
RDF

JJJJJJJJJJJJJJJJJJJa aJavaJa aSSJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScriptJavaScriptJa aSc pS ppppppppppppppppppppppp

Digital
Certificates

Mozilla
registry

Preferences Type
libraries

JSlib

XPIDL
definitions

Class
libraries

RDFlib

AppDevMozilla-03 Page 80 Thursday, December 4, 2003 6:25 PM

81

C H A P T E R

RDF

SSJ S iJ S iJ S iJ S iJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJ S i tJa aScriptJavaScriptJa aSc pS pppppppppppppppppppppppiiiii ti ti ti ti ti ti ti ti ti ti ti ti ti triptpppppppppppppppppppppppp

Overlay
database

XBL
definitions

MouseKeyboard

Desktop
themes

GUI
toolkits

Default
CSS

W3C
standards

Skins

Text

Fonts

DTDs

Screen

UR
L

3

Static Content

AppDevMozilla-03 Page 81 Thursday, December 4, 2003 6:25 PM

82 Static Content Chap. 3

This chapter explains how to add noninteractive text, images, and borders to a
XUL application.

This kind of simple, noninteractive content is very easy to work with. It’s
no accident that this part of XUL is similar to HTML, but similarities are
mostly confined to this chapter and to Chapter 7, Forms and Menus. A signifi-
cant difference between XUL and HTML is that HTML has a fixed set of tag
names, but the set of XUL tag names can be extended with trivial effort. For
now, we consider just the standard XUL content tags.

The NPA diagram for this chapter illustrates the impact of static content
on Mozilla. Textual information can be supplied directly inside a XUL file, or it
can come from an external DTD file. Although DTDs aren’t much used in
HTML-based Web applications, their use is common in XUL. Later when we
have some scripting technology, we will be free to get text from any information
source. XUL also allows images to be loaded via a URL just as HTML does.

Font information is another aspect of static content display. The Mozilla
Platform is a good tool for UNIX application development, but care needs to be
taken that the finished application benefits from correctly organized fonts.

Given that XUL and HTML are somewhat similar in this area, XUL’s
existence as a separate language needs some justification. That discussion is
up first.

3.1 XUL

AND

 HTML C

OMPARED

Why should anyone bother with XUL at all? Isn’t HTML good enough?
Doesn’t layout succeed in HTML already? Surely HTML tables or CSS2 styles
is all you need? Well, HTML is not enough. Figure 3.1 illustrates a message
from a public and commercial HTML-based Web application, in this case a
high-volume e-commerce travel site.

In terms of user-interface design, this is truly awful. First, it is about the
third time the users have been asked to confirm their transaction. Second, it’s
highly fragile: Any accidental move by the user can obviously wreck the appli-
cation. Finally, the implication is that no feedback will be given. When do
users find out that the job is finished? Overall, it’s weird, scary, and confusing.
Such a popup window is just an apology for a bad user interface. HTML is not
ideal for application delivery because of the pre-existing navigation controls at

Fig. 3.1 HTML’s user interface problems.

AppDevMozilla-03 Page 82 Thursday, December 4, 2003 6:25 PM

3.1 XUL and HTML Compared 83

the top of every browser window—the user can press them at any time. HTML
is also not ideal because of the difficulty of building reliable navigation sys-
tems out of HTML tags.

There is no need for this kind of bad design when using XUL. XUL allows
the programmer to do away with the browser toolbars that allow the user to
disrupt an HTML-based application. XUL also gives the application program-
mer more control over application processing, via sophisticated and feature-
rich widgets.

It might seem that XUL is a minor technology compared with HTML.
Nothing could be farther from the truth. Every window of the Classic Browser
(and all other Mozilla-based Web browsers) is a XUL application, even

alert()

 popups. Some browser windows, like the Navigator window, may
have large sections dedicated to other kinds of content (like HTML pages), but
every window is a XUL application first and foremost. These windows interop-
erate by sharing definition files and by scripting mutually accessible compo-
nents. Everything you see when looking at a Mozilla Browser is wrapped up in
XUL. Even though HTML is well known, under the Mozilla Platform it is a
second-class citizen when compared to XUL.

