

Class
libraries

XPIDL
definitions

JSlib

RDFlib

Type
libraries

Mozilla
registry

Preferences

Digital
Certificates

RDF

JavaJavaScript

AppDevMozilla-15 Page 562 Thursday, December 4, 2003 6:37 PM

563

C H A P T E R

Overlay
database

Keyboard

Desktop
themes

GUI
toolkits

Fonts

Default
CSS

W3C
standards

DTDs

Skins

Mouse

RDF

XBL
definitions

DOM

Events

GesturesKeycodes

XBL

JavaScriptcript

UR
L

15

XBL Bindings

AppDevMozilla-15 Page 563 Thursday, December 4, 2003 6:37 PM

564 XBL Bindings Chap. 15

This chapter explains how to enhance the XUL language with new tags and
new behavior using XBL (XML Binding Language).

XBL is an XML-based language that allows new, fully featured tags to be
added to XUL, HTML, and XML. It is an efficient system for creating new GUI
widgets. It is specific to Mozilla.

Plain XUL allows programmers to create user-defined tags like

<mytag>

,
but such tags aren’t very useful. They can be styled but are merely simple box-
like tags. XBL, by comparison, allows for the creation of whole widgets with
distinctive appearance and behavior. The content of an XBL widget is made up
of tags drawn from XUL and HTML and from other tags based on XBL. An
XBL widget is not as flexible as a Java applet or a plugin. It cannot start with
a blank, rectangular canvas, and use sophisticated graphics libraries to draw
on that plane. XBL can only combine existing tags.

XBL does not create new tags; it creates new bindings. A

binding

 is a
bundle of tags and scripts that together provide the features of a new widget-
like event handler and displayable content. This bundle is a binding, and a
binding is like an object. In Mozilla, a binding is matched to a user-defined tag
with the Mozilla-specific CSS2 property:

-moz-binding

. After the binding is
matched to the tag, they are said to be bound. A trivial binding is shown in
Listing 15.1. This is a fragment of an XBL document and implements a widget
that is just a smiley face (an emoticon).

Listing 15.1

Trivial example of an XBL binding.

<binding id="smiley">
 <content>
 <xul:image src="face.png"/>
 </content>
 <handlers>
 <handler event="click" action="alert('have a day')"/>
 </handlers>

</binding>

Such a binding could be attached to a user-defined tag named

<smiley/>

with a line of CSS like so:

smiley { -moz-binding: url("smiley.xml#smiley"); }

The

<smiley/>

 tag will now displays a face whenever it is used in a XUL doc-
ument. If the face is clicked on, it pops up an alert encouraging you to have a
day. This is a very simple widget with its own trivial interactivity. Neither
XUL nor HTML supplies a

<smiley>

 tag.
The XBL binding system is built into the C/C++ code of the Mozilla Plat-

form, but the bindings themselves are written using only JavaScript and
XML. This fully interpreted environment makes bindings as easy to create
and manage as XUL or HTML. This ease of use has been well-exploited in
Mozilla. Many XBL bindings contribute to Mozilla applications such as the
Classic Mail & News and the Classic Browser. Nearly all XUL tags have an
XBL binding.

AppDevMozilla-15 Page 564 Thursday, December 4, 2003 6:37 PM

15.1 Binding Concepts 565

Throughout this book, references are made to

.xml

 files in the

tool-
kit.jar

 chrome file. These

.xml

 files are XBL bindings, usually several per
file. Some XUL tags documented in this book are nothing more than XBL
bindings at work. Good examples are highly specialized tags like

<tab-
browser>

 and

<colorpicker>

, which are defined purely in XBL. Even sim-
ple tags like

<button>

 have XBL bindings.
Beyond Mozilla, a technology similar to XBL is the PostScript language.

PostScript is used mostly for printing, but PostScript scripts can also be cre-
ated by hand. Postscript allows chunks of displayable content to be named and
reused. This makes it easy to construct large documents. List processing lan-
guages like Lisp and Tcl/Tk also provide an interpreted way of constructing
GUIs, but they are more program-like than XML-based XBL. Tcl/Tk is proba-
bly XBL’s biggest competitor in the Linux world. The pre-supplied components
that Microsoft’s .NET provides and the much simpler behaviors of Internet
Explorer are XBL competitors in the world of Microsoft Windows.

An XBL binding has a clearly defined interface and a unique identity,
and that makes XBL a tiny component system. Just as XPCOM is designed for
3GL components, XBL is designed for XML components. XBL’s component
model is much simpler than XPCOM’s.

Because XBL bindings are made from XML and JavaScript, bound ele-
ments can be freely intermixed with HTML or XUL. HTML intermixing is
unusual because the set of tags used in HTML pages is fixed and standard. It
is far more common to see XBL used in XUL applications.

The NPA diagram at the start of this chapter shows the extent of XBL in
the Mozilla Platform. Despite its status as a component system, XBL is a
front-end Mozilla technology. During the loading of a XUL document, XBL
bindings are identified and pulled separately into the final document’s con-
tent. This inclusion process has some similarities with the overlay system.
After tags bound to XBL bindings are loaded, they display their content like
any XUL tag. The XBL system also has special support for capturing user
input events. It uses a capture system almost the same as the XUL

<key>

 tag.
This chapter continues with an overview of bindings and then gets down

to the specific tags.

15.1 B

INDING

 C

ONCEPTS

XBL extends XML and the traditional Web environment the way C++ extends
C. It provides object-like features on top of a system that has no object-like fea-
tures to start with.

15.1.1 An Example Binding

Every XBL document is just a list of bindings, each stated with a

<binding>

tag. Constructing a binding is similar to constructing an object’s class. Listing

AppDevMozilla-15 Page 565 Thursday, December 4, 2003 6:37 PM

566 XBL Bindings Chap. 15

15.2 shows a simple XBL binding that is a variant of the XUL

<checkbox>

tag’s binding.

Listing 15.2

Example XBL binding similar to

<checkbox>

’s binding.

<?xml version="1.0"?>
<bindings
 xmlns="http://www.mozilla.org/xbl"
 xmlns:xbl="http://www.mozilla.org/xbl"
 xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul"
>
<binding id="checkbox" extends="general.xml#basetext">

 <resources>
 <stylesheet src="chrome://global/skin/checkbox.css"/>
 </resources>

 <content>

 <xul:image class="checkbox-check"

xbl:

inherits="checked,disabled"/>
 <xul:hbox>
 <xul:image class="checkbox-icon"

xbl:

inherits="src"/>
 <xul:label

xbl:

inherits="xbl:text=label,accesskey,crop"/>
 </xul:hbox>

 </content>

 <implementation implements="nsIDOMXULCheckboxElement">
 <method name="check" action="this.checked = true"/>
 <property
 name="checked"
 onset=

"if (val) this.setAttribute('checked','true');"

 onget=

"return this.getAttribute('checked') == 'true';"

 />
 </implementation>

 <handlers>
 <handler event="click" button="0"
 action="if (!this.disabled)

this.checked = !this.checked;"/>

 <handler event="keypress" key=" ">

 <![CDATA[
 this.checked = !this.checked;
]]>

 </handler>
 </handlers>

</binding>

</bindings>

Listing 15.2 shows many of the standard features of a binding. The

<resource>

 and

<content>

 sections describe data in the form of styles,
images, tags, and plain XML elements. These sections are used to deliver XML
content. The

<implementation>

 and

<handlers>

 section describe proper-

AppDevMozilla-15 Page 566 Thursday, December 4, 2003 6:37 PM

15.1 Binding Concepts 567

ties, methods, and event-handling hooks. These sections are installed as Java-
Script and DOM content. The content and scripting aspects of a binding are
like the data and code forks in a PC or Macintosh program. The pale content is
XUL and JavaScript code. It is used

by

 the binding, but it is not

part of

 the
XBL language.

It is common practice to study other people’s bindings. “Reading Others’
Code: Naming Conventions” in Chapter 16, XPCOM Objects, and Table 16.1
provide some reading hints for bindings created by mozilla.org.

15.1.2 Standards

XBL is an application of XML. Its XML definition can be found at

www.mozilla.org/xbl

. Mozilla does not load this URL; it is just used as an
identifier that is recognized when encountered.

The standard suffix for a file containing XBL is

.xml

. The standard
MIME type for an XBL document is

application/xml

.
XBL bindings are identified by a URL. There is no separate URL scheme

for XBL; instead the two most common access methods are the

http:

 and

chrome:

 schemes. Like RDF, binding URLs include a

#id

 suffix that identi-
fies a given binding within an XBL document. Like RDF, that identified bind-
ing is considered a whole resource rather than a resource fragment. An
example URL is

chrome://global/content/bindings/button.xml#button.

XBL has been submitted as a Note to the W3C. This means that a docu-
ment describing XBL has been submitted to that organization. A W3C Note is
a technology description lodged as a proposed solution to an issue that the
W3C is considering. It is not a draft standard or “on the standards track”; it is
just a proposal. The latest version of the XBL Note can be found at

www.mozilla.org/xbl/xbl.html

.
Mozilla’s implementation of XBL is different from the Note submitted to

the W3C. It contains additional features and does not implement all the fea-
tures in the Note. The “Non-Tags and Non-Attributes” topic in this chapter
discusses the differences.

Standards competing with XBL include ECMA-290 “ECMAScript Com-
ponents” which is used by Microsoft in its WSH (Windows Scripting Host)
technology. The WSDL standard and its related standards attempt to provide
a distributed naming system for components and services, but WSDL is not as
closely tied to user interaction as XBL is. Another semicompeting standard is
XSL. XSL can process an XML file and replace specified tags with other con-
tent. That is the same as XBL, but XSL operates in batch mode, performing a
single pass over the supplied document. XBL can be applied after a document
is fully loaded. XBL is a helper system, rather than a full processing step like
XSL. No other standard really addresses the niche that XBL addresses.

AppDevMozilla-15 Page 567 Thursday, December 4, 2003 6:37 PM

568 XBL Bindings Chap. 15

XBL has a broader agenda than most W3C standards. HTML, CSS, and
JavaScript can only interoperate to a certain degree. Those three standards all
focus on one tag, one style, and one object at a time. Although these standards
allow content tags, style rules, and object properties to be grouped together,
this grouping is quite narrow. There is no structural support across Web stan-
dards for programmers who need high-level object or component concepts to
work with. XBL seeks to fill this gap for programmers by integrating XML,
scripting, and styles into one structure—a binding.

15.1.3 Relationship with DOM Hierarchies

XBL bindings must be installed into a DOM hierarchy before they can be used.
Before a binding can be used, it must be

bound

 to an existing tag in an
existing XML document. That existing tag is called the

bound tag

, and the
existing document is called the

target document

. If the bound tag has content
of its own, that content is called the

explicit content

. If the binding contains a

<content>

 tag, then the tags inside that

<content>

 tag are called

anony-
mous content

. There is at most one set of anonymous content per binding, but
there can be a different set of explicit content for each bound tag in the target
document. Both types of content, plus the other details in the binding, add to
the document that uses the binding.

When a binding is bound, the DOM hierarchy in the target document
grows. Three changes are made:

1.

The bound tag gains the properties, methods, and event handlers of the
binding.

2.

The bound tag has its content replaced with a mix of explicit and anony-
mous content.

3.

The anonymous content is separately added to the DOM and is available
via a special mechanism.

Steps 1 and 2 are repeated for each instance of the bound tag in the target
document. This is a content generation process very similar to overlays and
templates. Like overlays, content is inserted into the target document at spe-
cific points. Like templates, extra content is created by repeatedly copying a
standard set of tags. The Mozilla Platform automatically performs these steps.

The full XBL definition of the binding is not available in the bound doc-
ument. If necessary, it can be loaded and examined just as any XML docu-
ment can.

These principles are broken down into steps in “How Bindings are Pro-
cessed” later in this chapter.

15.1.4 Default Actions

The XBL system can be used to implement the default actions that HTML and
XUL tags and widgets offer.

AppDevMozilla-15 Page 568 Thursday, December 4, 2003 6:37 PM

15.1 Binding Concepts 569

An example of a default action is given by the HTML

<input
type="submit">

 tag. When the button widget associated with this tag is
clicked, form data are submitted by a browser to some Web server. No script-
ing is required to make this submission happen. The default action is part of
the DOM Event processing that occurs for all XML tags. But how exactly is a
form submission implemented, and how is it connected to the DOM Event pro-
cessing?

The answer is that a default action can be implemented in an XBL bind-
ing. A binding provides a means to specify what DOM event and what Java-
Script handler go together. When an event is generated, the XBL binding is
automatically detected as the source of the default action, and the right han-
dler is run, causing that action to occur.

A given widget can have a different default action for each kind of user
input event. In the case of the

<input type="submit">

 tag, pressing the
Return or Enter key or clicking the displayed button produces the same effect.
This does not have to be the case when a binding is created—every event can
cause a different outcome.

Using a traditional even handler, the application programmer can over-
ride default actions. This, however, must be attacked correctly. If the applica-
tion handler is installed as an attribute value (such as an

onclick

 handler),
then that handler will be used instead of the XBL handler. If the application
handler is installed using addEventListener(), then this handler must be
installed before the XBL handler is bound to the tag. This requirement puts
the application handler ahead of the XBL handler on the list of event han-
dlers. To achieve this status, see the remarks in “Scripting.”

