to XML, the
most obvious example of a display system is one that displays HTML.

Mark I strategy. Read an XML document’s tags one at a time and dis-
play as you go. Pause the display process when not enough tags have
arrived to figure out the next step, making the user wait. Very early
browsers did this with HTML, like Netscape 1.0.

Mark Ib strategy. Read all of a document’s XML tags into memory, put-
ting the user on hold. Analyze the document. Display the entire document
at once. No popular browsers ever did this, but XSLT performs batch pro-
cessing in a similar way when used in specialist printing software.

Mark II strategy. Read XML tags one at a time and display the page
using placeholders for content that is anticipated but not yet read. When
that content arrives, dynamically replace the placeholders with the real
content. Shuffle everything around to clean up changes each time place-
holders are filled. Internet Explorer 4.0+ and Mozilla 1.0+ do this.

Mark III strategy. Read XML tags as for Mark II, but possibly read con-
trol information as well. When the user or the server manipulates the
control information, fetch or remove matching content and update the
display with it. Do this even after the document is fully loaded. Mozilla
1.0+, which uses RDF as the control information, does this.

It requires a complex design to implement a Mark III display model, and
Mozilla’s internals are quite sophisticated in this area.

1.3.1.5 Support for Web Standards For traditional Web page display,
Mozilla’s Web standards support is the best yet seen in a Web client. The clos-
est current competitor is the Opera Web browser. Although this book is not
about HTML, a brief review is not entirely irrelevant, since HTML can be
combined with XUL in several ways.

In the world of HTML, Mozilla has a legacy compatibility mode, a strictly
standards-compliant mode, and a nearly standards-compliant mode . The leg-
acy compatibility mode does its best to support old HTML 4.01 and earlier doc-
uments. The strict mode supports the newer XHTML 1.0 only. The nearly
strict mode is the same as the strict mode, except that it provides a migration
path for older Web pages that look bad when displayed strictly according to
standards. Directives at the start of a Web page determine which mode will
process that document. In all modes, enhancements to the standards are
allowed and some exist.

Mozilla supports complementary Web standards such as HTTP 1.1; CSS2;
DOM 0, 1, and 2; and ECMAScript Edition 3 (JavaScript). Mozilla’s Cascading
Style Sheet (CSS2) support has received a great deal of standards attention,
and a number of Mozilla extensions look forward to CSS3, or are merely inno-

AppDevMozilla-01 Page 16 Thursday, December 4, 2003 6:22 PM

1.3 Platform Concepts 17

vative in their own right. Only some parts of DOM 3 are supported. Mozilla
supports some of the accessibility statements made by the W3C.

The world of HTML is being reduced to a number of small, separate stan-
dards and standards modules that together make up the whole of HTML.
Mozilla supports XLink but not XForms. Similarly, some of the DOM 3 mod-
ules are supported, while others aren’t. Since Internet Explorer 6.0 supports
only the DOM standards to DOM 1, Mozilla is well ahead in the standards
adoption game. Chapter 5, Scripting, explores standards compliance for the
DOM standards in more detail.

Mozilla support for MathML and SVG is not complete. The MathML sup-
port is close to being complete and is extensive enough to be fully functional, but
the SVG support is only partially implemented and is not available by default.

1.3.1.6 Custom Tags and Objects Mozilla provides a specification mecha-
nism for pairing textual XML tags and compiled objects. This specification lan-
guage is called XBL, an XML application invented for Mozilla. XBL is assisted
by JavaScript, CSS, and other XML standards.

With the help of XBL, a new XML tag that is not mandated anywhere
else can be defined. This tag can be hooked up to processing logic. The W3C
calls this logic an action , but it is better known by the Microsoft term behavior .
In Mozilla, such logic is created in the form of a full object-oriented object defi-
nition. The connection between the new tag and the processing logic is called a
binding . The object logic can be written to take advantage of any of the ser-
vices available to the platform, including all the XPCOM objects and other
custom tags that possess their own bindings.

Because XBL allows new tags to be specified, Mozilla must be particu-
larly liberal when processing content. Any XML tag might have meaning
defined somewhere. XBL contributes to the near-zero validation aspect of
Mozilla, discussed under the heading “Consequences.”

1.3.2 Innovations

The Mozilla Platform does not reduce to a set of objects and a set of XML stan-
dards ticks. It also includes infrastructure that holds together processing and
applications designed to exploit those objects and standards.

Some of this infrastructure contains new and innovative ideas. Most of it
is required if application programs are to be created, installed, and operated
correctly.

1.3.2.1 Chrome and Toolkits The installation of a Mozilla application can be
divided into three parts. One part is a set of files specific to the user of the
application, such as email addresses and bookmarks. One part is a set of
binary files containing the executable programs of the platform, plus a few
configuration files. The final part is a set of application files stored under a
directory with the name chrome. Chrome is a central concept for Mozilla-

AppDevMozilla-01 Page 17 Thursday, December 4, 2003 6:22 PM

18 Fundamental Concepts Chap. 1

based applications. An exploration of the chrome directory is included in the
“Hands On” session in this chapter.

Inside the chrome directory there are many subdirectories, data files,
documents, scripts, images and other content. Together, the sum of the chrome
content, merely called the chrome, represents a set of resources. This set of
resources is responsible for all the user interface elements presented by the
applications installed in the platform. An application may exist entirely as a
set of files in the chrome.

Mozilla refers to files in the chrome with the special URL scheme
chrome:. An example of a chrome URL is

chrome://notetaker/content/NoteTaker.xul

A chrome: URL is usually a special case of a resource: URL. The
Mozilla-specific resource: URL scheme points to the top of the platform
installation area, so this URL is usually equivalent to the preceding URL:

resource://chrome/notetaker/content/NoteTaker.xul

Both resource: and chrome: URLs represent a subset of all the
resources that can be located using a file: URL. The chrome: and
resource: URL schemes, however, are processed specially by the platform,
and a file: URL cannot always be used as a substitute.

Generally speaking, everything in the chrome directory is portable.
Although there are always exceptions, an application installed in the chrome
of Mozilla on Microsoft Windows should have files nearly identical to the same
application installed in chrome on UNIX or Macintosh. XUL documents are
usually stored in the chrome.