To understand how XUL works in a finished application, consider typical
uses of HTML first. HTML Web pages use form submission, links, and
Dynamic HTML to get their jobs done. The actual form submission, link navi-
gation, and DHTML objects are services provided by the browser. They don’t
exist in the HTML document, although some HTML tags are closely tied to
them. The HTML documents

assume

that the browser provides those needed
services. For HTML, those services are defined mostly in the DOM standards.

In the case of XUL, a XUL document describes all the GUI elements. The
assumption is that there is something for these GUI elements to do. Mozilla’s
XPCOM provides the components with which these GUI elements can work.
As for HTML, the document content and the services of the browser go
together. XPCOM components are generally more powerful than DOM inter-
faces. If necessary, XUL can also use DOM objects.

Although both XML and HTML can be identified by namespace strings,
there is also a crucial difference. There is no DTD for XUL. The tags that make
up the language come from a variety of sources inside the Mozilla Platform.
There is no authoritative specification.

In fact, there is no exact or binding agreement on just what XUL tags
exist. The language is like a bit of clay. This is because each of several technol-
ogies contributes XUL tags, and more tags can be added at any time. Thus,
there is also no such thing as a “correct” XUL document. The question is
rather: Do all the tags in this document do something useful?

Matters are not quite as extreme as they might seem; there is a well-
defined set of basic XUL tags. These make a good starting point, but, overall,
XUL is not as fixed as HTML is. Learning XUL tags is about building up a dic-
tionary: Put a tag in the dictionary if it is in common use, regardless of where
it comes from.

AppDevMozilla-03 Page 83 Thursday, December 4, 2003 6:25 PM

84 Static Content Chap. 3

3.2 XUL C

ONTENT

 T

AGS

This chapter considers only static content, which means text, images, and
style effects. If you’re looking for buttons, see Chapter 4, First Widgets and
Themes.

3.2.1 Text and Strings

The

<description>

 tag is the simplest, if somewhat verbose, way to put tex-
tual characters on the screen. There are other ways as well. The full list of use-
ful textual tags includes

<description> <text> <label> <stringbundle> <stringbundleset>
<caption>

Because XUL is XML, there is always the option of working with generic
XML features. For text, that means entities and entity references. Some of
these options allow strings to be stored in separate files, so those mechanisms
are also examined.

Note that the XUL

<description>

 tag and the RDF

<Description>

tag are entirely separate and different in meaning.

3.2.1.1

<description>

,

<text>

, and

<label>

The

<description>

 tag is
the workhorse of XUL plain text. The

<label>

 tag is exactly the same as

<description>

, except that it supports the

control

 attribute. The

control

attribute associates the text of a label with a form element. To understand
how that works, see Chapter 6, Events.

<label>

 is basically a smarter ver-
sion of

<description>

. The

<text>

 tag provides a simpler display mecha-
nism than the other two tags.

<description>

 and

<label>

 tags are the only tags in XUL that will
line-wrap their content if it is long. Line-wrapping involves using more than
one line to display the text. When text is wrapped, it is done so on a breaking-
whitespace character (like space or tab). XUL does not support the

non-breaking-space character entity reference: If it’s needed, use the equiva-
lent

. If the text cannot be wrapped before the maximum line width is
reached (because no breaking character is encountered), then the line will
overflow. It will be clipped at the edge of the next fixed width box (usually the
window’s edge). It will also do this if the window size changes.

<description>

 and

<label>

 can contain any type of content, not just
text. That includes

<box>

 or other XUL tags. The content inside these tags
will be wrapped across lines as well. Line-wrap can also occur where an end
tag and start tag meet inside a string of

<description>

 or

<label>

con-
tent. In short,

<description>

 and

<label>

 are like HTML’s

<P>

 tag.

<description>

 supports one special attribute:

value

AppDevMozilla-03 Page 84 Thursday, December 4, 2003 6:25 PM

3.2 XUL Content Tags 85

<label>

 supports two special attributes:

value crop

Both can have their content stated between start and end tags, or in the XML
string assigned to the

value

 attribute.
The

crop

 attribute can be set to

start

,

center

, or

end

. By default none
of these values applies. If the

crop

 attribute is set, a

<label>

 tag will no
longer line-wrap. If the content would overflow the width of the enclosing box,
then it will be clipped and truncated. This truncation is severe enough that
there is room left over for ellipses (three dots, “...”) to be added. In the case of

crop="start"

, the ellipses appear at the beginning of the label content. In
the case of

crop="end"

, they appear at the end of the content. For

crop="center"

, they may appear at both ends. The ellipses indicate to the
user that more text is available to read.