An XBL binding is not responsible for the event capture and bubbling
processes. It is not responsible for maintaining the input focus or the state of
the window’s focus ring. Those things are done deep in the C/C++ part of the
platform and have nothing to do with XBL. Mozilla’s accessibility support (for
the disabled) is implemented using XBL, but the input system that first cap-
tures accessibility commands is part of the core platform.

15.1.5 Object-like Features

A bound XBL binding has object-like features and can be considered an object
from a JavaScript or DOM perspective.

An object interface consists of object attributes, methods, and exceptions.
Binding interfaces contain object properties, methods, and handlers. Proper-
ties are effectively object attributes, and handlers are just special-purpose
object methods. Exceptions can also be implemented in a binding, but XBL has
no explicit syntax for them. To create an exception, use the throw feature of
JavaScript instead.

XBL also has support for traditional object-oriented concepts. Table 15.1
is an overview of the OO support that XBL provides.

AppDevMozilla-15 Page 569 Thursday, December 4, 2003 6:37 PM

570 XBL Bindings Chap. 15

Each binding can extend (inherit) one other binding. That other binding
can in turn inherit a further binding, and so on. Such a set of inherited bind-
ings form an order list called an inheritance chain. When a particular binding
is bound, that particular binding is at the head of the chain. That binding is
also called the primary binding. The chain is always at least one binding long.
If the chain is exactly one binding long, then there is no inheritance at work.

Figure 15.1 shows an example of an inheritance chain, based on the XUL
<button> tag.

Table 15.1 XBL object support

Object concept XBL support

Aggregation XBL tags collect content (including bound content) and Java-
Script code together into a binding, and merge explicit and
anonymous content into a final content set.

Containment The bound tag holds all content and JavaScript logic. An XBL
binding can contain other bound tags, and therefore other
bindings.

Encapsulation A bound tag holds all the useful information a binding sup-
plies, although some housekeeping information can be
accessed using the JavaScript document object.

Inheritance XBL supports the inherits attribute, for inheriting XML
attributes, and the extends attribute, for inheriting whole
bindings.

Information hiding When a binding is bound, the binding specification is hidden
from the bound tag. Only the interface implied by that speci-
fication is available.

Interfaces A binding that implements an interface can be inherited by
another binding by use of the extends attribute. A binding
can specify what XPCOM interfaces it supports using the
XBL implements attribute.

Late-binding Bindings are loaded independently and asynchronously into
a bound document. A binding can be bound or rebound using
CSS2 rules at any time. Bindings must always be referred to
explicitly. All bound bindings must be concrete. There is no
mechanism for finding a base binding for a derived binding.

Object-based Bound bindings look like objects from a JavaScript perspec-
tive.

Object-oriented The XBL extends attribute supports basing XBL bindings on
other XBL bindings. This support includes the concept of an
inheritance chain. See following discussion.

Multiple inheritance XBL only supports single inheritance of bindings.

Run-time type reflec-
tion

XBL has no automatic support for type reflection. A binding
can implement the nsIClassInfo interface if it wishes.

AppDevMozilla-15 Page 570 Thursday, December 4, 2003 6:37 PM

15.1 Binding Concepts 571

This example shows an inheritance chain of three items. The “button”
binding is bound to the <button> tag, and that binding is the head of the
chain. The other two bindings are general-purpose bindings that are inherited
in many places across XUL. The button-base binding is used for all (or
most) button-like widgets, and the basetext binding is used for all widgets
that have a textual component. button and button-base are defined in the
same XBL document (button.xml), but basetext is defined elsewhere (in
general.xml). All three of these bindings contribute features to the <but-
ton> tag’s DOM object.

Two bindings can inherit the same base binding, so the full set of inherit-
ance chains can be viewed as a tree (or grove of trees). This treelike structure
might be an aid at design time, but there is no way to navigate it or inspect it
from a script.

Table 15.2 shows how the various features of XBL bindings are inherited.

Table 15.2 Inheritance of XBL binding features

XBL feature Inherited?

<resources> All bindings in the inheritance chain have their resources
loaded. All stylesheets have the same default weight, but
rules nearest the head of the chain are applied later and over-
ride earlier rules.

<content> No inheritance. The binding at the head of the chain is the
sole binding used. If bound tags are contained inside <con-
tent>, rather than inherited, then their bindings are applied.

<field>, <property>,
and <method>

Properties and methods are inherited. If the derived binding
duplicates a name in a base binding, the derived version
replaces the base version, and the base version is not avail-
able from logic in the derived binding.

<constructor> and
<destructor>

Both are inherited. Constructers are run one at a time in
order from the ultimate base binding to the final derived
binding. Destructors are run one at a time in order from the
final derived binding to the ultimate base binding.

Fig. 15.1 XBL inheritance hierarchy for the XUL <button> tag.

AppDevMozilla-15 Page 571 Thursday, December 4, 2003 6:37 PM

572 XBL Bindings Chap. 15

15.1.6 XBL Component Framework

The XBL system is a very simple component framework. A component frame-
work allows standardized components to interoperate in a convenient way. A
binding is a form of component.

A component system similar to XBL is Perl’s module system, which is
accessed with the Perl use and require keywords. Both systems are quite
primitive. XBL bindings can be inspected via the DOM just as Perl modules
can be inspected via symbol tables. XBL bindings are not directly included the
way Perl modules are, but in general terms they are overlaid on other code.

Component names in the XBL system are URLs of the form
Resource#Id, where Resource is a document’s Web address and id is the
value of the id attribute for a <binding> tag. Like RDF, XBL treats id-
qualified URLs as whole resources, not as offsets in an existing resource.

XBL has no component registry or name service and no way of querying
the specification of a binding. Instead, each XUL or HTML document main-
tains a simple internal list of the currently active bindings for that document.

The XBL component system is a distributed system because bindings can
be retrieved from URLs anywhere. Bindings do not communicate back to the
server they are loaded from unless they contain code designed to do just that.

XBL does not have the features of complex component systems like
Microsoft’s COM, Mozilla’s XPCOM, OMG CORBA, or Sun’s JavaBeans. Its
strengths are simplicity and immediacy, not expressive power or tight inte-
gration.

15.1.6.1 Bindings as XPCOM Components An XBL binding can implement
one or more XPCOM interfaces. This allows the DOM object for a bound tag to
act like an XPCOM component with those interfaces.

A binding cannot act as an XPCOM component unless it is bound first.

15.2 CONSTRUCTING ONE XBL BINDING

This topic describes the individual XBL tags and tag attributes.
Some XBL tags have the same names as tags used elsewhere in Mozilla.

It is always a good idea to provide full xmlns namespace declarations when

<handlers> Handlers are inherited. Derived binding handlers override
base binding handlers that define the same event.

display attribute No inheritance. Only the attribute on the most derived bind-
ing is used.

Table 15.2 Inheritance of XBL binding features (Continued)

XBL feature Inherited?

AppDevMozilla-15 Page 572 Thursday, December 4, 2003 6:37 PM

15.2 Constructing One XBL Binding 573

creating XBL documents. That strategy helps avoid confusion. XBL tag names
with meanings in other XML applications supported by Mozilla are

<bindings> <body> <children> <content> <image>

XBL attribute names with meaning elsewhere are

method action command modifiers charcode keycode key name readonly
text

15.2.1 Bound Tags and -moz-binding

Most, but not all, XUL and HTML tags can be bound to an XBL binding. For a
tag to be bound, it must have a frame—a styleable rectangular area in which
it is displayed.

Any tag with this style has no frame and cannot be bound:

{ display: none; }

A tag that gains this style will lose any binding that it has. For this rea-
son, a bound XUL tag should be collapsed rather than hidden if it needs to be
visually suppressed.

Tag instances, not tag names, are bound to a binding. Each style rule
that contains -moz-binding binds a set of tag instances. Any pattern that
represents a CSS2 selector can be used as a set of instances to be bound. List-
ing 15.3 shows a number of examples.

Listing 15.3 CSS2 selector example for bindings.
box { -moz-binding: url("binding.xml#sample"); }
#id { -moz-binding: url("binding.xml#sample"); }
.class { -moz-binding: url("binding.xml#sample"); }
box[X="here"] { -moz-binding: url("binding.xml#sample"); }
box,vbox,hbox { -moz-binding: url("binding.xml#sample"); }
box vbox { -moz-binding: url("binding.xml#sample"); }

The first line binds all <box> tag instances to the same binding. Each tag
instance has its own interface and its own set of state. The second line binds
just one tag, regardless of its name. The third line binds any and all tags with
a given class attribute. The fourth line binds only a subset of <box> tags,
those that have the X="here" attribute. The fifth line binds all <box>,
<vbox>, and <hbox> tags, and so on. Where two style rules bind the same tag
instance (a very bad piece of design), the more specific of the two rules takes
precedence, or the later of the two, if the two selectors are the same. That is
normal CSS2 processing.

This style rule support is used in XUL for tags that have variant types,
like <button>. Each variant is bound to a different binding. Variant bindings
can be seen in xul.css in toolkit.jar in the chrome.

Bindings can be explicitly avoided as follows:

{ -moz-binding : none; }

AppDevMozilla-15 Page 573 Thursday, December 4, 2003 6:37 PM

574 XBL Bindings Chap. 15

Mozilla (to version 1.4 at least) has some issues adding and removing
bindings; the advice in “Scripting” in this chapter should be followed rather
than just applying and unapplying style rules.

Finally, a long-standing bug (at least to version 1.4) means that a tag
with this style will not display properly if bound:

{ display: block; }

Because blocks are not part of XUL, this is only a trap for HTML. Avoid com-
bining this style with -moz-binding.

15.2.2 <bindings>

The <bindings> tag is the outermost tag in an XBL document. It has no spe-
cial meaning of its own and no special attributes. It can contain only <bind-
ing> tags.

A <!DOCTYPE> declaration is not needed for XBL documents. If one is
added, the minimum required is

<!DOCTYPE bindings>

15.2.3 <binding>

The <binding> tag holds one binding specification. It can have up to four
child tags. Each of the following tags should appear at most once:

<resources> <content> <implementation> <handlers>

All four are optional. It is recommended that they appear in the order
shown, but that is not mandatory. A <binding> tag with no content is useless,
except that it will remove all content and default actions from any tag bound
to it. That effect is similar to the style “-moz-binding : none”.
The <binding> tag has the following special attributes:

id display extends inheritstyle

The id attribute is unique and identifies the binding. A binding does not
have a name, it has a URL identifier. If the #id part of the URL is left off, the
first binding in the XBL document will be used.

The extends attribute is XBL’s inheritance mechanism. It can be set to
the URL of one other binding. A series of bindings specified with extends
form an XBL inheritance chain, as discussed in “Object-like Features.”

The extends attribute also accepts a shorthand value. That shorthand
value is used for the display attribute as well. It consists of a xul: prefix
and a XUL tag name. This shorthand says that the binding is based on an
existing tag and should use that tag’s features. In the case of extends, this
attribute provides a base implementation for the binding to enhance. An
example is

extends="xul:box"

AppDevMozilla-15 Page 574 Thursday, December 4, 2003 6:37 PM

15.2 Constructing One XBL Binding 575

The display attribute accepts only the shorthand notation used for
extends. It states what box object to apply for the binding. The box object iden-
tified is the one that normally applies to the stated XUL tag. An example is

display="xul:button"

This causes the binding to adopt the box object that the XUL <button> tag
has.

The inherit style attribute can be set to false. It is true by default. If
it is set to false, the bound tag will not benefit from any styles that were
associated with the tag before the binding was added.

15.2.4 <resources>

The <resources> tag states what other documents a given binding requires.
It is similar to the <LINK> tag of HTML. The <resources> tag has no special
attributes and can only contain these XBL tags:

<image> <stylesheet>

Zero or more of either tag can be stated. Order is unimportant, except that
later <stylesheet> tags will be applied after earlier ones. The XBL system
has a little intelligence about the contents of the <resources> tag, as
described next.

15.2.4.1 <image> The <image> tag is identical to the XUL <image> tag,
except that the only useful attribute is src. As for XUL, src specifies the URL
of an image.

<image src="icons.gif"/>

XBL does nothing with this tag except tell the Mozilla Platform to
retrieve the matching image, which is then cached. The <image> tag is a hint
to the platform that the image is important and may be needed later. Later
uses might be in the XUL <image> tag, the HTML tag, the CSS2 list-
style-image property, or in the content part of an XBL definition. Stating an
<image> tag is just a performance optimization.

15.2.4.2 <stylesheet> The <stylesheet> tag is identical to the HTML
<style src=> tag. It cannot contain any inline content of its own.

<stylesheet src="chrome://global/skin/button.css"/>

Stylesheets are used in XBL to contain all the presentation detail of the
XBL widget. This allows the presentation details to be theme-dependent. It
also allows style rules to be created that only apply to the anonymous content
of the bound tag. In the previous example, all the presentation detail for the
XUL <button> tag (which is based on an XBL binding with id="button") is
stored in a theme-dependent URL.

AppDevMozilla-15 Page 575 Thursday, December 4, 2003 6:37 PM

576 XBL Bindings Chap. 15

More than one <stylesheet> tag may be used per binding, but this is
rare. If so, the stylesheets are applied in the order they appear.