Chrome is more than a desktop theme, since it can contain both GUI ele-
ments and general application logic. It is more like a sophisticated X11 window
manager such as the GNOME desktop’s Sawfish (used on Linux/UNIX), or an
advanced theme engine on Microsoft Windows. Take the example of Sawfish.
Sawfish can be configured using scripts written in a programming language.
This typically results in the addition of buttons and decorations to a window’s
title bar. Sawfish cannot reach inside the windows it decorates; it can only
place decorations on the outside of those windows. Mozilla’s chrome, on the
other hand, cannot reach outside the edges of a window, but it can modify all
the elements inside it. If Microsoft Word were implemented using Mozilla and
ran on UNIX, Sawfish could remove the stylized W from the top left corner of
the title bar, but it couldn’t change any of Word’s toolbars. Mozilla’s chrome, on
the other hand, couldn’t remove the stylized W, but it could change the tool-
bars. Figure 1.3 shows a combination of these GUI elements together in a sin-
gle window. The window contains Sawfish window decorations, Mozilla chrome
status bar and toolbars, and a simple HTML document.

Sawfish adds a fancy title bar with at least four buttons. Files in the
chrome add at least two toolbars, a menu bar, a status bar, and a collapsed
sidebar. The rest is HTML.

AppDevMozilla-01 Page 18 Thursday, December 4, 2003 6:22 PM

1.3 Platform Concepts 19

The chrome also contains a special file named toolkit.jar. This file is
an archive that contains a collection of commonly used files. The most impor-
tant thing in this archive is a set of definitions that state which XUL tags exist
and what they do. Since Mozilla applications are built out of XUL, the pres-
ence and content of this file is of vital interest to application programmers,
and little can be done without it. This toolkit is supplied with all complete
releases of the platform. It is undergoing minor change during the develop-
ment of the new Mozilla Browser.

1.3.2.2 Themes, Skins, and Locales The Mozilla Platform supports a theme
system that allows the appearance of an application to be varied and a local-
ization system that allows the language that an application is expressed in to
be varied. Both systems work inside the chrome directory.

Individual themes in the theme system are built out of skins. A skin is a
file specifying the nonstructural aspects of a Mozilla window, such as colors,
fonts, and images. Skin files are a subset of the chrome that is automatically
selected by the current browser theme. “Theme” in the language of Mozilla
means “All skins stored under the name of this theme.” Some Mozilla advo-
cates are passionate about designing their skins. In the commercial world,
skins are a way to package and brand applications with corporate colors and
marks or to make them fit look-and-feel or desktop integration standards.

Chrome URLs are modified by the current browser language (the locale)
as well as by the current theme. This means that supporting both an English

Fig. 1.3 GNU/Linux Mozilla with Sawfish Window Manager. Used by permission of
Arlo Rose.

AppDevMozilla-01 Page 19 Thursday, December 4, 2003 6:22 PM

20 Fundamental Concepts Chap. 1

and a Russian Back button is just a matter of having chrome files expressed in
both languages.

1.3.2.3 Data Sources and Content Sinks An innovative system used exten-
sively inside the platform is the Producer and Consumer design pattern. This
pattern is normally seen inside object-oriented libraries and languages. The
Mozilla Platform includes infrastructure support for a number of Producer/
Consumer combinations, with special attention to handling of RDF-style data.

The Producer/Consumer approach dedicates pieces of code to supplying
data (i.e., Producers, called data sources in Mozilla) and other pieces of code to
absorbing it (i.e., Consumers, called content sinks in Mozilla). This separation
of supply and demand allows information to be pumped around inside the
platform in a flexible way.

RDF is one of the more obscure W3C technologies, and little more can be
said in this chapter without starting a long discussion. Data sources and sinks
inside the platform give the programmer an opportunity to drive information
around an application using operations that are not so different from database
operations. This in turn allows the platform to behave a little like a 4GL tool
used to build database client software.

The most sophisticated use of data sources and sinks involves pooling up
RDF data for special processing. Inside the Mozilla Browser, RDF sources and
sinks can be connected by intermediary processing that acts like a sophisti-
cated filter. This filter allows the content in RDF data flows to be combined
and split. This is done after the data flow is sourced but before it is sunk. In
computer science terms, this is a simple knowledge processing system that is
unusual for browser-like software.

1.3.2.4 Competitive Features In addition to good design, the Mozilla Platform
seeks to provide a competitive alternative to Microsoft’s Internet Explorer. To
that end, it needs features that give it an edge over that Microsoft browser.

Mozilla’s main strength is compliance with W3C standards. The problem
is that standards compliance is invisible to end users—when things go as
expected, there is nothing to note. So Mozilla also has flashy features that can
compete in the end-user market. Some examples of these features follow:

Auto-completion of forms. Mozilla can remember what you typed in
last time.

Type-ahead find. You can reach a link or any content on a page by typ-
ing text.

Quick launch. Mozilla has caches and options that make it start up
faster.

Image resizing. Mozilla proves size controls for images displayed by
themselves.

Junk email filtering. Mozilla has a filtering system to combat spam.

AppDevMozilla-01 Page 20 Thursday, December 4, 2003 6:22 PM

1.3 Platform Concepts 21

The Mozilla engineering staff also maintains a set of performance objec-
tives for the product based on competitive benchmarks with Internet Explorer
and Opera. There are regular initiatives designed solely to trim inefficient pro-
cessing from the platform, and from the browsers built upon it.

1.3.2.5 Remotely Sourced Applications The Mozilla Platform contains two
methods of access to Mozilla-based applications located on a remote Web server.

The simpler of the two methods is the ability to download an application
and run it immediately. Just as a remote HTML document can be displayed
locally, giving the user the option of filling in and submitting a form, or click-
ing a link, so too can a remote XUL document be displayed locally, giving the
user the option of working with a forms- and menu-driven window that acts
like a locally installed program. This aspect of the platform is most similar to
that of Microsoft’s .NET initiatives.

The other method is to use the platform’s XPInstall technology. This is a
remote installation system that downloads an archive from a remote Web site
and installs it in the local chrome directory permanently. A script guides the
installation process, and the archive can contain XUL-based applications and
other files of any kind.

In both cases, the remote source applications have some security restric-
tions, although those restrictions can be lifted if the correct approach is taken.

1.3.3 Consequences

Finally, some aspects of the Mozilla Platform emerge from the sum of many
small changes.