A few restrictions apply to these tags. First, XUL documents consist of 8-
bit character encodings, usually UTF-8, so non-ASCII and multibyte Unicode
characters must be specially referenced. That is the case for all XML. Second,
if the

value

 attribute is used, then not all of the CSS2 styling that applies to
text can be applied to the content, so beware. The

value

 attribute also does
not allow generic XML (or XUL) content to be specified, only plain text.
Enclose the content between begin and end tags for maximum flexibility.

The

<text>

 tag is the same as the other two tags, except that its content
does not wrap to a second line. If the content would overflow the width of the
enclosing box, then it may be clipped and truncated by adding a flex attribute.
In that case, it acts like a

<label crop="end">

 tag. The

<text>

 tag is
therefore most useful in menus and toolbars where temporarily shrinking a
window might hide part of a short text string.

<description>

,

<label>

, and

<text>

 are real XUL tags in the sense
that they are backed by a C/C++ implementation. They do not originate from a
design practice based on a user-defined tag, as

<spacer>

 does.

3.2.1.2 DTD Text

Document type definitions are used in Mozilla XUL appli-
cations to replace language-specific text with more generic terms.

The XML 1.0 standard defines syntax for DTDs. In general, DTDs are
used to specify what terms are available to an XML document. In the most
complex case, a DTD defines the whole of an XML application’s tagset, like all
the XUL tags. In the more common simple case, a small DTD fragment adds
new terms that document authors find convenient.

As an example, a DTD fragment can make a memorable name like

 (an HTML no-break-space character) available to the document
author. XUL does not define

 so, without such assistance, an author
must remember the raw and obscure

 .
Memorable entities can stand for whole strings (entity references) as

well as single characters (character entity references). If this seems unfamil-

AppDevMozilla-03 Page 85 Thursday, December 4, 2003 6:25 PM

86 Static Content Chap. 3

iar, then review section 4.2.2 “External Entities” of the XML 1.0 standard. In
summary, a DOCTYPE declaration like

<!DOCTYPE html [...]>

makes extra ENTITY declarations (or other DTD content) available. A piece of
code in a XUL file, like that in Listing 3.1, is the same (roughly) as a
#include in C/C++ or require in Perl:

Listing 3.1 Use of a DOCTYPE declaration to include XML entities from a file.
<!DOCTYPE html [
 <!ENTITY % textDTD SYSTEM "text.dtd">
 %textDTD;
] >

The text.dtd file is human-readable and contains one or more lines like
this:

<!ENTITY text.welcome "Welcome to my Application">

To use such an entity, the equivalent XUL or XML looks like this:

<description>&text.welcome;</description>

or like this:

<description value="&text.welcome;"/>

Therefore, using entities, an application can be completely translated to Espe-
ranto, Klingon, or whatever. Only the DTD file needs to be modified. The XUL
document doesn’t need to be touched. Many examples of these .dtd files can
be seen in the chrome of Mozilla.

Because these entities can appear in XML attribute values, they can also
store style information. This is for the rare case where one localized version
needs to be styled differently from another. Perhaps a Cantonese menu should
be red or a Western bridal invitation should be white.

The most significant thing about DTDs is that they are read-only. This is
sufficient for 90% of an application’s text needs, but not all.

3.2.1.3 <stringbundle>, <string>, and Property Files DTDs are of no
use if a displayed string of text needs to change while the application is run-
ning. Mozilla provides a separate mechanism for storing strings that can be
read and manipulated. Such strings are often required for error messages,
user feedback, and all occasions where a string needs to contain some com-
puted value. In Mozilla, a collection of such strings is called a string bundle.

Mozilla stores string bundles in a property file, which is similar to a Java
property file. The nearest Microsoft Windows technology is an .ini file. The
nearest UNIX technology is perhaps strfile(1). A Mozilla property file has

AppDevMozilla-03 Page 86 Thursday, December 4, 2003 6:25 PM

3.2 XUL Content Tags 87

the extension .properties, and the content of the file consists of single lines
of human-readable text. An example is

instruct-last=To continue, click Next.