If a binding has an inheritance chain of other bindings, and those other
bindings have <stylesheet> tags, then all stylesheets will be applied. The
stylesheets are applied in order from the tail to the head of the chain so that
the primary binding has highest precedence.

The standard XUL tag bindings stored in toolkit.jar in the chrome
have a stylesheet each. Those stylesheets are theme-dependent. A theme
designer should implement all these standard stylesheets for a given theme,
or else the display of XUL tags will not be consistent under that theme. The
same goes for themes that hope to support Mozilla’s standard applications
such as Messenger. The stylesheets associated with XBL bindings used in the
Messenger client should also be implemented by a theme designer if these
applications are to benefit from the new theme.

15.2.5 <content>

The <content> tag holds all the anonymous content of the binding. It can
hold XML tags from any XML namespace, such as HTML, XUL, or MathML.
It can also hold the XBL-specific <children> tag. XUL observers and broad-
casters, along with the <script> tag, do not function when used as anony-
mous content.

The <content> tag used to have two special attributes:

includes excludes

Both attributes are deprecated and should be avoided. Use the <children>
tag in the anonymous content instead. If any other attributes appear on the
<content> tag, they will be copied to the bound tag.

Preexisting attributes of the bound tag can be added to the tags inside
<content> using the inherits attribute. Explicit content of the bound tag
can be merged with the tags inside <content> using the <children> tag.

If a binding uses the extends attribute, so that it builds on another
binding, then any <content> tag in that other binding is ignored.

If the <content> tag of the bound binding is empty, then the bound tag
will have no content either.

15.2.5.1 Merging Attributes with xbl:inherits= The anonymous content
of a <content> tag can be a document fragment of any type and of any size. The
XBL <children> tag can appear anywhere inside that document fragment.

Non-XBL tags in the content can use one XBL tag attribute: the
inherits attribute. This attribute is used to pass parameters and their val-
ues from the bound tag to the anonymous content, as though those content
tags were observing the bound tag. This parameter passing is done by simply
renaming and copying the bound tag attribute values to the anonymous con-
tent tags.

AppDevMozilla-15 Page 576 Thursday, December 4, 2003 6:37 PM

15.2 Constructing One XBL Binding 577

This mechanism gives the user of the bound tag some control over the
anonymous content. For this to work, the binding creator must anticipate the
user’s needs and strategically place inherits in the binding’s anonymous
content.

The inherits attribute holds a comma- or space-separated sequence of
attribute mappings. An attribute mapping states what attribute on the anony-
mous content tag should receive the value of what attribute on the bound tag.
Each attribute mapping uses one of the following four syntaxes:

att1
att1=att2
xbl:text=att2
att1=xbl:text

att1 and att2 are any legal XML attribute names.

☞ The first syntax form says that the att1 attribute on the bound tag, and
its value, should be copied straight to the anonymous tag.

☞ The second syntax form says that the att1 attribute on the anonymous
tag should have the value of the att2 attribute on the bound tag.

☞ The third form uses the special reserved name xbl:text. It says that
the anonymous tag’s content (a DOM 1 Text Node) should contain the
value of the att2 attribute on the bound tag. This achieves the same
effect as <textnode> in XUL templates.

☞ The fourth form says that the att1 attribute on the anonymous tag
should contain the value of the bound tag’s explicit content, which must
be a DOM 1 text node.

Because the inherits attribute is an XBL attribute, it can’t appear
alone inside a non-XBL tag. It must be fully specified with an XML namespace.
This is done by prefixing it with xbl: (or similar) and adding another
namespace declaration to the top of the XBL document. That is why some XBL
documents have two references to the XBL namespace, as shown here:

<bindings id="test"
 xmlns="http://www.mozilla.org/xbl"
 xmlns:xbl="http://www.mozilla.org/xbl"
 xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul"
>

The first XBL namespace is the default; the second is stated specifically
for the inherits attribute.

When all these things are put together, a full example of inherits is

<xul:label dir="ltr"
xbl:inherits="xbl:text=value,style,align=justify"/>

If the bound tag were defined this way:

<mytag value="Test" style="color:red" justify="start"/>

AppDevMozilla-15 Page 577 Thursday, December 4, 2003 6:37 PM

578 XBL Bindings Chap. 15

then, after substitution, the anonymous <xul:label> tag would be replaced
by

<xul:label dir="ltr" style="color:red" align="start">
Test
</xul:label>

The inherits attribute can be used anywhere in the anonymous con-
tent and can map one attribute to many different anonymous content tags if
required. Anonymous content tags are always free to specify attributes
directly, like dir="ltr". If the special xbl:text attribute is used more than
once, all assigned values will appear in the text node of the anonymous tag.

15.2.5.2 Merging Tags with <children> The <children> tag controls the
merging of the bound tag’s explicit content (if any) with the binding <con-
tent> tag’s anonymous content (if any). The <children> tag can appear any-
where inside the anonymous content of the binding. It represents any explicit
content that the bound tag has. It supports the following special attribute:

includes

The includes attribute can be set to a comma-separated list of tag
names. No namespace qualifiers are required. This attribute modifies the con-
tent merge process. What content is merged depends on what content exists.
Here is an overview of the possibilities:

1. If there is no explicit content, then any <children> tags in the anony-
mous content are ignored. This is equivalent to deleting all start, end,
and singleton <children> tags from the <content> section but leaving
other tags and subtags intact. The final content is a copy of all of the
remaining anonymous content.

2. If there is no anonymous content, then the bound tag will contain no con-
tent at all after all merging is done.

3. If there is both explicit and anonymous content, then count up the
explicit content tags that are immediate children of the bound tag. Each
of these tags should match one <children> tag. If this is achieved, then
the final content will be a merged copy of all explicit and anonymous con-
tent.

4. If none of these three conditions is met, the <children> tag has been
used incorrectly in the anonymous content, or unexpected explicit con-
tent is present in the bound tag. The final merged results will be unpre-
dictable in this case.

The last two cases require further explanation. How content is merged
depends entirely on the <children> tag. This tag creates the illusion that
explicit content is added into the anonymous content. In reality, the final
merged content is a copy of all the other content. It is convenient and harm-

AppDevMozilla-15 Page 578 Thursday, December 4, 2003 6:37 PM

15.2 Constructing One XBL Binding 579

less, however, to think of the explicit content as being added to the anonymous
content. Here is how such additions can occur:

1. If a <children> tag appears without an includes attribute, then it
stands for all the explicit content, which then replaces the <children>
tag and its content subtree in the anonymous content. In this case,
exactly one <children> tag should appear in the anonymous content.

2. If a <children> tag appears with the includes attribute, then it
stands for some of the explicit content only. That explicit content will
replace <children> and its content subtree in the anonymous content.
All immediate children of the bound tag with tag names that match the
includes list will be inserted. They will be inserted at that <children>
point in the anonymous content. They will be inserted in the same order
they appear in the bound tag.

3. If point 2 is repeated carefully, enough <children includes=> tags
will exist to cover all the immediate child tags of the bound tag. Such
tags provide complete coverage of explicit tags. In that case, all the
explicit and anonymous content will be merged neatly.

4. If point 2 is not repeated enough, then some immediate child tags of the
bound tag will not find a matching <children includes=> tag. That is
incomplete coverage of explicit tags. All explicit tags are appended to the
final content by Mozilla, and all anonymous content is thrown out.

5. If point 2 is done carelessly, then some child tags of the bound tag will
match more than one <children> tag. That is a mess and does not
work. In this case, content output will be unpredictable.

In summary, the binding designer must either (a) make no assumptions
about the explicit content of the bound tag and avoid using includes; (b) fully
anticipate what explicit tags may be put into a bound tag and use includes
everywhere; or (c) make an educated guess and rely on the XBL system out-
putting something that is reasonable.

Listing 15.4 shows well-formed examples of this system at work.

Listing 15.4 Source code for XBL content merging examples.
<!-- tag to be bound -->
<mytag>
 <image src="face.png"/>
 <description label="Smile"/>
 <image src="face.png"/>
</mytag>

<!-- Example 1: unknown explicit content -->
<content>
 <box>
 <children/>
 </box>
</content>

AppDevMozilla-15 Page 579 Thursday, December 4, 2003 6:37 PM

580 XBL Bindings Chap. 15

<!-- Example 2: known explicit content -->
<content>
 <children includes="description"/>
 <box>
 <children includes="image"/>
 </box>
</content>

<!-- Example 3: known but optional explicit content -->
<content>
 <children includes="image|description">
 <label value="No emoticon supplied"/>
 </children>
</content>

In this listing, the <mytag> tag is the tag to be bound. The other frag-
ments are from three different bindings. Example 1 adds all the explicit con-
tent, regardless of what it is, into a <box>. Example 2 carefully places each
type of explicit content in a certain spot. Example 3 repeats back the explicit
content, but if none exists, a <label> is reported instead. Listing 15.5 shows
the final content for each of these cases.

Listing 15.5 Generated content for XBL content merging examples.
<!-- Example 1: unknown explicit content -->
<mytag>
 <box>
 <image src="face.png"/>
 <description label="Smile"/>
 <image src="face.png"/>
 </box>
</mytag>

<!-- Example 2: known explicit content -->
<mytag>
 <description label="Smile"/>
 <box>
 <image src="face.png"/>
 <image src="face.png"/>
 </box>
</mytag>

<!-- Example 3: known but optional explicit content -->
<mytag>
 <image src="face.png"/>
 <description label="Smile"/>
 <image src="face.png"/>
</mytag>

If the original contents of <mytag> are made very different, Example 1
will always work, but Examples 2 and 3 might yield unexpected results.

AppDevMozilla-15 Page 580 Thursday, December 4, 2003 6:37 PM

15.2 Constructing One XBL Binding 581

Listing 15.6 shows an arrangement that will never work reliably because
any explicit content <image> tags will match both <children> tags in the
anonymous content.

Listing 15.6 Poorly formed anonymous content for an XBL binding.
<content>
 <children/>
 <box>
 <children includes="image"/>
 </box>
</content>

15.2.5.3 Merging Bound Tags The anonymous content inside the XBL
<content> tag can include tags that are in turn bound to some XBL binding.
This is just as well because most XUL tags are bound tags.

XBL automatically supports bound tags as anonymous content. Such
tags are treated like any other tag. Just use the bound tag as if no binding
were involved.

It is possible to create containment and inheritance cycles between one
or more bindings. This should be avoided because it doesn’t work. The <con-
tent> tag should never contain an instance of the tag to be bound.

15.2.6 <implementation>

The <implementation> tag is a simple container tag. It specifies the object-
like interface of the binding. This interface is implemented inside the binding
using JavaScript. It is then available to JavaScript scripts that run outside
the bound tag. The interface created appears as properties and methods on the
bound tag.

The <implementation> tag has one special attribute:

implements

This attribute can be set to a comma- or space-separated list of XPCOM inter-
face names, like nsISimpleEnumerator or nsIDOMEventListener. Any
interface name can be used. The Mozilla Platform treats the binding as an
XPConnected (JavaScript wrapped) XPCOM component and uses these inter-
face names to identify what the binding can do. It is up to the binding creator
to make sure that the binding faithfully implements the interfaces it adver-
tises. The XBL system automatically adds functionality equivalent to the
nsISupports interface.

If any of these interfaces are specified and implemented, they appear as
interfaces on the bound tag.

The type attribute is not supported by <implementation> or any of its
subtags. The language used to define the content is assumed to be JavaScript.
Use of <![CDATA[]]> XML syntax is recommended in all binding code when
scripts are nontrivial in size.

AppDevMozilla-15 Page 581 Thursday, December 4, 2003 6:37 PM

582 XBL Bindings Chap. 15

The <implementation> tag can hold any number of these tags as chil-
dren, in any order:

<field> <property> <method>

The <implementation> tag can also hold up to one of each of these tags:

<constructor> <destructor>

All five of these tags hold JavaScript scripts as content. Such scripts have
access to several well-known JavaScript properties:

this window document event

The window and document properties are the same as those used in
XUL and HTML scripts and refer to the window and document of the bound
tag. The this property references the DOM Element object of the bound tag,
which contains many useful DOM methods, like getAttribute(). The
event property exists only for <handler> code and contains a DOM Event
object.

Be aware that within an XBL <implementation> section, the this
property has a special feature. All simple values assigned to properties of the
this object are automatically turned to String types. Under that rule, the fol-
lowing line of code returns the string “1213”:

this.dozen = 12; alert(dozen + 13);

This conversion shows up only when you use the + operator. For other
mathematical operations, Strings will be silently converted to numbers and
the behavior is hidden. A simple workaround is to store the values in an
Object. This line of code reports 25:

this.d = {}; d.dozen = 12; alert(d.dozen + 13);

A binding without an <implementation> tag is still useful. It can dis-
play content and it can handle events.

Listing 15.7 is a simple example of a partial XBL object. It implements
an experimental light bulb. Every time this light bulb’s power output is
checked, it ages slightly and its power output drops as a consequence. Eventu-
ally, trying to turn it on or off won’t work at all because it becomes too ineffi-
cient.