1.3.3.1 GUI Integration Mozilla is a display-oriented tool, which is very dif-
ferent from other Open Source tools like Apache. Apache just sits on a simple
network connection and waits. Mozilla is intimately connected to the user and
the user’s environment. It contains several strategies for working with GUIs
and desktops.

At the lowest level, Mozilla relies on GUI widgets from a suitable native
toolkit for the current platform. This means GTK on Linux, Win32 on Win-
dows, and the Macintosh toolkit. A port of Mozilla that uses the Qt widget set
exists, but it hasn’t been maintained for a long time. There is no raw X11
implementation. The platform abstracts user input away from operating sys-
tem formats using the DOM 2 Events standard.

At the desktop level, Mozilla responds normally to window operations
such as focus, iconization, and exit operations. It is well behaved on UNIX
under most X11 window managers. Recent versions of Mozilla support native
desktop themes in Windows XP and in GNOME 2.0. Mozilla supports content
selection and cut ‘n’ paste to a degree, but this must sometimes be hand-
implemented, and only happens automatically in the most obvious cases.
Mozilla also supports multiformat clipboard copying. This means that some of

AppDevMozilla-01 Page 21 Thursday, December 4, 2003 6:22 PM

22 Fundamental Concepts Chap. 1

the formatting in a piece of selected content can be preserved when it is pasted
to another application, such as Microsoft Word. Mozilla supports drag-and-
drop mouse operations within the context of the application, but again, some
hand-implementation is required. Simiarly, objects can be dragged from else-
where on the desktop to a Mozilla window Without hand-implementation,
nothing will happen, and no visual feedback will appear. Most Mozilla-based
applications include logic that supports some drag ‘n’drop operations.

Finally, at the application level, one of Mozilla’s great strengths is its
XUL widget description language, which allows GUI elements to be brought
together in a very simple and efficient way.

1.3.3.2 Portability Mozilla runs on many different operating systems and
desktops. At www.mozilla.org , the Mozilla Browser Platform is test-compiled
every night, and the results are bundled into downloadable and installable
files. At least the following operating systems are supported:

UNIX: Linux i386/PowerPC, FreeBSD, HP-UX, Solaris i386/SPARC, AIX,
Irix

Mini computers: OpenVMS

Personal computers: Windows 95/98/Me/NT/XP, MacOS 9.x/X, OS/2,
BeOS

There are also experimental ports to other platforms such as the Amiga.
Mozilla has well-established support for the GNU/Linux operating system,
and GNU/Linux is widely ported itself. It is probably feasible to port the
Mozilla software to most GNU/Linux hardware.

Mozilla’s portability extends beyond mere platform availability. Most fea-
tures supported are intended to be identical across platforms. In particular,
the file types required to build a Mozilla application (XUL, CSS, DTD, proper-
ties, JavaScript, RDF, etc.) are all entirely portable formats. In theory, a
Mozilla application should run on all operating systems that the platform
runs on, without a porting cost. In practice, minor differences mean that very
few applications are 100% portable without some testing and occasional fixes.

1.3.3.3 Near Zero Validation In the world of communications programming,
a fundamental design is this: Transmit strictly according to standards, but
when receiving, accept anything that it is possible to comprehend. This strat-
egy is designed to increase standards usage in new systems without isolating
older systems.

The Mozilla Platform is a communication device, frequently receiving
Web pages, email, and other messages. It follows a communication design and
that design is visible to a programmer. Except in the case of strict mode for
HTML, the platform interprets received XML and other documents very liber-
ally, adapting to or ignoring many simple mistakes, omissions, and additions.

For an end user like a Web surfer, this liberal interpretation is a good
idea because irritating error messages are kept to a minimum. For a program-

AppDevMozilla-01 Page 22 Thursday, December 4, 2003 6:22 PM

1.4 The RAD Environment 23

mer, this liberal interpretation is a bit of a nightmare. It is very easy to add
information to a Mozilla application, only to have it silently ignored or silently
recorded. This silence could result if supplied additions are not implemented,
contain typos, or are simply incorrect. As a programmer, an extra degree of
alertness is required when writing code for Mozilla.

Fortunately Mozilla does the most basic of checks correctly: XML content
must be well formed, and JavaScript and CSS code must at least parse prop-
erly. That is a beginning, but it is cold comfort for more advanced areas where
errors are more obscure.

1.3.3.4 Extensibility A strength of Mozilla is that it is a platform, not just a
product. Alas, a weakness is that it is only version 1 so far, and the platform is
not as flexible or as complete as one might hope.

Nevertheless, it is sufficiently flexible that it can be extended in many
ways, from trivial to fundamental. New objects can be added, even XPCOM
objects; new XML tags can be added; and new themes or locales or applica-
tions can be added. There is no need to register anything with some central
body or to fit it in with someone else’s logic.

Because the platform’s source code is available, any enhancement at all
is possible. Because Mozilla’s chrome and XPCOM system are easy to use,
many experiments can be performed with ease. Some experiments are done
within the Mozilla organization itself, like attempts to produce a <canvas>
tag for XUL. Many other people experimenting with Mozilla extensions can be
found at www.mozdev.org .

1.3.3.5 Security Mozilla supports the security features of Netscape 4.x,
including the powerful “Same Origin” policy. That policy insists that insecure
operations, like writing a file, be heavily restricted. An insecure operation
retrieved from a given internet location (a URL) can be attempted only on a
resource that comes from the same location. This restriction allows Java
applets to speak to their server of origin only. Similarly, it allows HTML or
XUL applications to submit data to the Web server at which they originated.

The most noteworthy aspect of security in the platform is that applica-
tions installed in the chrome have no security restrictions at all. Security
restrictions imposed by the operating system still apply.

The platform has several security models to pick from; they are described
in Chapter 16, XPCOM Objects. The standard platform installation includes
support for most digital encryption standards and certificate authority certifi-
cates.

1.4 THE RAD ENVIRONMENT

Having covered the platform briefly, let’s look at the rapid application develop-
ment (RAD) style of software development and see what it consists of.

AppDevMozilla-01 Page 23 Thursday, December 4, 2003 6:22 PM

24 Fundamental Concepts Chap. 1

RAD projects have some unique characteristics. The primary characteris-
tic is just what it says: rapid application development. RAD projects have fast
delivery of finished work as a primary goal.