“instruct-last” is a string name, “To continue, click Next.” is the string value. A
set of these lines makes a string bundle—a tiny database of strings—for a
Mozilla application to work with.

Such property files must be stored in the locale subdirectory of a chrome
package. A full URL for a string bundle is, therefore,

chrome://packagename/local/filename.properties

From the point of view of pure XUL, string bundles are boring. Listing
3.2 shows everything you can do with them.

Listing 3.2 String bundles declared from XUL.
<stringbundleset>
 <stringbundle id="menus" src="menus.properties"/>
 <stringbundle id="tips" src="tips.properties"/>
 <stringbundle id="status" src="status.properties"/>
</stringbundleset>

None of these tags produce any visible content. All they do is make string
bundles available to JavaScript scripts. The <stringbundleset> tag isn’t
even a real tag—it’s just a user-defined container that holds the <stringbun-
dle> tags. Both tags have enough default styling to make them completely
invisible.

This kind of XUL demonstrates an important feature of the language.
The use of a container tag, usually with a name ending in -set, is a common
idiom. Even though tags such as <stringbundleset> do nothing, using
them to collect together a group of like statements (the <stringbundle>
tags) is good coding practice. It is tidy and highly readable. It’s recommended
that you always collect your invisible sets of tags together like this and put
them at the start of your XUL document.

JavaScript does all the work when it comes to string bundles. Chapter 5,
Scripting, explains and has an example. It’s also possible to access a string
bundle directly from code without using any XUL content at all.

In addition to all these text mechanisms, JavaScript scripts and RDF
documents can supply textual content to a XUL application. That kind of con-
tent is even less static than string bundles.

3.2.2 Images and <image>

HTML has the tag; XUL has the <image> tag. They are the same. An
example piece of code is

<image src="myimage.jpg"/>

AppDevMozilla-03 Page 87 Thursday, December 4, 2003 6:25 PM

88 Static Content Chap. 3

Images have a minimum width and height matching the image to be dis-
played. If flex is applied to an <image> tag, the image loses those minimums
and can be squeezed quite small. To preserve those minimums, reapply width
and height styles or attributes.

There are two very useful image techniques. Both relate to the decorative
information stored in Mozilla skins and themes. Even though XUL has an
<image> tag, images used in skins or themes should not be stated that way;
they should be specified in the stylesheet. A style containing an image URL
can be attached to a content-less tag like this:

<description class="placeholder"/>

An example of a matching style is

.placeholder { list-style-image: url("face.gif"); }

Second, a large number of images can be reduced to a single file. The clip-
ping features of CSS can be used to display from the large file the subimage
required as follows:

#foo {-moz-image-region: rect(48px 16px 64px 0px); }

and similarly

#foo:hover {-moz-image-region: rect(48px 32px 64px 16px); }

Using this technique, image rollovers caused by mouse movements and
other CSS pseudo-class effects are implemented. Such rollovers, where one
image is replaced with another, had in the past required separate JavaScript
code, but CSS2 advances have made that unnecessary. This technique is used
routinely in Mozilla’s own skins and themes. Figure 3.2 shows the Classic

Fig. 3.2 Composer window with clipped images and original image.

AppDevMozilla-03 Page 88 Thursday, December 4, 2003 6:25 PM

3.3 Understanding Font Systems 89

Composer with classic skin, and a chrome file from classic.jar that is
responsible for many of the visible icons.

Mozilla also has new support for the Microsoft Windows .bmp image
format.

3.2.3 Border Decorations

Mozilla supports an extensive set of border decorations based on CSS2, plus
some extensions. These are covered in the “Style Options” section of this chap-
ter. One entirely standard CSS2 style that deserves special mention is over-
flow:scroll.

A typical use of this style is to provide a scrollable region of static text,
such as a license disclaimer. All that is required is two user-defined tags, one
inside the other, with the desired content inside both. For HTML, such a tag is
; for XUL, use <box>.

Note that these scrollbars are not themselves scriptable objects, which is
something of a weakness. This styling technique is recommended only where
the state of the scrollbars is not important. In the default XUL case, CSS2
scrollbars are always visible.