Listing 15.7 Example object interface using XBL <implementation>.
<implementation>
 <field name="rating" readonly="true">60</field>
 <field name="lit">true</field>
 <field name="age">0</field>
 <property name="power"
 onget="age++; return rating-age/1000;"
 onset="age=(rating-val)*1000;"
 >

AppDevMozilla-15 Page 582 Thursday, December 4, 2003 6:37 PM

15.2 Constructing One XBL Binding 583

 <method name="toggle">
 <body>
 if (this.power > 30) this.lit = !this.lit;
 </body>
 </method>
</implementation>

This object has four properties: rating (a constant value, intended here
it is Watts), lit (a boolean), age (an integer), and power (a dynamically calcu-
lated value). It has one method: toggle(). These property names appear both
as attribute values in XBL tags and as JavaScript code within the tag content.
For example, the toggle() method uses the power and lit properties,
whose names also appear as values of the name attribute in <field> tags.

The interface in Listing 15.7 is equivalent to the JavaScript object in
Listing 15.8.

Listing 15.8 Equivalent JavaScript object to Listing 15.6.
var bulb = {
 const rating : 60,
 lit : true,
 age : 0,
 get power() { age++; return rating-age/1000; },
 set power(val) { age=(rating-val)*1000; },
 toggle : function () {
 if (this.power > 30) this.lit = !this.lit;
 }
};

The two listings are obviously very similar. Why not just use a plain
JavaScript object and avoid XBL? Such an object must be hand-attached to
every tag that needs it, using a script or scripts. Using XBL, the object appears
everywhere the CSS binding rule says it should, automatically.

15.2.6.1 <field> The <field> tag is the simplest part of the binding inter-
face. It is designed to hold a simple variable. It is used to hold programmer-
specified state information, for each bound tag. The <property> tag is a more
flexible version of <field>.

<field> has two special attributes:

name readonly

☞ The name attribute holds the name of the JavaScript property that the
field implements. Therefore, it must be a valid JavaScript variable name.

☞ The readonly attribute can be set to true, in which case a field cannot
be set from a script.

The syntax for <field> is

<field>JavaScript expression</field>

AppDevMozilla-15 Page 583 Thursday, December 4, 2003 6:37 PM

584 XBL Bindings Chap. 15

Note that the content is an expression, not a statement. Because the expres-
sion is evaluated once only, it is usually a constant expression, but it can be a
complicated calculation if required. This evaluation occurs when the binding is
bound. Examples include

<field name="count">3+2</field>
<field name="address" readonly="true">"12 High St"</field>
<field name="phonelist">[]</field>

These examples look strange because there is no obvious assignment taking
place. Instead, the XBL system evaluates the supplied expression and uses the
result. These tags are similar to these JavaScript statements:

var count = eval('3+2'); // 5
const address = eval('"12 High St"'); // a string
var phonelist = eval('[]'); // an empty Array

Once created, fields are properties of the bound tag’s object, which is the same
as this, and can be used normally.

15.2.6.2 <property>, <getter>, and <setter> The <property> tag is
designed to hold a simple variable, just as the <field> tag does. This variable
is available as a JavaScript property on the bound tag’s DOM object.

The difference between <property> and <field> is that the <prop-
erty> tag’s variable acts like an interface, whereas the <field> tag’s vari-
able is a simple value.

The <property> variable’s value can be dynamically calculated when it
is either read or written, and either operation can have side effects. This
means that scripts using the property can cause other processing to occur just
by setting or getting it.

Recall from Chapter 5, Scripting, that a JavaScript property can have its
state defined with __defineGetter__ and __defineSetter__ functions. A
<property> tag’s property works the same way, except that it is defined with
<getter> and <setter> tags, or with shorthand onget and onset
attributes.

The <property> tag has four special attributes:

name readonly onget onset

☞ name is the name of the JavaScript property that this property defines. It
must be a legal JavaScript name.

☞ readonly ensures that the property acts like a const JavaScript vari-
able. It can be read but not written.

☞ onget is a shorthand notation for the <getter> tag and takes a script
as its value. If both onget and <getter> are specified, then onget is
used.

☞ onset is a shorthand notation for the <setter> tag and takes a script
as its value. If both onset and <setter> are specified, then onset is
used. onset is useless if readonly="true" is also specified.

AppDevMozilla-15 Page 584 Thursday, December 4, 2003 6:37 PM

15.2 Constructing One XBL Binding 585

The <property> tag can hold zero or one <getter> and <setter> tags
as content. In turn, the content of these tags is the body of a JavaScript func-
tion.

☞ The <getter> tag and the onget attribute must contain a sequence of
JavaScript statements that result in return being called.

☞ The <setter> tag and the onset attribute must also contain JavaScript
but should return val. The special variable val contains the value
passed in to the setter.

See Listing 15.7 for a simple example of onget and onset. The equiva-
lent syntax using <getter> and <setter> is shown in Listing 15.9. The
CDATA sections could be dropped in this example because the code is trivial.
The keyword this is used everywhere for clarity—a recommended practice.

Listing 15.9 Example of XBL <getter> and <setter> use.
<property name="power">
 <getter><![CDATA[
 this.age++;
 return this.rating - this.age/1000;
]]>
 </getter>
 <setter><![CDATA[
 this.age = (this.rating - val) * 1000;
 return val;
]]>
 </setter>
</property>

If an attempt is made to set such a property when both <setter> and
onset are missing, then an error will be reported to the JavaScript console (or
an exception will be raised). If an attempt is made to get the value of such a
property when both <getter> and onget are missing, then undefined will be
returned.

15.2.6.3 <method>, <parameter>, and <body> The <method> tag is used
to define an interface method. It contains zero or more <parameter> tags fol-
lowed by exactly one <body> tag. The <method> tag supports one special
attribute:

name

The name attribute specifies the name of a JavaScript property that will hold a
Function object, so it must be a valid JavaScript identifier. The <method>
tag does not support the action attribute and Mozilla may crash if that
attribute is used.

If inheritance chains are being used, then there is no way for any
extended binding <method> to run any base binding <method> that has been

AppDevMozilla-15 Page 585 Thursday, December 4, 2003 6:37 PM

586 XBL Bindings Chap. 15

overridden by an extended binding <method> with the same name. You can-
not work with overridden base-binding methods.

The <parameter> tag has exactly the same syntax as the <method> tag.
Its sole name attribute defines one variable name passed in to the methods.
The order of <parameter> tags is the same as the order of variables passed to
the method.

The <method> and <parameter> tags are not used to create a fully
typed function signature. They are just used as names. There is no type check-
ing, or even argument counting. There is no type reflection beyond what Java-
Script itself provides. There is no way to specify the type of the return value.
These tags are very simplistic.

It is not possible to create two methods with the same names but differ-
ent numbers of parameters. Because all JavaScript functions support variable
argument lists, there is also no need to create such variations.

Finally, the <body> tag contains the JavaScript statements that make
up the method. This tag has no special attributes at all. The JavaScript return
statement should be used in the code when the method has something to
return. The arguments object, which appears in all JavaScript functions, is
also available for use in the content of the <body> tag.

Listing 15.10 shows these tags working together:

Listing 15.10 Example of XBL <method>,<parameter>, and <body> tags.
<method name="play">
 <parameter name="boy"/>
 <parameter name="dog"/>
 <parameter name="ball"/>
 <body><![CDATA[
 if (arguments.length != 3)
 throw Components.results.NS_ERROR_INVALID_ARG;

 if (boy == "Tom" && dog == "Spot")
 {
 return document.fetch(ball.type);
 }
 return null;
]]>
 </body>
</method>

This example shows that any checks on the arguments passed in must be
done by hand; nothing is done for you automatically. JavaScript’s throw state-
ment may be used to terminate the method and return an exception to the
calling code. The value returned in this example is one of XPCOM’s official
error values. By using one of these constants, the method is conforming to
XPCOM component standards. The method body is free to interact with any
objects that it likes in the current window—in this case, the fetch() method
is a method or function stored outside the binding. This piece of XBL is equiv-
alent to the JavaScript function shown in Listing 15.11.

AppDevMozilla-15 Page 586 Thursday, December 4, 2003 6:37 PM

15.2 Constructing One XBL Binding 587

Listing 15.11 JavaScript function equivalent of an XBL <method>.
function play(boy, dog, ball)
{
 if (arguments.length != 3)
 throw Components.results.NS_ERROR_INVALID_ARG;

 if (boy == "Tom" && dog == "Spot")
 {
 return document.fetch(ball.type);
 }
 return null;
}

The two definitions are hardly different at all, and so it is no surprise
that XBL <method> contents are converted to JavaScript soon after an XBL
document is loaded and parsed.

15.2.6.4 <constructor> and <destructor> The <constructor> and
<destructor> tags are event handlers that fire once only during the bound
lifetime of a binding. They are used for initialization and cleanup activities,
just as constructors and destructors in most object-oriented languages are.
XBL constructors and destructors have standard object-oriented semantics
and do not follow the prototype system of JavaScript.

The only special attribute that these two tags support is this attribute:

action

The action attribute is shorthand for the content of the <constructor> and
<destructor> tags. That content is a JavaScript function body, as for the
XBL <body> tag. It can be specified between start and end tags or by using
the action attribute. If both are specified, the action attribute is used, but it
makes no sense to specify both.

The <construction> tag runs its action each time the binding is bound
to a target document tag. That could be a large number of times, and if so, it is
important that the constructor’s action has good performance. There is no way
to control the bindings in the inheritance chain using the <constructor>
tag. There is no way to control any bound tags in the <content> section from
the <constructor> tag. The constructor code is passed no arguments, but
the this pointer is always available. The construction code does not need to
return a value.

If the current binding inherits another binding, then <constructor>
tags will fire in order from the tail to the head of the inheritance chain—in
other words, the <constructor> tag of the primary binding will be the last
one to fire.

The <destructor> tag runs its action each time the binding is unbound
from a target document tag. It is rare that this occurs without the whole target
document being destroyed, but if bindings are managed by hand, or if the

AppDevMozilla-15 Page 587 Thursday, December 4, 2003 6:37 PM

588 XBL Bindings Chap. 15

state shared by multiple windows is maintained, then a <destructor> may
be useful. As for the <constructor> tag, there is no special way to affect the
status of other bindings that are part of the current binding. The destruction
code is not passed any arguments and does not need to return any value.

If the current binding extends (inherits from) another binding, then
<destructor> tags will fire in order from the head to the tail of the inherit-
ance chain—in other words, the <destructor> tag of the primary binding
will be the first one to fire.

It is common to create XPCOM objects from a constructor. If only one
such object is required for a given binding, rather than one per bound tag,
then a common idiom for arranging this is shown in Listing 15.12.

Listing 15.12 Creation of global components using an XBL constructor.
<constructor><![CDATA[
if (!document.globalPicker)
{
 var Cc = Components.classes;
 var Ci = Components.interfaces;
 var comp = Cc["@mozilla.org/filepicker;1"];
 document.globalPicker = comp.getService(Ci.nsIFilePicker);
}
]]></constructor>

In this code, each bound tag checks to see whether the initialization has
been done yet, and if it has, the code simply ignores that step. Bindings are all
bound at different times, but because Mozilla is single-threaded, it is not pos-
sible for two constructors to run at the same time.

15.2.7 <handlers>

The <handlers> tag is a simple container tag that holds all the event han-
dlers associated with the XBL binding. It has no special attributes of its own.
It holds one or more <handler> tags. Each handler tag is responsible for exe-
cuting some JavaScript in response to a single DOM 2 event on the bound tag.

The XBL bindings stored in Mozilla’s chrome contain over 500 individual
handlers and so are responsible for a great deal of interactivity. Many of the
events processed by standard applications like the Classic Browser and Clas-
sic Mail & News are the result of XBL bindings rather than specific applica-
tion code.

The event handlers specified in XBL are one of four sources of handlers
in Mozilla. Chapter 6, Events, describes support for on… style event handlers.
It also describes the <key> tag. That tag has syntax very similar to the <han-
dler> tag. The last set of handlers is buried deep inside the Mozilla Platform.
Those handlers are written in C/C++ and are installed automatically by the
platform when a window first opens.

AppDevMozilla-15 Page 588 Thursday, December 4, 2003 6:37 PM

15.2 Constructing One XBL Binding 589

These last handlers are the default handlers that run if nothing else is
installed. Just as the Mozilla Platform precreates a special command controller
for handling the focus, so too does the platform install a set of special handlers
for the most fundamental types of event processing. When <key> handlers are
added, they sit on top of the fundamental handlers, just as application-defined
onclick handlers sit on top of the XBL bindings. When <handler> tags are
added, they sit alongside the fundamental handlers, as if both were registered
with addEventListener().

Although this last and most hidden set of handlers is implemented as
part of the XBL system, it is not accessible to application programmers. The
main thing to note is that some event handling occurs underneath XBL bind-
ings, and that no amount of searching in the chrome will find code that is
responsible for it all.

15.2.7.1 <handler> The <handler> tag is very much like the XUL <key>
tag. It defines one event target and one action for one highly specific event. An
action is either a piece of script or a command to execute.

The <handler> tag implements the default action for the given event
when it occurs on the bound tag. It can be overridden on the bound tag with a
normal DOM 2 Events event handler.