The Mozilla Platform itself is not a RAD project. It is an Open Source
project, where peer review, innovation, and architectural strategy are at least
as important as fast delivery. Furthermore, the platform can be used in
embedded software projects, a topic not covered in this book. Embedded soft-
ware has as its main constraints footprint size, robustness, and low mainte-
nance. Fast delivery is not a critical priority for embedded software either.

Because there are alternatives, speedy development is not just a matter
of adopting the platform. It is both a mindset and a process. Here are some of
the essential characteristics of RAD projects.

1.4.1 Less Time, Same Effect

The quickest solution you can find that achieves a desired end is probably the
best solution. This is an essential characteristic of RAD projects—there is no
allegiance to any rigid rules. Whatever does the job fastest, wins. Even if the
technique you chose isn’t that beautiful, isn’t that sophisticated, and maybe
isn’t even that flexible, the fact that it gets the job done is essential. If your
labor can be polished up afterward, that is a plus.

Don’t agonize for years over the perfect design. Make something work.

1.4.2 Visual Prototypes

Human users are the ultimate challenge in software development. They can’t
be programmed reliably, and their subjective processes go straight through the
structured rules of software. It takes time and many experiments before a
user and a user interface are happy with each other. In the acronym RAD, the
A for application guarantees the need for flexible user-interface experiments.
RAD projects need the ability to create visual prototypes efficiently.

RAD projects are not based on the concept “build it and they will come.”
Flexible, changeable user demos are critical.

1.4.3 Vertical Solutions

RAD projects are used to build products that have a narrow purpose, whether
it be a museum catalog or a stock analysis package. Those products are so-
called vertical solutions. There is usually no need to make the product so flexi-
ble it can be applied to other uses. That can be a later goal if the product works
as is. So why insist on a low-level, generic tool, such as C++, Perl, or Tcl/Tk, as
the basis for a product that is a point solution? Use instead a specialized tool
that fits the problem space—one that is suited to the task will be more effi-
cient. Mozilla is specifically aimed at several vertical problem spaces.

AppDevMozilla-01 Page 24 Thursday, December 4, 2003 6:22 PM

1.5 Effective RAD Projects with Mozilla 25

RAD projects can be built on a narrow technology base. Very generic tools
aren’t always better.

1.4.4 COTS Software Versus Home Grown

The “not invented here” argument of software development, in which program-
mers object to using other people’s software, is becoming harder and harder to
sustain. As the total amount of code in the world increases, the chance that
your job has been done for you also increases. Using COTS (common-off-the-
shelf) software is a good technique for saving time and effort. It greatly
reduces the amount of pure programming labor and gets you a result. Using
COTS software makes perfect sense for RAD projects.

RAD projects use other people’s work first and build things by hand
second.

1.4.5 Destructured Testing

The constraints of low-level programming languages like C are well known.
Pointer problems and strong typing make the use of a good compiler essential.
The argument goes that using the compilation phase will save time later
because it is a rigorous process. Less human testing will be needed if a com-
piler with a --pedantic option is used.

If programmers have a fixed defect rate per hour, this argument is proba-
bly correct, even if the language is a scripting language. This argument, how-
ever, assumes that a nontrivial program is being developed. In the case of
RAD, using a large existing tool (like Mozilla) means adding small program
fragments rather than big standalone chunks of code. A small program frag-
ment is easier to create correctly at the start because it contains few branch
points (few if statements). When program fragments reside in a larger tool,
the tool also acts as a permanent test harness. Highly formal testing in such a
case can be overkill.

RAD destructures testing because many small code fragments are more
likely to be correct than one big program.

1.5 EFFECTIVE RAD PROJECTS WITH MOZILLA

Mozilla might be an efficient development tool, but it also comes with a catch:
there is too much slow information. Mozilla’s source code takes too much time
to understand. Mozilla’s bug database is a jungle to get lost in, and the
mozilla.org Web site freely mixes new and old documentation without regard
for accuracy or age. Attempting to absorb all this can undermine the reasons
for choosing Mozilla in the first place. To keep the RAD benefits of Mozilla
intact, so that you can get something done, here are some recommendations.

AppDevMozilla-01 Page 25 Thursday, December 4, 2003 6:22 PM

26 Fundamental Concepts Chap. 1

Most importantly, grab the documents listed in the “Hands On” section in
the introduction of this book. Those documents, plus a decent book, are enough
documentation to get going. For a RAD project, it’s rare to need a copy of the
Mozilla source code.

You will occasionally need to peek at application files in the chrome to see
how other people solved a problem you’ve encountered. If you want to search
chrome files effectively, get one snapshot of the Mozilla source and index it
with a tool like UNIX’s glimpseindex(1); or just index a set of unarchived
chrome files.

When building user interfaces with XUL, avoid perfection. If you find
yourself setting out windows to exact pixel measurements, you are doing it
incorrectly. Do everything very roughly, and only make fine adjustments at the
very end. Don’t fight the tool; use it the easy way. If, for example, you find that
you don’t like the <grid> tag, but there’s nothing else appropriate, just make
do with <grid> anyway. Always display the JavaScript console, but don’t
write a line of JavaScript code until your customer has seen the XUL screens
you’ve created.

When prototyping or experimenting, don’t be too clever with XPCOM.
Most processing can be handled just by submitting an HTML form to a Web
server. Keep it basic, and don’t try to master all the XPCOM components.
You’ll never use them all. If you have no server, use the execute() method to
run a separate program. Don’t worry about it being ugly, you can neaten it up
later.

When stuck on a technical problem, try not to become distracted by
unhelpful detail. Most problems are little more than syntax errors or misun-
derstandings. Everything in the platform is interpreted from XML to CSS, and
syntax errors creep in everywhere. The source code will not help you with
these—it takes a month of study before the source makes any sense, anyway.
The Bugzilla bug database (at http://bugzilla.mozilla.org) can also be
very distracting and time consuming.

A better approach to problems is to make a copy of your code and chop
bits off until the problem area is clear. Then look at a book, or post to a news-
group. If the problem won’t go away, at least you have an effective test case for
the Bugzilla database, and someone might respond quickly if you lodge a bug.
If you change your code slightly, it may well go away. Because of the platform’s
near-zero validation behavior and poorly documented Mozilla internals, you
won’t always have a deep reason why some trivial change made something
work again. There’s always a rational explanation, but it often takes a long
time to find. Move on.