XUL has a number of better methods for managing scrollbars, including
a quite general <scrollbox> tag. Scrollbars are discussed more generally in
Chapter 8, Navigation.

3.3 UNDERSTANDING FONT SYSTEMS

Displaying text is not a simple process at all. To display text on a bitmapped
interface (a non-character-based terminal), every character in the text must be
rendered into a set of pixels. Mozilla is sensitive to the way this is done, and
applications or HTML pages can look good or bad as a result. Problems exist
mostly on UNIX platforms. Figure 3.3 shows the letter A as rendered on the
screen by Mozilla under four different circumstances.

Each of these characters (a glyph) is taken from one Mozilla window. In
each case, the style

{ font-family : Times; font-size : 72pt; }

has been applied, although a little cheating with font-size is done to make
the letters appear about the same across different desktops. The blob under

Fig. 3.3 Four Mozilla glyphs for the letter A across Windows and UNIX.

AppDevMozilla-03 Page 89 Thursday, December 4, 2003 6:25 PM

90 Static Content Chap. 3

each letter is the bottom tip of the left stroke of the letter, magnified five times.
Obviously, things need to be set up correctly if character glyphs are to look
their best on the screen.

Images (1) and (2) of Figure 3.3 are taken from Microsoft Windows;
images (3) and (4) are taken under UNIX, using the X-Windows system, which
is the fundamental display technology for UNIX/Linux. Clearly the letters are
different shapes across the two operating systems. That is because there were
at least three versions of the Times font at work; a TrueType version on Win-
dows; a “scalable” bitmapped font on UNIX, and a Type1 font on UNIX. If your
XUL application is to be perfectly portable, then the same implementation of a
given font, stored in the same font format, must be available on all platforms.
That is the best step toward sanity. Another step is to arrange matters so that
the font looks good.

The two Windows version of “A” differ only by the rendering process. In
the Microsoft Windows Control Panel, in the Display Control, under the Effects
tab, the option “Smooth edges of screen fonts” is ticked in one case but not in
the other. This option turns on an anti-aliased rendering of glyphs. In
Microsoft-speak, this is also called sub-pixel accuracy.

What is anti-aliasing? First, aliasing is the process of taking a font
description of a single glyph and converting it to a rectangle of dots or pixels
for display. Because many points in the initial description end up in the same
pixel, those points are said to have the same alias. This system relies on the
final glyph being one solid color. This is the first-generation way to bit-render
fonts. Anti-aliasing takes advantage of the increased color depth of modern
monitors. It partially shades extra pixels to improve the appearance of the
glyph. This is called anti-aliasing because fewer points on the original glyph
match a given pixel. Even so, there is still quite a bit of aliasing going on. Anti-
aliasing is the second-generation way to render fonts. Anti-aliasing makes
characters look smoother, but fuzzier. It is only recommended on fonts where
the font size measured in pixels is not too small. It also requires a monitor that
supports many shades of gray—more than 256 colors per pixel, ideally. Anti-
aliasing is at work in three of the four magnified images in Figure 3.3.

In the UNIX versions of “A”, both glyphs are anti-aliased, but one looks
awful. Clearly, a smart rendering algorithm is not enough; Mozilla must be
able to find a decent font as well. This is an issue for both the platform and the
operating system. The better image (4) comes from Mozilla 1.0, the worse
image (3) comes from Mozilla 1.21. That is not what you might expect. The
reason is that the better image comes from a special custom version of Mozilla
1.0. That version was compiled with extra pieces of X-Windows support bun-
dled together using the --enable-xft compile-time option. That support is
not available by default in Mozilla for UNIX. The default Mozilla 1.0 displays
“A” no better than the default of Mozilla 1.21. Why would an obvious improve-
ment not be in the standard distribution?

This extra X support is turned off for a performance reason. The reason is
complex and has to do with the architecture of X-Window. X-Window works as

AppDevMozilla-03 Page 90 Thursday, December 4, 2003 6:25 PM

3.3 Understanding Font Systems 91

follows: Programs send instructions to a dedicated X-server (like Xfree86,
VNC, X-Terminal firmware, or Reflection), which then draws things on the
screen. All X-based applications are no more than pictures drawn by an X-
server as directed by the application. There is a standard set of instructions
that the server can accept. This set is the X11 Protocol, and it doesn’t include
sophisticated font display. The X11 Protocol supports extensions, which are
optional features of the server. The RENDER extension supports sophisticated
font display—exactly what you need. Most servers do not (yet) implement that
extension. So Mozilla cannot rely on it being present in the server. Conse-
quently, there is first a functionality problem, not a performance problem. To
see if your server does support RENDER, run xdpyinfo at the command line.