For the handler to run, the matching event must be generated on the
bound tag. That means the event must be generated either by a user action, as
a consequence of document changes, or via the DOM 2 Events dispatchEv-
ent() method. There is discussion of XBL event flow in “Scripting” later in
this chapter.

The <handler> tag supports the following special attributes:

event phase command modifiers clickcount key keycode charcode button
action

☞ The event attribute specifies the event name for the handler, drawing
from the events that Mozilla supports. See Table 6.1 for a list of event
names. mousedown is an example event. event has no default value.

☞ The phase attribute says at what stage in the DOM 2 Event cycle the
action will fire. It must be set to “capturing”, “target”, or “bubbling”.
“bubbling” is the default.

☞ The command attribute specifies a command (as described in Chapter 9,
Commands) that will be executed when the event occurs. The controller
used to find and execute the command, however, will be sought on the
currently focused tag, not on the bound tag. This means that the bind-
ing must be entirely focusable; otherwise, steps must be taken to
ensure that the focusable parts of the binding content have a suitable
controller. This attribute is mutually exclusive with action. It has no
default value.

AppDevMozilla-15 Page 589 Thursday, December 4, 2003 6:37 PM

590 XBL Bindings Chap. 15

☞ The modifiers attribute accepts a space- or comma-separated list of the
values shift, control, alt, meta, accel, and access. This attribute
is used to specify which modifiers apply to a key event. All stated modifi-
ers must be pressed for the event to occur. accel is the generic, platform-
independent accelerator key as described in Chapter 6, Events. access
matches the case where a shortcut key (a hot key) for the bound tag has
been pressed. Shortcut keys are specified with the XUL key= attribute.
The default is no modifiers.

☞ The clickcount key is only used for mouse events. It contains a single
digit that specifies how many user clicks of the mouse are required
(down-up is one click). The maximum number of clicks is ultimately an
operating system limit. Mozilla supports at least three clicks. The default
is any number of clicks.

☞ The key attribute is used only for key events. It contains a single print-
able key, such as ‘A’. Either key or keycode should be used for key
events, but not both. The default is any key press.

☞ The keycode attribute is used only for key events. It contains a single
VK_ key mnemonic from the list in Table 6.3. Either keycode or key
should be used for key events, but not both. The default value is any key.

☞ The charcode attribute is an older, deprecated name for the key
attribute. Use key instead.

☞ The button attribute is used only for mouse events. It contains a single
digit that specifies which mouse button is pressed. The number of mouse
buttons is ultimately an operating system limit; Mozilla supports at least
three buttons. The first button is button 0. The default button is any but-
ton. On a two- or three-button mouse, the right button is button 2.

☞ The action attribute contains the script that should run when the event
occurs. This attribute is mutually exclusive with the command attribute.
It has no default value.

If neither the command nor the action attribute is specified, then a
JavaScript event handler for the event can be put between start and end
<handler> tags. An example handler is

<handler event="click" phase="target" clickcount="1" button="0">
 this.do_custom_click(); // a <method> of the binding
</handler>

This is the default action for a left-button single-click click event. The
do_custom_click() method is specified elsewhere in the binding so that it
can also be called directly on the bound tag’s DOM object.

15.2.8 Non-tags and Non-attributes

The XBL system has its share of tags that don’t exist, but appear to exist. The
following summary applies to Mozilla versions to 1.4.

AppDevMozilla-15 Page 590 Thursday, December 4, 2003 6:37 PM

15.3 Combining Multiple Bindings 591

The W3C Note for XBL is a proposal and does not exactly match Mozilla’s
implementation. Mozilla’s version of XBL does not support the following
aspects of that Note:

☞ The type attribute, used on <bindings>, <method>, and other tags.
☞ The applyauthorsheets attribute on the <content> tag.
☞ The applybindingsheets attribute on the <children> tag.
☞ The <element> tag and all references to it.
☞ The following events are not supported: contentgenerated, content-

destroyed, bindingattached, bindingdetached.

These two attributes come from the early development of XBL and
should be avoided: the includes attribute when used on the <content> tag
and the charcode attribute when used on the <handler> tag.

The <script> tag is not part of XBL and won’t work at all inside a pure
XBL document.

The following tag attributes do nothing at all:

 attachto applyauthorstyles styleexplicitcontent

15.3 COMBINING MULTIPLE BINDINGS

The XBL inheritance system is given an overview in “Object-like Features”
earlier in this chapter. This topic is concerned with uses of the inheritance sys-
tem. Only a binding creator can implement inherited bindings.

15.3.1 Simple Inheritance with extends=

Listing 15.13 show two bindings related by inheritance.

Listing 15.13 Trivial example of XBL binding inheritance.
<!-- both bindings contained in example.xml -->

<binding id="smileyA">
 <content>
 <xul:image src="faceA.png"/>
 </content>
 <implementation>
 <method name="methodA">
 <body> return true; </body>
 </method>
 </implementation>
</binding>

<binding id="smileyB" extends="example.xml#smileyA">
 <content>
 <xul:image src="faceB.png"/>

AppDevMozilla-15 Page 591 Thursday, December 4, 2003 6:37 PM

592 XBL Bindings Chap. 15

 </content>
 <implementation>
 <method name="methodB">
 <body> return false; </body>
 </method>
 </implementation>
</binding>

Table 15.2 describes how different parts of a binding are inherited, so fol-
lowing that table yields these results.

If binding smileyA is bound to a XUL tag, then that tag will have a sin-
gle <image src="faceA.png"> tag as content, and one method called
methodA(). In this case, the bound tag’s XBL inheritance chain is of length
one and contains only binding smileyA. This case has no inheritance, and
smileyA is the primary binding.

If binding smileyB is bound to a XUL tag, then that tag will have a sin-
gle <image src="faceB.png"> tag as content, and two methods named
methodA() and methodB(). In this case, the bound tag’s XBL inheritance
chain is of length two and contains binding smileyB at the head and binding
smileyA at the tail. This is the inherited case, and smileyB is the primary
binding.

Both of these bindings can be applied to different tags at the same time.
It is impossible to tell whether a binding is extended because its URL

might be used anywhere in the world. If a binding resides in the chrome, then
an audit of all the chrome files can reveal all uses of a given binding. Even so,
secure applications installed outside the chrome might still extend a chrome
binding undetectably.

15.3.2 Zero Content Bindings

A very popular XBL technique used in Mozilla is to extract common logic from
a set of bindings and build a zero content binding to hold that logic. Such a
binding has no <resources> or <content> section and is rarely (or never)
bound directly to a tag. It contains mostly programming logic and state infor-
mation.

If another binding uses this binding as its base, then the methods and
handlers of the zero content binding are added back into the extended binding
at run time. The zero content binding can be extended a number of times for
different purposes. In object-oriented terms, the zero content binding might be
called a “virtual content base class.”

An example of such a zero content binding is the button-base binding
in button.xml in toolkit.jar in the chrome. It contains:

☞ properties: accessible type dlgType group open checked check-
State autoCheck

☞ handlers: event="command"

AppDevMozilla-15 Page 592 Thursday, December 4, 2003 6:37 PM

15.3 Combining Multiple Bindings 593

These properties and events are responsible for managing a number of
states used by button-like widgets. For example, the checked property has
<setter> and <getter> JavaScript logic that allows a bound tag to have
<checkbox> or <radio>-like states. This logic does housekeeping tasks on
the bound tag, setting and unsetting XML attributes and coordinating the
checked state against other attributes that might be present.

The logic in this one binding is inherited by many other bindings. Those
bindings in turn are used for many XUL tags: all variants of <button>, all
variants of <toolbarbutton>, <thumb>, <dropmarker>, <radio>, <menu>,
the buttons in <wizard>, <dialog>-based windows, and so on. Clearly the
button-base binding is highly reusable.

A zero content base tag saves unnecessary duplication of code. When
such a binding is used, the binding extending it should add a <content> sec-
tion.

15.3.3 Input Façade Bindings

It is possible to make an XBL binding that concentrates on user input. Such a
binding has a large <handlers> section and not much else, although it might
also have supporting methods and properties.

Such a binding is called an input façade binding for two reasons. First, it
adds a layer of user input and event servicing between the user and the wid-
get, in the form of a set of handlers. That is like the front counter of a shop.
Second, it relies on some other binding to supply it with the widget-specific
processing power it needs. It is therefore a “thin” binding, and façades are
thin. A trivial example of an input façade binding is

<binding id="click-facade" extends="bindings.xml#base-widget">
 <handlers>
 <handler event="click"> this.click(); </handler>
 </handlers>
</binding>

This simple binding erects an input façade between single-click input
and the widget. It does not implement the click() method—that is left up to
some other binding. That method might be generic (in which case the base-
widget binding would supply it), or it might be highly specialized (in which
case a binding that extends click-facade will supply it).

The handler code in this binding could be more complex; it might be
required to maintain state that enables and disables certain inputs depending
on what the last input was. An input façade is another place to put macro-
processing functionality for user input.

Like a zero content binding, an input façade binding is rarely bound to a
tag. Its main purpose is to extract from a set of bindings common user input
semantics and collect those semantics together into one place. Its lack of
<content> means that it should generally be extended before use.

AppDevMozilla-15 Page 593 Thursday, December 4, 2003 6:37 PM

594 XBL Bindings Chap. 15

There are no XBL input façades in the Mozilla Platform (to version 1.4),
but there is room for them. If you examine the XBL bindings for <tree>,
<listbox>, <tabbox>, and HTML’s <select> (start with xul.css in tool-
kit.jar in the chrome), then you will see a common set of keypad navigation
keys in all the bindings for those widgets. This subset could be extracted into
an input façade binding that would then be reused across widgets, providing a
uniform navigation experience.

Mozilla does currently implement one kind of input façade. It consists of
the XUL documents that hold sets of <key> bindings. These documents are
included in most Mozilla application windows via the use of overlays. Where
an XBL input façade is specific to an XBL binding, a XUL input façade in the
form of a set of <key> bindings is specific to a whole XUL document.

15.3.4 Inner Content Bindings

This chapter’s title implies that bindings are used to create whole widgets, and
that can indeed be done. It is also possible for a binding to supply the insides
of a widget only. Such a binding is called an inner content binding.

Inner content bindings are simple to create. Their <content> section
makes an assumption about the parent tag of the bound tag. The expectation
is that the bound tag will deliver content to its parent tag, which is some kind
of container tag. That container tag defines the borders of a widget. The inner
content binding relies on that parent tag being correctly stated. Obvious con-
tainers in XUL are tags like <box>, <button>, <menupopup>, <scrollbar>,
and <toolbar>.

Inner content bindings are dependent on the bound tag’s parent and are
closely coupled with it. Such a binding might provide methods and properties
that the parent expects, or it might reach up into the parent to extract infor-
mation that it needs. This close coupling means that the bound tag is usually
an ugly failure when stated by itself. When stated inside the right container
tag, it provides an abstraction that expresses the content of that tag neatly.

Inside Mozilla’s XUL, several tags follow the inner content philosophy.
The tags used inside <scrollbar> are examples: <thumb>, <slider>, and
<scrollbarbutton>. These tags do not all have XBL bindings, but they do
rely on their parent tags for correct functioning. Examples of tags with XBL
bindings are the <dropmarker> tag used in some <button> tags and the
<tabs> tag used inside <tabbox>.

15.4 HOW BINDINGS ARE PROCESSED

Here are the steps a binding goes through when it is bound to a tag in a target
document:

1. When loading the target document, the Mozilla layout engine detects the
need for a binding when it sees a -moz-binding style on a given loaded tag.

AppDevMozilla-15 Page 594 Thursday, December 4, 2003 6:37 PM

15.5 Scripting 595

2. The document’s list of things to finish is incremented by one. This list
delays the firing of an onload event for the target document.

3. If a complete, compiled copy of the binding does not yet exist for the tar-
get document, steps 4-7 are done. If it exists, processing continues from
step 8.

4. The XBL document for the binding is fetched and put in the Mozilla
cache. This is done in parallel with the loading of the target document.

5. The fetched XBL document is parsed and compiled into an internal data
structure.

6. If an extends attribute exists, steps 2–7 are repeated (in parallel) for
each binding in the inheritance chain. So another binding could reach
step 7 before the current binding.

7. The compiled binding is added to the document’s binding manager. The
binding manager is an XPCOM component that holds a list of all bind-
ings used by the document.

8. The full inheritance chain for the binding is now available in loaded and
compiled form. The target document’s tag is now bound to the binding—
ultimately this is just a pointer assignment inside Mozilla. Before this
step, a script inspecting the bound tag would see no binding. After this
step, a script cannot inspect the bound tag until all the remaining steps
are complete. This is because the remaining steps occupy Mozilla’s sole
processing thread until they are finished.

9. Attributes of the <content> tag are copied to the tag to be bound.
10. Explicit and anonymous content are merged, and the result is copied to

the bound tag using DOM operations.
11. <handler> handlers are installed on the bound tag using the binding

manager.
12. <property> and <method> properties are added to the bound tag’s

DOM object.
13. Any <constructor> code in the inheritance chain is run.
14. If there are any stylesheet changes resulting from all these steps, they

are applied as a final step.
15. The list of things to finish before an onload event can fire is decre-

mented by one.