If, however, you are passionate about Open Source, then don’t expect
working on the Mozilla Platform itself to be a RAD project. Working on the
platform is the same as working on any C or C++ project. You can make a dif-
ference month by month, not day by day. Unless you are lucky enough to get
paid for it, it’s a very long-term hobby. Applications can be rapidly developed
with Mozilla, but the platform itself is not as easily developed.

AppDevMozilla-01 Page 26 Thursday, December 4, 2003 6:22 PM

1.6 Hands On: Cranking Up the Platform 27

1.6 HANDS ON: CRANKING UP THE PLATFORM

This “Hands On” session provides a first exploration of the Mozilla Plat-
form and more steps that set up the NoteTaker project.

1.6.1 Installation

This book recommends downloading the 1.4 release of the platform, which
includes Classic Mozilla and the platform. Later releases are also probably
fine. You might want to check www.nigelmcfarlane.com for recent updates if
this book has been in print a while.

The installation notes on mozilla.org are quite complete and should be
read for your platform. They can be reviewed from the official download pages.
Some less obvious effects are briefly covered here.

On Windows 95/98/Me, your user profile will be installed in this obscure
location:

C:\Windows\Application Data\Mozilla

Under Windows NT/2000/XP technology, look in the equivalent path for
the current user. On UNIX, the profile can be found here:

~/.mozilla

It’s recommended that you do two whole installations of Mozilla, each
into a separate directory. One will be your reliable version; one will be for
development. On Windows and UNIX, if you have only the default user profile,
that profile will be shared by both installations. Alternatively, create a differ-
ent profile name for each installation. If you do this, disable email on the pro-
file for the development installation, or confusion will result. Two installations
give you two sets of chrome, one of which you can experiment on, leaving the
other intact and working.

If you install Mozilla twice, or if you install two versions, be very careful
when running them together. You can tell the differences between them from
the date in the title bar (on Windows), but starting one when the other is
already running is confusing, especially during testing. This is because
Mozilla uses a signaling mechanism. The version you started might signal a
running copy of Mozilla and then die straight away. That running copy then
opens a new window. It looks like you start a new window and a new instance
of the platform, but you really just opened another window of the existing,
running platform. If you are accustomed to viewing Web pages while you
develop, then the cleanest way to do that on Windows is to install Internet
Explorer as well. Use that for viewing documentation. On UNIX, it is easy to
run separate instances of the platform—just use the command line.

This book assumes standard installation directories. On Microsoft Win-
dows 95/98/Me, the install directory is here:

C:\Program Files\Mozilla

AppDevMozilla-01 Page 27 Thursday, December 4, 2003 6:22 PM

28 Fundamental Concepts Chap. 1

Under UNIX, installing applications into /usr is overrated and makes subse-
quent version control tasks harder. Ask any system administrator. The instal-
lation directory is assumed to be here:

/local/install/mozilla

In both cases, Mozilla’s chrome is stored in a chrome subdirectory underneath
these directories.

If you do two UNIX installations, you need to review the installation
notes about setting the environment variable MOZILLA_FIVE_HOME. If you
want to run the program from a GNOME icon, read the installation notes. The
GNOME Panel is the bar across the bottom of the desktop. You can drag a
newly made icon from the panel directly onto the desktop.

The following systems were used to test this book: Microsoft Windows
98SE with Internet Explorer 6.0 and patches; Red Hat GNU/Linux 7.2 with
GNOME 2.02. We also briefly tested with Microsoft Windows XP and MacOS X.

1.6.2 Command Line Options

Command-line help for the Mozilla Browser is available on UNIX using
--help. On Microsoft Windows, -h or -help will display a help message but
only if Mozilla’s output is sent to a file. Table 1.1 shows the available options,
but not all are available on all platforms.

1.6.3 Chrome Directories and the Address Book

The quickest way to see what Mozilla application development is like is to see
something working. The Address Book of Classic Mozilla is an easy starting
point. Like many Personal Information Managers (PIMs), it’s just a set of
names and contact points, including email addresses. The address book is tied
to the Classic Mail & Newsgroup client, from which it automatically collects
new names. Its database of contacts also assists the user when the Mail &
Newsgroup client tries to auto-complete a partially typed-in address.

Structurally, the address book is a piece of the Mail & News package.
That package is written entirely as a RAD client, using Mozilla’s chrome con-
cept. That means it contains no C or C++, although it makes heavy use of C/
C++ XPCOM components. It also means that you can customize and rewrite
the interface of the Classic Mail & News client as you see fit. The interface is
written in JavaScript and XUL, plus some complementary technologies. The
Classic Mail & News Client is stored in the chrome.

The chrome directory contains plain textfiles and JAR files. JAR stands
for Java Archive. It derives from Sun Microsystem’s Java project. For Mozilla,
such files are in plain ZIP format on Windows and UNIX. On Windows, it’s
convenient to associate these files with a tool like WinZip, or else the Java
JVM will try to execute them when they are double-clicked. File associations
with WinZip are a little tricky. If double-clicking a JAR file zips it up a second

AppDevMozilla-01 Page 28 Thursday, December 4, 2003 6:22 PM

1.6 Hands On: Cranking Up the Platform 29

time, then fix that with the WinZip Command Line Support Add-on from
www.winzip.com . In the absence of the add-on, just use File | Open Archive… to
inspect the JAR file. On UNIX, zip/unzip are the correct tools, not gzip/
gunzip. On the Macintosh, StuffIt! or a similar tool is required.

Figure 1.4 shows a typical example of the chrome directory on Microsoft
Windows.

Table 1.1 Command-line option for Mozilla

Option name Mozilla starts with

-addressbook the email address book

-chat the IRC chat client, if installed

-compose field1=val1,
field2=val2,etc

the email message composer

-chrome URL a chrome window, contents at URL

-console an additional command-line window that displays diag-
nostic messages and the output of dump()

-contentLocale L a normal window but HTML content locale set to L

-CreateProfile PNAME a normal window, under a new profile of PNAME

-edit URL the Composer HTML editor, editing the file at URL

-h -help—help nothing; display command-line help instead

-height N a window N pixels high

-installer the Netscape 4.x migration tool

-jsconsole the JavaScript console

-mail the email and news reader

-news the email and news reader

-nosplash without the splash screen

-P PNAME the user who’s profile is PNAME

-ProfileManager the profile manager tool

-ProfileWizard the profile creation tool

-SelectProfile the profile selection tool

-quiet without the splash screen

-UILocale L a normal window but with the XUL locale set to L

-venkman the JavaScript debugger, if installed

-width N a window N pixels wide

AppDevMozilla-01 Page 29 Thursday, December 4, 2003 6:22 PM

30 Fundamental Concepts Chap. 1

This screenshot shows a Mozilla installation with en-US (U.S. English,
the default) and fr-FR (standard French) localizations. Mozilla auto-generated
the overlayinfo directory and solitary text files; however, they can be edited
by hand.