15.5 SCRIPTING

A bound tag looks like any other DOM object to JavaScript. Scripts originating
from the bound side of the tag can act on the bound tag’s object in a number of
standard ways:

☞ Properties can be invoked as methods, or assigned to, or read.

AppDevMozilla-15 Page 595 Thursday, December 4, 2003 6:37 PM

596 XBL Bindings Chap. 15

☞ Properties can be added or set to null.
☞ Properties that hold methods (Function objects) can be changed to user-

defined methods.
☞ Event handlers lodged with on… style attributes, or via the DOM 2

addEventListener() method, can override handlers in the binding.
☞ DOM 1 interfaces can set and unset attributes on the bound tag.
☞ DOM 1 interfaces can modify the final merged content of the bound tag.

None of these actions affects the XBL binding specification for a bound bind-
ing.

The most significant issue for a user of XBL bindings is the issue of load
time. There is no general way to tell whether a single bound tag has finished
being bound. The only way to be sure is to use an onload handler in the bound
tag’s document and to avoid lazy-loading templates. If the bindings you use
are all custom made, then it is good design for those bindings to provide some
hint that they are loaded.

Another aspect of scripting bound tags has to do with event handling.
There is the matter of ordinary DOM events and the special case of input focus.

Ordinary DOM events travel into the bound tag’s final merged content as
if it were normal XUL content. From an application programmer’s point of
view, a bound tag is a single indivisible item and the last step in the capture
phase of the event’s life. It is only from the binding creator’s point of view that
the content of a bound tag has any active role. In that case, the event contin-
ues into the binding where it can be accessed with the event object. The
event.originalTarget property of that object is of most use in the binding;
the event.target property is not yet reliable at version 1.4.

If, however, the bound tag is not part of the window’s focus ring (such as
a XUL <box>) tag, then parts of the merged content can still receive events. In
particular, if the merged content contains tags that are focus ring candidates
(like <checkbox> or <button>), then those tags can still be tabbed into and
out of by the user. The following principle is at work:

If a tag ought to be able to receive the focus, and its parent tag can’t
receive the focus, then let it receive the focus.

The XBL binding system does not have a “refresh” or “rebuild” interface
that can be used to bring a bound tag up to date. A bound tag can only have a
whole binding added or removed. There are two ways to do this.

The first way to change a bound tag’s binding is to modify the -moz-
binding style property with a script. The most straightforward thing to do is
to set this property to or away from the special value none. Unfortunately, a
Mozilla bug makes this solution unreliable. The recommended alternative is to
create two style classes:

.binding-installed { -moz-binding : url("test.xml#Test"); }

.binding-removed { -moz-binding : none; }

AppDevMozilla-15 Page 596 Thursday, December 4, 2003 6:37 PM

15.5 Scripting 597

Rather than set the -moz-binding property, set the class attribute of the
bound tag to one or the other of these two class names. This works properly.

The second way to change a bound tag’s binding is to use the sole
XPCOM interface available for the purpose. This interface is

nsIDOMDocumentXBL

It is automatically available on the document object. Table 15.3 lists the meth-
ods of this interface.

The addBinding() and removeBinding() methods add and remove a
primary binding to the tag matching the DOM object supplied. If the primary
binding implies an inheritance chain, then that is loaded as well. These two
methods operate synchronously, so they don’t return until the binding change
is complete.

The loadBindingDocument() method synchronously loads an XBL
document with the specified URL into a DOM tree of its own, which is
returned. This method can be used to inspect the structure of a binding speci-
fication. This method is useful for reflecting the specification of a binding into
a data structure, which can then be used to build schema-based tools like
designers and inspectors. It also provides a way to change a binding synchro-
nously—that is, to chance a binding so that script execution suspends until
the new binding is fully in place.

The getBindingParent() method returns the bound tag that has the
supplied object as a content tag or text node. It is used to walk up the hierar-
chy of content from a piece of content is whose origin is uncertain, until a tag
that has a binding is found.

The remaining two methods are XBL variations on the docu-
ment.getElementById() method. Instead of returning tag objects from the
document DOM tree, they return tag objects from an XBL binding’s anony-
mous content. This is the only part of an XBL binding’s specification that can

Table 15.3 nsIDOMDocumentXBL interface

Returns Method signature

void addBinding(nsIDOMElement element, String URL)

void removeBinding(nsIDOMElement element, String URL)

nsIDocument loadBindingDocument(String URL)

nsIDomElement getBindingParent(nsIDOMNode node)

nsIDOMNodeList getAnonymousNodes(nsIDOMElement element)

nsIDOMElement getAnonymousElementByAttribute(nsIDOMElement element,
String attribute, String value)

AppDevMozilla-15 Page 597 Thursday, December 4, 2003 6:37 PM

598 XBL Bindings Chap. 15

be accessed from a script. In both methods, the DOM Element passed in is the
DOM object for a bound tag.

getAnonymousNodes() returns an object containing all the immediate
children of the <content> tag in a matching binding. The number of children
is specified by a length property on the returned object, and each child is avail-
able using the item() method on the returned object, which takes a child
index number.

getAnonymousElementByAttribute() returns a single tag from the
set of tags inside the <content> tag of a binding. The tag returned has the
attribute name and attribute value specified in the method call.

This last method solves a problem created by the XBL merging of anony-
mous and explicit content in a bound tag. Before the merge, anonymous con-
tent tags are in a certain order. After the merge, the relative positions of those
tags may be different, owing to the addition of explicit content. This method
allows an anonymous content tag to be found, regardless of its position. The
tag must have a unique attribute-value pair that can be searched for. The
attribute named anonid is a convention used for this purpose. The DOM Ele-
ment supplied should be that of the bound tag.

A second problem solved by this method has to do with themes. A theme
may contain more than style information; specific skins may also include
scripts. Those scripts might customize the content of a given widget binding so
that it has a look consistent with the theme. getAnonymousElementByAt-
tribute() provides a way for a script-enabled skin to poke around inside an
existing binding, or its own replacement binding, and make changes.

The XPCOM system has two components that are related to XBL:

@mozilla.org/xbl;1 @mozilla.org/xbl/binding-manager;1

Neither of these have any interfaces that are significant for application
scripts.

15.6 STYLE OPTIONS

The -moz-binding CSS2 style extension is the only style option specific to
XBL. See the topic “Bound Tags and -moz-binding” in this chapter.

Each binding created should have its own stylesheet so that the designed
widget can support multiple themes or skins. Such a stylesheet is specified in
the <resources> section of the binding specification.

15.7 HANDS ON: THE <NOTEPLACER> TAG

This “Hands On” session is about developing general-purpose code using XBL.
In particular, we will create a new XBL binding and matching user-defined
XUL tag that might contribute to the content and function of the NoteTaker
dialog box.

AppDevMozilla-15 Page 598 Thursday, December 4, 2003 6:37 PM

15.7 Hands On: The <noteplacer> Tag 599

XUL content should not be converted to XBL bindings just because it is
possible. Only code that is used more than once in a given page or that could be
reused in another application is a good candidate for XBL. XBL bindings wrap
up the content they implement in extra structure. For mostly harmless content,
that extra structure is not always desirable from a code maintenance point of
view. Only when the binding is used frequently are there complexity savings.

In the NoteTaker tool, there are no repeated parts in the content of the
toolbar or dialog box: therefore, there is little need for XBL use. We do, how-
ever, need an XBL example to illustrate the technology. The positioning infor-
mation (top, left, height, width) of the Edit pane in the dialog box is worthy of
experiment. Those four numbers are very similar to the positioning styles in
the CSS2 standard, and a need for them may crop up in other applications.
Furthermore, the existing implementation is a little cumbersome: The user
must make an educated guess when entering values, and there is no user feed-
back on those values until the dialog box is closed, which is too late.

We can improve on that existing positioning system with a new widget.
We will create an XBL binding that the user can manipulate graphically to
specify the location of a note. This binding will be a special-purpose widget that
is a bit like the <colorpicker> tag and a bit like a Print Preview window.

This positioning widget won’t be integrated into the final NoteTaker
code; we’ll just illustrate the possibilities.

15.7.1 Designing Widget Interfaces

We need to find visual, XML, JavaScript, and user input interfaces for the new
binding and implement those interfaces in XBL code. The job of the widget is
to cue the user to provide positioning information and to make available that
information to the rest of the XUL document.

We first look at the visual interface. The visual part of the binding is the
inspiration for the widget. That visual must come from creative insight and
invention because every widget attempts to provide something unique and dif-
ferent. This is the most challenging part of widget design because each widget
must be original. If it’s not original, we might as well just copy and enhance an
existing widget like <button>.

There is one way to avoid being original. An XBL widget can aggregate
other, simpler widgets into a useful group. Such an aggregated system is often
called a console, just as an old-fashioned console consisted of a set of switches
and knobs. That kind of use of XBL is straightforward.

Because all XUL tags and tag combinations take up a rectangle of screen
area, we know that we must start with a rectangle. It’s possible to create
rather weird widgets that break this rule, but it’s rare to go that far. Figure
15.2 shows a simple mockup of our new widget.

This idea came from looking at other software that provides visual con-
figuration options, like print subsystems and image-processing programs, and
then reflecting on our own need. The essential thing that is new in this widget

AppDevMozilla-15 Page 599 Thursday, December 4, 2003 6:37 PM

600 XBL Bindings Chap. 15

is that it is a fixed-sized model of the whole desktop. In the limited space we
have here, we’ll just do a simple-minded job of creating this widget. A more
extensive solution would use technology similar to the Print Preview feature
of the Mozilla Browsers.

In Figure 15.2, the main rectangle will be our new widget. It contains
three parts: a backdrop <box> that represents the total screen area of the
user’s desktop, an optional white <box> that represents a browser window or
page, and a yellow <box> that represents the note to be positioned. Each box
is labeled in case it’s not obvious to the user what they are. The whole rectan-
gle will be sized in a way that reflects the dimensions of the desktop (the dis-
play resolution).

This main rectangle accepts user input. If the user clicks with the pri-
mary mouse button, the top-left corner of the note is located under the mouse.
If the user clicks again, the bottom-right corner is set. This series of clicks can
be repeated as long as is necessary. If the user clicks with the alternate mouse
button (right-click or apple-click), then the nearest leading diagonal corner of
the note is moved to the mouse location.

When the note is positioned, its coordinates are calculated. If the white
page is not present, those coordinates are relative to the whole desktop. This
case is useful if the user browses with windows maximized. If the white page
is present, the coordinates are relative to the edge of the page, which is the
edge of a window smaller than the whole screen. The white page is present for
psychological purposes: human beings prefer windows that are displayed in
the golden ratio, where width and height are in the approximate proportion
1:1.618. It is common for browser windows to end up in that ratio. The white
page reminds the user what that ideal size looks like.

The second interface is user input. The widget will support button 0 single
click (the primary or left mouse button) and button 2 single click (the secondary,
apple-click or right-click button). Both buttons set the position of either the top-
left corner or the bottom-right corner of the note. Button 0 clicks alternate
between the two corners. Button 2 clicks move the nearest corner. After a quick
glance at the visual interface, we should be able to create a widget that is nei-

Fig. 15.2 Mockup of an XBL binding that lets the user position a note.

AppDevMozilla-15 Page 600 Thursday, December 4, 2003 6:37 PM

15.7 Hands On: The <noteplacer> Tag 601

ther a member of the focus ring or of the accessibility system, so there is no user
input planning required there. Both possibilities are disqualified because none
of the XUL tags in the binding’s content is focusable or accessible.

The third interface required for this new widget is an XML interface. In
our case, that means a tag name and a set of attributes that are known to the
binding and layout behavior. A binding can be bound to any tag, but we’ll
select <noteplacer> as the tag of choice for the binding. The following
attributes will have special meaning:

scale screenx screeny pageless

☞ scale accepts an integer and specifies the size of the noteplacer widget
relative to the actual desktop size. For example, set to 4 (the default is 2),
the noteplacer widget will be one-quarter the dimensions of the full desk-
top.

☞ screenx states the width of the desktop in pixels. The default is the
value given by the window.screen.width property.

☞ screeny states the height of the desktop in pixels. The default is the
value given by window.screen.height property.

☞ pageless can be set to true or false. If set to true, the white page
will not appear in the widget. The default is false.

There is also the question of layout. Can the widget flex? What orienta-
tion does it have? The list of questions goes on. Because the noteplacer widget
mimics the shape of the desktop, it will be a fixed size and won’t flex. It will
always be oriented horizontally and will have no particular alignment or
direction.

The last interface will be the JavaScript XBL interface for the bound tag.
We’ll support the following properties:

top left width height scale screenx screeny pageless
setFromEvent(e,primary)

☞ top, left, width, and height match the fields in the Edit dialog box.
☞ scale, screenx, screeny, and pageless match the XML attributes for

the bound tag.
☞ setFromEvent() positions one of the corners of the note based on an

event object. If the second argument is true, the top-left corner is set;
otherwise, the bottom-right corner is set.

Offhand, we can’t think of any existing platform interfaces (e.g., nsI-
Accessible) that we’d like to support. The bound tag will automatically gain
the standard DOM interfaces for a DOM 2 Element object; we don’t have to do
anything to get those.

Together, these four types of interface fully specify our new widget. The
final question we should ask is: Can we exploit any existing binding? It doesn’t
appear likely in this case because the noteplacer widget is so simple.