☞ chrome.rdf is a text-based database of all the JAR files.
☞ toolkit.jar contains general-purpose utilities that make up a “global”

piece of chrome content.
☞ classic.jar contains the Classic skin.
☞ messenger.jar contains the Mail & News Client.
☞ comm.jar contains the chrome for a normal Web browser window and

for the HTML editor.

It might seem that some pattern is implied by these file names, but that
is not strictly true. There is merely a JAR naming convention that keeps lan-
guage packs, themes, and components separate. It is not mandatory to use
JAR files—files can be stored on their own, uncompressed and un-archived,
anywhere inside the chrome directory. A second naming convention applies to
the directory structure underneath the chrome directory. If it is not applied,
some features of the platform won’t work, so that convention is more impor-
tant. An example of this second convention is shown in Figure 1.5.

This chrome directory contains two application packages, packageA and
packageB. The most important directories are underlined: content, locale,
and skin. Content contains the application. Locale contains language-specific

Fig. 1.4 Chrome directory on Microsoft Windows.

AppDevMozilla-01 Page 30 Thursday, December 4, 2003 6:22 PM

1.6 Hands On: Cranking Up the Platform 31

elements of the application. Skin contains theme-specific elements of the
application (decorative information). By splitting an application into these
three components, an application can be reused across different languages and
themes. Underneath these three directories, subdirectories can be nested as
deep as you like, as the subdir examples show.

If you examine the files inside any JAR archive, you will see that they are
distributed across this standard directory layout. Thus, modern.jar, a JAR
file containing the modern skin, holds files for the skin subdirectory only,
whereas venkman.jar, the JavaScript debugger, contributes files to all three
top-level chrome directories. The directories inside a JAR file are slightly
inverted so that they don’t match the hierarchy of Figure 1.5. This is done to
make searching the JAR file faster. Mozilla automatically converts these non-
standard directories back to those of Figure 1.5 if necessary.

All these naming and structural conventions can be completely ignored
at two costs. First, your application is likely to become a disorganized mess.
Second, chrome URLs are magically modified to pick up the current theme
and current locale. If your MyTheme skins and MyLocale text aren’t in the
right directories, they might display because they are hardcoded in, but they
won’t respond to the chrome system when the current theme or locale is
switched to MyTheme or MyLocale.

For the address book, Figure 1.6 shows a slice of the applicaiton's insides.
From this screenshot, it’s clear that chrome applications can be large—

this JAR file expands to 1.5 MB (megabytes) of source code. Some JavaScript
scripts in this JAR file are nearly 100 KB (kilobytes) alone. There is no compi-
lation to do on any of these files; they all run in Mozilla exactly as they are.

Fig. 1.5 Chrome subdirectories for all platforms.

AppDevMozilla-01 Page 31 Thursday, December 4, 2003 6:22 PM

32 Fundamental Concepts Chap. 1

The nearest equivalent in the address book to a main.c is the address-
book.xul file. It is a good example of Mozilla’s features at work. If you view
this file, get out your XML experience, and spot the following general items:
XML notation; use of <?xul-overlay>, <?xml-stylesheet?>, and
<script> to include other files; extensive use of DTDs and entity references;
XML namespace declarations; event handlers; and a big pile of tags that
sound descriptive of GUIs.

This JAR file is not the only one that contains address book files. More
can be found in other files, such as the JAR files holding Classic and Modern
skins. If you delete all the chrome, or wreck it, you can’t use the address book,
and may not be able to start Mozilla at all. Chrome is vital to Mozilla.

It’s also possible to modify Mozilla from outside the chrome directory.
Chapter 17, Deployment, covers XPInstall, which allows most files in the
Mozilla installation to be replaced. Some of these files, like preference files,
make sense to modify, and this book points out when that is a good idea. Oth-
ers, like some of the resource files under the res directory, are better left
alone. Ignoring these files is a good idea because they have been thoroughly

Fig. 1.6 Address book portion of messenger.jar chrome file. Used by permission of
WinZip Computing, Inc.: Copyright 1991-2001 WinZip Computing, Inc.WinZip®is a
registered trademark of WinZip Computing, Inc. WinZip is available from
www.winzip.com. WinZip screen images reproduced with permission of WinZip
Computing, Inc.

AppDevMozilla-01 Page 32 Thursday, December 4, 2003 6:22 PM

1.6 Hands On: Cranking Up the Platform 33

tested. Binary files can also be changed, but that is a C/C++ coding job for
another day. Finally, there are configurable files under the individual Mozilla
user profiles. The .js preference files in there are probably the only files that
occasionally require hand-modification.

1.6.4 “hello, world”

No programming book is complete without a go at this simple program, made
famous by Kernighan and Ritchie in The C Programming Language . The orig-
inal “hello, world” was upgraded to “Hello, World!” after C gained an
ANSI standard. Mozilla is in its formative days, so the early version is the
appropriate one to follow here.

Mozilla supports all the simple versions of HTML-based “hello, world”
you can think of. There are endless variations. Listing 1.2 shows trivial ver-
sions for legacy and standard HTML dialects, in case anyone has forgotten.

Listing 1.2 “hello, world” in legacy HTML and in XHTML 1.0.
<html><body>
 hello, world
</body></html>

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN" "DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<body>
 hello, world
</body></html>

For rapid application developers, a more appropriate “hello, world” uses
XUL, Mozilla’s GUI markup language. Again, there are endless variations, but
the simplest case, which reveals very little about XUL, looks like Listing 1.3.