AppDevMozilla-15 Page 601 Thursday, December 4, 2003 6:37 PM

602 XBL Bindings Chap. 15

15.7.2 Adding XBL Content

To create the binding itself, we start with a simple skeleton. In this step, we’ll
also consider the content parts of the binding. The skeleton is shown in Listing
15.14.

Listing 15.14 Trivial example of XBL binding inheritance.
<?xml version="1.0"?>
<bindings id="notetaker"
 xmlns="http://www.mozilla.org/xbl"
 xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul"
 xmlns:xbl="http://www.mozilla.org/xbl">

 <binding id="noteplacer">
 <resources></resources>
 <content></content>
 <implementation>
 <constructor></constructor>
 <destructor></destructor>
 </implementation>
 <handlers></handlers>
 </binding>
</bindings>

The set of bindings specific to NoteTaker we’ve called “notetaker” and
the binding specifical ly for the <noteplacer> tag we ’ve cal led
“noteplacer”. Because there’s no binding inheritance, there’s no extends
attribute on the <binding> tag. Because the new widget is based on simple
XUL boxes, there’s no need for a display attribute on that tag either. All we
need to do is fill in the four sections of the binding.

We start with the <content> and <resources> sections. We mock up
some content (the basis of Figure 15.3), and then consider how it might best be
modified to suit the XBL system. The mocked-up content appears in Listing
15.15.

Listing 15.15 Mocked-up XUL content for the noteplacer XBL binding.
<stack minwidth="320" minheight="240">
 <description value="Screen"/>
 <box class="page" top="0" left="86" minwidth="148" minheight="240">
 <description value="Page"/>
 </box>
 <box class="note" top="20" left="106" minwidth="40" minheight="40">
 <description value="Note"/>
 </box>
</stack>

This content is of a fixed size and has many attributes hard-coded in
place. Most widgets should rely on the platform rather than fixed pixel size to

AppDevMozilla-15 Page 602 Thursday, December 4, 2003 6:37 PM

15.7 Hands On: The <noteplacer> Tag 603

lay out the content neatly. The unique thing about our widget is fixed dimen-
sions, so that’s the rule we break to add something new to XUL’s widget set.

Before this code will be suitable for the <content> section of the bind-
ing, it needs some work. We see the following problems:

☞ The page part of the widget always appears; we want it to be invisible if
the user uses full-screen windows.

☞ The page is very boring and plain white. We might want to put something
more suggestive in there, like a browser menu bar and toolbar.

☞ The attributes quoting pixel sizes for most tags are useless. The real val-
ues will be computed based on <noteplacer> tag attributes and the
current screen size.

☞ Font sizes are misleading. If the widget is supposed to represent a scaled-
down desktop, then the font sizes should be scaled-down as well.

There are simple solutions to all of these problems. Page disappearance
is the easiest. We’ll let the <box> tag holding the page inherit the pageless
attribute from the <notepicker> tag:

<box class="page" xbl:inherits="collapsed=pageless" ...>

To stop the page from being boring, we let any explicit content of the
<noteplacer> tag dictate the contents of the <box class="page"> tag. By
carefully reviewing the merging rules for explicit and anonymous content, we
conclude that

<description value="page"/>

should be replaced with

<children>
 <description value="page"/>
</children>

If there is explicit content, it will all be added in one place; if not, then the
<description> tag stands as the default.

We next remove the fixed pixel sizes. They were based on a widget that is
the size of a 640×480 desktop, scaled down by a factor of two. Instead, values
will be calculated at run time in the binding constructor. We can’t inherit from
the attributes in the <noteplacer> tag because the needed values are a
mathematical combination of those attribute values, not a direct copy. We’ll
see shortly how that is done.

Finally, font sizes will be addressed in the constructor as well. We’ll add
an inline style to any anonymous content that is a <description> or
<label> tag. That style will scale down the fonts to match the size of the wid-
get. In some cases, the text will be unreadable, but it’s only intended as a point
of reference for the user—the widget is mostly graphical.

For these last two points, we’ll add an anonid attribute to the anony-
mous content that we’ll want to modify later. Looking ahead a bit, that is the

AppDevMozilla-15 Page 603 Thursday, December 4, 2003 6:37 PM

604 XBL Bindings Chap. 15

<stack> tag and two <box> tags. The final <content> part of the binding
will be as shown in Listing 15.16. Note the xul: namespace prefix on every
XUL tag.

Listing 15.16 <content> part of the noteplacer XBL binding.
<content>
 <xul:stack anonid="desktop">
 <xul:description value="Screen"/>
 <xul:box xbl:inherits="collapsed=pageless" class="page" anonid="page">
 <xul:children>
 <xul:description value="Page"/>
 </xul:children>
 </xul:box>
 <xul:box class="note" anonid="note">
 <xul:description value="Note"/>
 </xul:box>
 </xul:stack>
</content>

If we test the binding at this stage (a good idea in principle), the results
will look odd. They look odd because we have stripped out quite a lot of the
final layout information. The binding is working; it’s just that we haven’t fin-
ished it yet.

Next, we can create a simple stylesheet with default values for the anon-
ymous content, as shown in Listing 15.17.

Listing 15.17 CSS2 stylesheet for the noteplacer XBL binding.
stack {
 background-color : background;
 font-family : -moz-fixed;
}
box.page {
 background-color : white;
 border : solid thin;
 border-color : black;
}
box.note {
 background-color : lightyellow;
 border : solid thin;
 border-color : yellow;
}

The background color ensures that the desktop part of the widget will
have the same color as the user’s desktop. The -moz-fixed font (the system
font) has the important property that it can be rendered at all sizes. 7px is
14px scaled down by a factor of two. Note that the default namespace for an
XBL-included stylesheet is the XUL namespace. This means that tags in the
stylesheet do not need to be prefixed with a CSS2 namespace. Such
namespaces look like this:

AppDevMozilla-15 Page 604 Thursday, December 4, 2003 6:37 PM

15.7 Hands On: The <noteplacer> Tag 605

@namespace url("http://www.mozilla.org/keymaster/gatekeeper/
there.is.only.xul");

xul|stack { ... styles ... };

The stylesheet will go in the <resources> section of the XBL specifica-
tion, using a relative URL. It has a relative URL because the noteplacer
binding is specific to the notetaker package and in the same directory as the
binding. It is not a global binding in the global package. In general, one CSS
file should be used for all bindings for the notetaker package, and that file
should be called notetaker.css. We’re using a different name just to empha-
size that the file contains only XBL style information and to avoid confusion
with the skins created earlier. The finished piece of XBL reads

<resources>
 <stylesheet src="noteplacer.css"/>
</resources>

Having created the content and stylesheets, we’ve finished half the bind-
ing and have completely specified the visual and XML interface for the widget.

15.7.3 Adding XBL Functionality

The remainder of the noteplacer binding is the <implementation> and
<handlers> sections. These two sections provide the JavaScript and user-
input interfaces to the new widget. Let’s look at the JavaScript side first,
based on the bulleted list of wanted features in the earlier part of this “Hands
On” session.

It’s very common to see XML attributes reflected directly as JavaScript
properties on the bound object, and we could do that. Adding such reflected
features is trivial, as this example from the button-base binding shows.

<property name="type"
 onget="return this.getAttribute('type');"
 onset="this.setAttribute('type', val); return val;"/>

We don’t use this approach because we don’t want to store the state of
our widget in XML attributes. That is a design decision that weighs the advan-
tages and disadvantages of XML attributes. The advantages of storing state in
attributes follow:

☞ Very common default cases require no attributes at all, which speeds up
widget processing.

☞ JavaScript properties and XML attributes are automatically coordinated
because one always depends on the other.

☞ The state is accessible from CSS stylesheets.
☞ The state is more easily accessible from C/C++ platform code.
☞ Bound tags can inherit values into those attributes if they’re used in the

<content> of another binding.

AppDevMozilla-15 Page 605 Thursday, December 4, 2003 6:37 PM

606 XBL Bindings Chap. 15

The disadvantages of storing state in XML attributes follow:

☞ Access to attributes is slow compared to ordinary JavaScript variables.
☞ Any attempt at information hiding or simplification is pointless because

state is deliberately exposed.
☞ Scripts inside the binding (and outside) are required to do additional

checks for the special null case when a given attribute is missing alto-
gether.

If you are building a general-purpose toolkit of widgets, or building a fre-
quently used widget, then the advantages may outweigh the disadvantages,
and using XML attributes should be considered.

In our case, the widget is clearly application-specific, rather than general-
purpose. We have no popular default cases. We won’t be adding platform code
to process our widget or using complex style tricks. The only null case might
be the pageless attribute, where absence could be equated to false. For
our widget, we prefer a reliable interface that never yields up a null or an
empty value. The rest of the application can then use the widget as a true
black box. This decision means that we will use JavaScript to store the wid-
get’s state.

Overall, we need to create <field>, <property>, <method>, <con-
structor>, and <destructor> content for the widget.

For the <field> attribute, we’ll expose the golden ratio to the user. This
is not ideal because the value can’t be usefully passed to the XBL object, and
so we might question how useful it is. At least it illustrates the syntax:

<field name="ratio">(1+Math.sqrt(5))/2</field>

This mathematical expression is one of several ways to calculate the golden
ratio.

For the <constructor>, we observe that our widget tends to be quite
large, and that it shouldn’t stretch and shrink as a result of surrounding lay-
out changes. This fixed size is unusual, and shouldn’t always be a design
choice, but it suits our purpose, which is to represent the desktop accurately. It
also means that the <constructor> can size the widget once, and we won’t
have to worry about its flexing later. The constructor also must store the state
of the widget in JavaScript. The logic for both state and layout is shown in
Listing 15.18.

Listing 15.18 <constructor> code for the noteplacer XBL binding.
this.getAEBA = function (x,y,z) {
 return document.getAnonymousElementByAttribute(x,y,z);
}

this.desktop = getAEBA(this,"anonid","desktop");
this.page = getAEBA(this,"anonid","page");
this.note = getAEBA(this,"anonid","note");

AppDevMozilla-15 Page 606 Thursday, December 4, 2003 6:37 PM

15.7 Hands On: The <noteplacer> Tag 607

this.d = {}; // protect numbers from string-ification

this.d.top = 40;
this.d.left = 40;
this.d.width = 100;
this.d.height = 100;

this.d.scale = att2var("scale", 2);
this.d.screenx = att2var("screenx", window.screen.width);
this.d.screeny = att2var("screeny", window.screen.height);
this.d.pageless = att2var("pageless", false);

this.d.page_offset = 0;
if (!d.pageless)
 d.page_offset = (d.screenx - d.screeny/ratio)/d.scale/2;

/* layout the content once */

this.setAttribute("style","font-size:"+14/d.scale+"px;");
placeDesktop();
placeNote();
if (! d.pageless) placePage();

The getAEBA property is just a shorthand reference to the mouthful that
is document.getAnonymousElementByAttribute(). We remember the
important DOM elements of the widget for our future convenience. The d (for
data) property saves our numeric state data away from XBL’s tendency to
force simple values into strings. All the properties of this.d are hidden from
the user of the widget (the appl icat ion programmer who places
<noteplacer> tags). After these properties are calculated, the <content>
part of the widget has its attributes adjusted, including scaling the displayed
text. The att2var(), placeDesktop(), placeNote(), and placePage()
functions are all methods of the this object that are declared at the start of
the constructor code. They are shown in Listing 15.19.

Listing 15.19 Private <constructor> methods for the noteplacer XBL binding.
this.att2var = function (name, dvalue) {
 var val = this.getAttribute(name);
 if (val == "") return dvalue;
 if (isNaN(val)) return dvalue;
 return val - 0;
}

this.arg2var = function (arg) {
 var err = "Bad argument passed to noteplacer binding";
 if (arg == "") throw err;
 if (isNaN(arg)) throw err;
 return arg;
}

AppDevMozilla-15 Page 607 Thursday, December 4, 2003 6:37 PM

608 XBL Bindings Chap. 15

this.placeNote = function () {
 note.setAttribute("top", d.top / d.scale);
 note.setAttribute("left", d.page_offset + d.left / d.scale);
 note.setAttribute("minwidth", d.width / d.scale);
 note.setAttribute("minheight",d.height / d.scale);
}

this.placeDesktop = function () {
 desktop.setAttribute("minwidth", d.screenx/d.scale);
 desktop.setAttribute("minheight",d.screeny/d.scale);
}

this.placePage = function () {
 page.setAttribute("minheight", d.screeny/d.scale);
 page.setAttribute("minwidth", d.screeny/d.scale/ratio);
 page.setAttribute("top", "0");
 page.setAttribute("left", d.page_offset);
}

The att2var() method calculates the value for a state variable based
on the default value and an optional XML attribute that overrides that default
if it is present. The arg2var() method checks that a passed-in argument is a
legal number. We’ll use it shortly. The other methods adjust the positions of
the widget content based on the state information and a little mathematics.
All these methods, plus the getAEBA() method, are private to the widget.
They don’t appear as properties on the <noteplacer> tag’s DOM object.

We haven’t held any XPCOM components or other big objects during the
life of the widget, so there’s nothing to let go of when the widget is destroyed.
As a consequence, there is no <destructor> required for our widget.