Listing 1.3 “hello, world” in legacy Mozilla’s XUL.
<?xml version="1.0"?>
<!DOCTYPE window>
<window xmlns= "http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul"
>
 <box>
 <description>hello, world</description>
 </box>
</window>

The main thing to note is that XUL requires a special tag (<descrip-
tion>) with an inconveniently long name for simple text. XUL files don’t usu-
ally contain much plain text; they contain other things. The XML namespace

AppDevMozilla-01 Page 33 Thursday, December 4, 2003 6:22 PM

34 Fundamental Concepts Chap. 1

identifier is an oblique reference to the movie Ghostbusters , based on the fact
that some pronounce XUL like this: zool . This string appears nowhere but
inside Mozilla. There is a placeholder XML page at the Web address give by
this string, but it is not used for anything.

To get this going, save the content to a file called hello.xul in any
directory. No use of chrome is necessary for simple cases. Load it into Mozilla
using a file: URL, typed into the location bar as for any URL. The result
might be as shown in Figure 1.7, if the file were located in /tmp/hello.xul.

Mozilla XUL content does not have to appear inside a browser window.
Shut down Mozilla, and start it from the command line using the -chrome
option. A typical one-line UNIX command is

/local/install/mozilla/mozilla -chrome file:///tmp/hello.xul

A typical one-line Microsoft Windows command is

"C:\Program Files\Mozilla\mozilla.exe" -chrome "file:C:/tmp/
hello.xul"

In either of these cases, the result is likely to be as illustrated in Figure 1.8.
This last expression of “hello, world” is typical of applications developed

with Mozilla. It’s a beginning.

1.6.5 NoteTaker Preparation

The NoteTaker application is a tiny example application running through this
book. Rather than standing by itself, it works with the Mozilla Classic Browser.
When end users install NoteTaker, all the setup is done for them automatically.
As developers, we must make our own road, right from the beginning.

Fig. 1.7 XUL version of “hello, world” displayed as a document.

Fig. 1.8 XUL version of “hello, world” displayed as chrome.

AppDevMozilla-01 Page 34 Thursday, December 4, 2003 6:22 PM

1.7 Debug Corner: Debugging from Outside 35

The only step required for NoteTaker setup is to create some directories
and to register the name notetaker as an official Mozilla chrome package. As
an official package, it will be accessible via the chrome: URL scheme. Here
are instructions for creating the directories:

1. In the Mozilla install area, change the current working directory to the
chrome directory.

2. Make a subdirectory notetaker, and change to that directory.
3. Make subdirectories named chrome, locale, and skin.
4. Inside locale, make an en-US subdirectory.
5. Inside skin, make a classic or modern subdirectory, or both.

Package registration is done in the chrome/install-chrome.txt file.
To register NoteTaker as the chrome package “notetaker,” just add this line to
the end of that file, and restart the platform.

content,install,url,resource:/chrome/notetaker/content/

This syntax is very fragile and must be added exactly as shown. On the
application side, nothing more is required at this point, although we’ll revisit
these directories frequently. It is recommended that you also follow the advice
in the “Debug Corner” section that’s next.

1.7 DEBUG CORNER: DEBUGGING FROM OUTSIDE

Mozilla is quite a complicated system. If you don't have it configured correctly,
working applications are harder to achieve. The number of mysterious prob-
lems is reduced with every bug fix, but it’s better to set yourself up for success
from the beginning.

You can apply a number of overall settings to Mozilla to make life easier.
The most obvious technology to learn is the JavaScript debugger, code-named
Venkman. It’s located under Tools | Web Development | JavaScript Debugger. If you
like visual, integrated debuggers, then this is the way to go. This author pre-
fers the UNIX philosophy of many small tools, so there’s no Venkman tutorial
here. To start the debugger, add this line to the scripts in your application:

debugger;

Netscape 7.0 doesn’t come bundled with the debugger (version 7.1 does),
but you can still download and auto-install it at any point. To find it, look on
the DevEdge Web site, at http://devedge.netscape.com.

1.7.1 Important Preferences

The most important thing to get right is Mozilla’s preferences. Mozilla has
over a thousand preferences. Only a tiny subset are available from the Edit |

AppDevMozilla-01 Page 35 Thursday, December 4, 2003 6:22 PM

36 Fundamental Concepts Chap. 1

Preferences menu. The rest should be hand-coded using a text editor. Mozilla
cannot be running while doing this because it rewrites the preference files
every time it shuts down. This is the same as Netscape 4.x products.

You can also see and edit the majority of preferences by typing the URL
about:config. Beware that the editing system does not modify the prefer-
ence that you right-click on; it modifies any preference. There are hidden pref-
erences as well as those shown.

To change a preference on disk, either modify the prefs.js/prefer-
ences.js file in the appropriate user profile, create a new preference file
called user.js in the user profile, or modify the all.js file under the
Mozilla install area. That last file is in defaults/prefs. Just duplicate an
existing line and modify it. Preference order is not important.

Table 1.2 lists preferences that, for application developers, are best
changed away from the default.

There are numerous other dumping and debugging options, but they are
of limited assistance. Make sure that the normal browser cache is set to com-
pare pages with the cache every time they are viewed.

You might want to test your Mozilla applications on Netscape 7.0 as well
as on the mozilla.org platform. Netscape 7.0’s Quick Launch feature is hard to
turn off under Microsoft Windows. Even if you choose “no” during the installa-
tion, it may still be activated. If so, look in the Windows registry here for some-
thing to remove:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

Table 1.2 Important nondefault developer preferences

Preference Set to Reason

browser.dom.window.dump.enabled true Enables diagnostic function dump().

nglayout.debug.disable_xul_cache true By default your XUL application is
cached by Mozilla. During testing
you want the real, genuine file loaded
at all times.

javascript.options.strict true Adds more diagnostic reports to the
JavaScript Console.

nglayout.debug.disable_xul_fastload true A second cache for XUL, loaded at
startup time from an .MFL file. Pos-
sibly confusing when left on.

signed.applets.codebase_principal_support true Lifts all security restrictions on
downloaded content except that the
user must still grant access.

xul.debug.box false Can be turned on from inside an
XUL file if required.

AppDevMozilla-01 Page 36 Thursday, December 4, 2003 6:22 PM

1.7 Debug Corner: Debugging from Outside 37

1.7.2 Multiwindow Development

When Mozilla is running, it generally manages more than one window at a
time. It is easy to be confused by this arrangement, especially if you have mul-
tiple versions of Mozilla installed.

1.7.2.1 Microsoft Windows Behavior If a new Mozilla window is opened on
Microsoft Windows, then it will be attached to any currently running Mozilla
program. That means that there can be at most one version of Mozilla running
at any given time, and at most one instance (running executable) of that ver-
sion.