We’ve already made the effort to capture the state information of the
widget, and that makes implementing the <property> tags very easy. Listing
15.20 shows these tags.

Listing 15.20 <property> tags for the noteplacer XBL binding.
<property name="top"
 onget="return this.d.top;"
 onset="this.d.top = arg2var(val); placeNote();"/>
<property name="left"
 onget="return this.d.left;"
 onset="this.d.left = arg2var(val); placeNote();"/>
<property name="width"
 onget="return this.d.width;"
 onset="this.d.width = arg2var(val); placeNote();"/>
<property name="height"
 onget="return this.d.height;"
 onset="this.d.height = arg2var(val); placeNote();"/>

<property name="scale" readonly="true"
 onget="return this.d.scale;"/>

AppDevMozilla-15 Page 608 Thursday, December 4, 2003 6:37 PM

15.7 Hands On: The <noteplacer> Tag 609

<property name="screenx" readonly="true"
 onget="return this.d.screenx;"/>
<property name="screeny" readonly="true"
 onget="return this.d.screeny;"/>
<property name="pageless" readonly="true"
 onget="return this.d.pageless;"/>

These properties could hardly be simpler to implement. Note how the
setters throw an exception via arg2var() if the value passed by the widget
user contains rubbish. If our widget were more dynamic, the placeNote()
function call in each onget attribute would be more extensive and might have
to do extensive calculations or processing.

Let’s now turn to the sole <method> tag required.
The widget coordinates used in both XML attributes and JavaScript

properties are relative to the pane that the note is placed in. When DOM
events occur, however, the DOM Event object generated has coordinates that
are relative to the whole window. That is a different coordinate system. The
convenience method setFromEvent() allows a user of the widget to set a cor-
ner of the note using that Event object. The widget handles the required coor-
dinate transformation for the user. This method is shown in Listing 15.21.

Listing 15.21 <method> tag for the noteplacer XBL binding.
this.getCoords = function(x,y) {
 return {
 x: (x - this.boxObject.x - d.page_offset) * d.scale,
 y: (y - this.boxObject.y) * d.scale
 };
}

<method name="setFromEvent">
 <parameter name="evt"/>
 <parameter name="cornerFlag"/>
 <body><![CDATA[
 var coords = getCoords(evt.clientX , evt.clientY);
 if (cornerFlag) {
 d.width += d.left - coords.x;
 d.height += d.top - coords.y;
 d.top = coords.y;
 d.left = coords.x;
 }
 else {
 d.width = coords.x - d.left;
 d.height = coords.y - d.top;
 }
 placeNote();
]]>
 </body>
</method>

AppDevMozilla-15 Page 609 Thursday, December 4, 2003 6:37 PM

610 XBL Bindings Chap. 15

The getCoords() function converts the supplied coordinates. It is added
to the <constructor> contents so that it resides with the other utility func-
tions—it is not exposed to users of the widget. The setFromEvent() method is
exposed to the user. After that method has local coordinates from getCo-
ords(), it recalculates the size and top corner of the note based on the location
provided and the existing note dimensions. That done, the note is repositioned
to match. This method could use some additional sanity checks (e.g., width and
height should never be negative), but it does the job for our purposes.

The last part of the binding specification is the <handlers> section. We
have two handlers, both for the DOM 2 click event, but for different mouse
buttons. For the primary button, we introduce another private variable, this
time called this.d.topclick. If this variable is true, then a primary click
will set the location of the top-left corner of the note. If it is false, the bottom-
right corner will be set. We initialize this variable to true in the constructor.
For the secondary button, we rely on the Pythagorean theorem (“the sum of
the squares of the sides of a right triangle equals the square of the hypote-
nuse”) to detect the leading diagonal corner of the note nearest the click point.
That corner is then updated. The resulting code is shown in Listing 15.22.

Listing 15.22 <handler> tags for the noteplacer XBL binding.
<handlers>
 <handler event="click" button="0"><![CDATA[
 this.setFromEvent(event,d.topclick);
 this.d.topclick = !this.d.topclick;
]]>
 </handler>

 <handler event="click" button="2"><![CDATA[
 var coords = this.getCoords(event.clientX, event.clientY);
 var dist1, dist2;
 with (Math) {
 dist1 = sqrt(pow(coords.x-d.left,2) + pow(coords.y-d.top,2));
 dist2 = sqrt(pow(coords.x - (d.left + d.width), 2)
 + pow(coords.y - (d.top + d.height), 2)
);
 }
 this.setFromEvent(event, (dist1 < dist2));
]]>
 </handler>
</handlers>

Using CDATA sections avoids a great deal of time otherwise wasted in
debugging. The handler functions reuse both the exposed setFromEvent()
method and the private getCoords() method, and so their logic is very sim-
ple.

With the <handlers> content finished, the noteplacer binding is com-
plete, at about 150 lines of code all told. With no more binding changes
required, all that remains is to try it out.

AppDevMozilla-15 Page 610 Thursday, December 4, 2003 6:37 PM

15.7 Hands On: The <noteplacer> Tag 611

15.7.4 Integrating the Binding

Having created the noteplacer binding, we next want to try it out. In fact,
the next few steps are a useful way to create a binding test harness. Such a
harness is as useful during binding development as it is for final testing.

To connect the binding to a tag, we use a single style rule:

noteplacer {
 -moz-binding : url("noteplacer.xml#noteplacer");
}

We put this in a file named xulextras.css for now. This file lives in the
same directory as the rest of the noteplacer content. This stylesheet
enhances the standard set of XUL tags with the new <noteplacer> tag.

In a test of the new widget, we want to see the following things:

☞ The widget fits properly inside surrounding content.
☞ The widget reacts properly to user input, including window resizing.
☞ Attributes set on the widget have the desired effect.
☞ Explicit content provided to the widget has the desired effect.

To that end, we construct the test XUL document of Listing 15.23.

Listing 15.23 Test page for the noteplacer XBL binding.
<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<?xml-stylesheet href="xulextras.css" type="text/css"?>
<!DOCTYPE window>
<window xmlns="http://www.mozilla.org/keymaster/gatekeeper/

there.is.only.xul"
 onload="install()">
<script>
 var np;

 function install()
 {
 np = document.getElementById("test");
 np.addEventListener("click", report, false);
 }

 function report()
 {
 var str = "";
 str += "Top: " + np.top + "\n";
 str += "Left: " + np.left + "\n";
 str += "Width: " + np.width + "\n";
 str += "Height: " + np.height + "\n";
 str += "ScreenX: " + np.screenx + "\n";
 str += "ScreenY: " + np.screeny + "\n";
 str += "scale: " + np.scale + "\n";

AppDevMozilla-15 Page 611 Thursday, December 4, 2003 6:37 PM

612 XBL Bindings Chap. 15

 alert(str);
 }
</script>
<description>Before Test </description>
 <hbox>
 <description value="Left of Test"/>
 <noteplacer screenx="1024" screeny="768" scale="4">
 <toolbox flex="1">
 <toolbar grippyhidden="true">
 <description value="File"/>
 <description value="Edit"/>
 <description value="View"/>
 <description value="Go"/>
 <spacer flex="1"/>
 </toolbar>
 <spacer style="background-color:white" flex="1"/>
 </toolbox>
 </noteplacer>
 <description value="Right of Test"/>
 </hbox>
 <description>After Test </description>
</window>
 </handler>
</handlers>

This document surrounds the <noteplacer> tag with other content and
provides a fake toolbar as a content hint for the page. It also lodges an event
handler on the tag. That event handler will be applied to the click handlers
specified in the binding. When this document is displayed, it appears as in Fig-
ure 15.3.

Obviously, the supplied toolbar is a primitive example of a browser win-
dow, but then an indication to the user is all that is required. Perhaps one day
the screen capture technology inside the DOM Inspector’s XPCOM screenshot
components will be complete. Then an actual, scaled-down screenshot can be
put where the explicit content currently goes.

Fig. 15.3 Test XUL document showing customized <noteplacer> tag.

AppDevMozilla-15 Page 612 Thursday, December 4, 2003 6:37 PM

15.7 Hands On: The <noteplacer> Tag 613

If the click handlers receive input, then an alert box appears that reports
the current position of the note. That alert box is shown in Figure 15.4.

A little mathematics and the values displayed can be confirmed as proba-
bly accurate.

It is easy to see how the <noteplacer> tag could be integrated into the
NoteTaker application using JavaScript. From the Edit dialog box, it could be
launched in a separate second dialog box or embedded somewhere in the exist-
ing <tabbox>. When the dialog box closes, an onclose event handler reads
the state of the widget and copies the values into the matching fields in the
Edit pane, or into the matching fields in the toolbar note object.

A single widget by itself gives the user few clues how it should be used.
Like many XUL tags, <noteplacer> is functional rather than obvious. This
tag should be surrounded by other content when served up to the user. Figure
15.5 shows one possible scenario.

That ends the “Hands On” session for this chapter.

Fig. 15.4 Diagnostic alert box confirming the state of a <noteplacer> widget.

Fig. 15.5 Application use of the <noteplacer> tag.

AppDevMozilla-15 Page 613 Thursday, December 4, 2003 6:37 PM

614 XBL Bindings Chap. 15

15.8 DEBUG CORNER: XBL DIAGNOSIS

There is nothing mysterious about XBL bindings; the window and document
objects are both available to all property, method, handler, and constructor/
destructor code. All the debugging techniques available to normal scripts are
also available to scripts used in XBL.

XBL is not as mysterious to work with as RDF either. Syntax errors in an
XBL document are reported to the JavaScript console, and the messages sup-
plied are readable.

The two most frequent problems when creating bindings are the result of
XML namespaces and internal JavaScript properties. Note the following
regarding namespaces:

☞ The XBL inherit property must be prefixed with a namespace identi-
fier like xbl: because the default namespace for the tag that inherit
resides in will always be either XUL or HTML.

☞ XBL must have a separate namespace because it shares some tag names
with other XML applications such as XUL, RDF, and HTML.

☞ If the standard set of namespaces in which the default namespace is XBL
is used, then every XUL or HTML tag in the <content> section must
have a namespace prefix. If not, nothing will appear.

On internal JavaScript properties of XBL bindings, two simple omissions
are:

☞ Forgetting to prefix binding variables with this.
☞ Forgetting that immediate properties of this store simple values as

String types.

The most frustrating problem with bindings is the way they load asyn-
chronously. You can’t assume when bound methods and properties will be
available. There are several trivial solutions to this problem.

The simplest solution is to use a document onload handler for any ini-
tialization code that is required. This will work only if all the bindings used
are bound once directly in stylesheets and never changed.

The next simplest solution is to add this field to every binding created:

<field name="loaded" readonly="true">true</field>

Before scripting the bound tag, check that this property is set; if it is, then the
binding is available.

A more systematic solution might use the <constructor> part of a
binding’s specification. This piece of code is a simple registration system:

with (window.document)
 bindTotal = (bindTotal) ? ++bindTotal : 1;

AppDevMozilla-15 Page 614 Thursday, December 4, 2003 6:37 PM

15.9 Summary 615

If a XUL application window consists of only a few very complex XBL
widgets, then it is easy to keep track of how many have finished loading. A
timer can be used to consult the in-progress total until all widgets are loaded.
If a destructor also decrements this total, then the total can be a running total
that keeps track of loaded widgets when their bindings are dynamically
changed. For highly specialized XBL widgets, this small amount of coupling
between the widget and the containing document can be a practical solution to
loading delays. In short, this is the same logic as that used to coordinate
frames in a Web document.

A last solution to this asynchronicity is to use the loadBindingDocu-
ment() method, which prevents the problem entirely.

Finally, XBL widgets have some security restrictions. If the documents
represented by two URLs are to have full access to each other, they must pass
Mozilla’s “Same Origin” test. That test demands that both URLs come from
the same server. XBL widgets must also pass this test or be installed where
security restrictions are dropped. A XUL application delivered by one server
cannot ordinarily use an XBL binding defined at another server. Rather than
go through a complex certification and code signing exercise, it is generally
simpler just to install the bindings in the chrome.

In all cases, if a binding is to take advantage of XPCOM components, the
document that contains the bound tag of interest should be installed in the
chrome. Bindings have the same security as the documents to which they are
bound.

15.9 SUMMARY

Mozilla’s XBL technology adds extensibility and componentization to user
interface development. It follows the general philosophy of visual markup lan-
guages like HTML: Keep it simple so that it is quick to use. But XBL is also a
software engineering tool—it allows common pieces of functionality to be iso-
lated, specified, and reused.

The XBL part of the Mozilla Platform helps glue interactive, visual wid-
gets to the rest of the platform by giving them highly customized object-like
features. XBL bindings back nearly every XUL tag, and many HTML tags as
well. The default actions supplied by these bindings contribute to the ease of
use that those other markup languages enjoy.

In the next chapter, we’ll see the objects to which XBL bindings usually
connect. These are the many objects supplied by the XPCOM system. Many
XPCOM objects have been explored already, but there are always objects com-
plementary to other technologies like XUL and RDF. Many XPCOM compo-
nents are functional in their own right, and these components dramatically
extend a Mozilla-based application.

AppDevMozilla-15 Page 615 Thursday, December 4, 2003 6:37 PM