If a window is started from the command line or desktop icon, then the
program executed does no more than look for an existing, running Mozilla. If
one exists, that existing copy is sent an “open window” instruction, and the
command line or icon-based program ends. Only if there is no other Mozilla
program running will a command line or icon start a whole new platform
instance.

This means that if you have two version of Mozilla, in the simple case,
you can’t run them both at the same time on Windows. In the complex case, it
is possible to overcome this restriction. To do so, start by making a copy of the
Mozilla executable. Modify the copy’s resources with a resource editor tool
(e.g., Microsoft Visual C++). Change resource strings 102 and 103 in the String
Table section to something new. Save the copy. The copy can now be run as a
separate instance to the original executable. It should also use a separate pro-
file. If you do this, you also have to remember this modification is in place.

Second, it is possible (and sometime easy) to create poorly formed XUL-
based applications. When windows holding these applications are displayed,
everything seems normal, although they may not work as intended. In rare
cases, when those windows are closed, the running platform can linger on. If
this happens, the next window opened will use the existing platform, which
may be in a buggy state as a result of the poorly formed application previously
tested.

If you suspect that this is happening to you, use Control-Alt-Delete to
check for any Mozilla processes still running, even though all windows are
gone. Such a process is safe to kill.

1.7.2.2 UNIX X11/GTK Behavior On UNIX/Linux, a Mozilla command line or
desktop icon will not interact with an existing, running instance of Mozilla.
This is the opposite of Microsoft Windows and is true for versions at least as
modern as 1.4.

This behavior is something of a nuisance because a XUL application does
not usually have standard Mozilla menus. These menus are the access points
for diagnostic tools like the DOM Inspector, Debugger, and JavaScript Con-
sole. Without these menus, there’s no obvious way to start these tools. So it is
difficult to apply them to the XUL application under development. On Win-

AppDevMozilla-01 Page 37 Thursday, December 4, 2003 6:22 PM

38 Fundamental Concepts Chap. 1

dows, you can just start another Navigator window and open the standard
menus from there. On UNIX, you cannot.

There is a very easy workaround for the JavaScript console; just add this
option to the command line:

-jsconsole

A more general workaround is to include a piece of script in your XUL
application, as shown in Listing 1.4. For this script to work, the XUL applica-
tion must be installed in the chrome, since it requires that no security be in
place.

Listing 1.4 Starting Mozilla tools with an application.
<script>
var options =

"chrome,extrachrome,menubar,resizeable,scrollbars,status,toolbar
";

var domins = "chrome://inspector/content/inspector.xul";
var jscons = "chrome://global/content/console.xul";
if (window.name == "_blank") {
 setTimeout("window.open('"+location+"','test','chrome')",5000);
 setTimeout("window.close()",6000);
 window.open(domins,"_blank",options);
 window.open(jscons,"_blank",options);
}
</script>

This script opens the DOM Inspector and JavaScript Consoles when the
current document loads and then replaces the current document with an iden-
tical copy in another window. This last step is done so that the application win-
dow loads last. This loading order allows the DOM Inspector to notice the
application window, which can then be inspected.

There are many systems between Mozilla and the screen under UNIX. If
you experiment aggressively with the application, it’s possible to trip over
bugs hiding elsewhere in the desktop. If something locks up or goes mad, the
first thing that attracts blame is Mozilla, but the blame may well lie else-
where. Use top(1), ps(1), and kill(1) to shut down and restart one sys-
tem at a time until the problem is gone. A suitable testing order follows:

1. Kill and restart all Mozilla processes and clean up XUL .mfasl files, if
any.

2. Kill and restart the window manager (sawfish, twm, enlightenment,
etc.).

3. Kill and restart the whole desktop (GNOME, KDE, OpenStep, etc.).
4. Kill and restart the X-server (Xfree86, vncserver, etc.).
5. Logout and login.
6. Reboot the computer.

AppDevMozilla-01 Page 38 Thursday, December 4, 2003 6:22 PM

1.8 Summary 39

Such problems are rare, but a systematic approach to solving them will
save a great deal of time. It will also save Mozilla from an undeserved bad name.

1.7.3 Compile-Time Options

If you are willing to wrestle with the compilation process for Mozilla, you can
build a binary with additional programmer-level debugging support. Some of
this support can be activated by setting various magic environment variables.
Be warned that some of these options spew out vast amounts of information.

The gateway to a more debuggable version of Mozilla is the --disable-
debug option. This is an option to the configure tool set right at the start of
the compile process. When turned on, many sections of debug code throughout
Mozilla are included in the compiled code. To turn this option on, or to turn
other options on, you can generate a custom file that configure can take
advantage of from a form on mozilla.org. That form is located at http://
webtools.mozilla.org/build/config.cgi.

To understand what environment variables make sections of debug code do
something, read the Mozilla source code. To find other debug assistance at the
compile level, such as #ifdef EXTRA_DEBUG directives, read the source code.

1.8 SUMMARY

Mozilla is a browser-like tool that can be used to create applications faster
than traditional 3GLs (Third-Generation Languages). It brings some of the
benefits of Web-based applications to traditional GUI-based applications. The
highly interpreted nature of such environments creates an opportunity to do
very rapid iterative development and efficient prototyping. This efficiency
must be balanced against a desire to look more deeply into the tool, which is a
time-consuming activity, and against syntax problems, which rest heavily on
the shoulders of the developer.

Mozilla has its roots in the evolution of Web browser technology, and it
has much to offer in that area. It has up-to-date standards support and is
highly portable. For UNIX platforms, it is the obvious, if not the only, browser
choice. The architectural extensions inside Mozilla, however, are of most inter-
est to developers. The componentization of Mozilla’s internals presents a
developer with a ready-made set of services to work with, and innovative GUI
markup languages like XUL are powerful and convenient. This piece-by-piece
structure allows Mozilla to be considered a development platform, although it
suffers a little from being version 1.0.

Mozilla is backed by an organization that is both commercially and com-
munity driven. It provides a plethora of resources for a technical person to
take advantage of and asks nothing in return. The organization has many
partners in commerce, academia, and standards communities and shows no
sign of shutting up shop. It seems likely that the technology it develops has a
fair chance of being useful, influential, and popular.

AppDevMozilla-01 Page 39 Thursday, December 4, 2003 6:22 PM