The performance problem is introduced because the --enable-xft ver-
sion of Mozilla uses RENDER anyway. Instead of telling the server to do it, the
Mozilla client has RENDER built in. It uses this extension to turn every glyph
from a character code plus font information plus a RENDER X11 instruction
into a rendered pixmap (an image) and a standard X11 instruction. This
means all characters are sent to the X-server as images. Instead of requiring a
few bytes per character, RENDER uses over 100 bytes per character—and as
much as 1,000 bytes for a large character. That is the performance issue.

This change from characters to images is not always a killer. The X-
Window system already has a performance issue of its own that dwarfs any-
thing that Mozilla might add. An understanding of X11’s issue will help you
decide whether the RENDER support in Mozilla is worth having.

Modern X-based applications, like Mozilla, the GIMP, and OpenOffice,
contain many images used for icons, buttons, and other user-interface cues.
The X11 system was originally designed for monochrome monitors (one bit per
pixel), but now monitors are 8-, 24-, or 32-bits per pixel. Therefore, images
have become both more common and a lot bigger. The communication traffic
between X-servers and X-clients is now dominated by those images, in the
same way that most internet bandwidth is spent on Web-based images. If this
is the environment that Mozilla works in, then adding more images is not
going to make much difference. In that case, use the RENDER support if you
like. A typical example that applies in this case is when all of your computing
technology is running on a single UNIX or Linux computer, and you use KDE
or GNOME.

When the X11 system uses few images, or it operates over a slow con-
nection, then Mozilla with RENDER support can become a real issue and
should be avoided at that point. The most common scenario is when the X-
server is remote. This is how Reflection works. It is also the case if you run
an X-server at home (on a PC or an X-terminal) and dial up to a host running
X-applications at work. This is not the case for VNC. The VNC server is
remote to the VNC client, and the server contains an X-server. Mozilla won’t
affect VNC performance.

For desktop integration, Mozilla 1.0–1.4 is based on the GTK 1.x widget
library that sits on top of X-Windows. The existing X enhancements will work

AppDevMozilla-03 Page 91 Thursday, December 4, 2003 6:25 PM

92 Static Content Chap. 3

under GNOME 2.0 or KDE or later because the older GTK libraries exist on
those newer versions as well. Thus, choosing to use a RENDER-enabled ver-
sion of Mozilla does not create an upgrade problem for your current desktop.

If these UNIX font issues grab your attention, there is much to learn. You
can begin your search in several different places. The file fonts HOWTO is a
standard FAQ delivered with most Linux systems; the subject of twips is a
deep architectural matter that applies to Mozilla font display, Microsoft Win-
dows, and graphical displays in general; the matters at www.fontcon-
fig.org will explain the basics of the Xft font-serving system; and the X-
Window organization can be found at www.x.org.

Finally, Figure 3.3 is unnecessarily harsh on the default version of
Mozilla. A simple solution is just to get more fonts. The Linux fonts HOWTO
document contains pointers to many fonts. Mozilla can even look beautiful
with just plain bitmapped fonts (the most primitive and brain-dead of fonts).
All that is required is an X-installed bitmap font for every font at every point
size used in your Web documents. Such fonts take a long time to make, unless
you’re a font specialist. Mozilla does not support embeddable fonts (fonts
downloaded “live” from the Web).

If you don’t want to compile Mozilla yourself, an --enable-xft version
for GTK1.x can be had from ftp://ftp.mozilla.org in RPM format. This
version will install only on top of the standard Mozilla installation that exists
in /usr/bin/mozilla and /usr/lib/mozilla.

3.4 STYLE OPTIONS

Mozilla’s most decorative extensions relate to the Box Model of CSS2. That
model describes how a box of content can have a rectangular border. That bor-
der can have a simple line style applied to it. Mozilla supports CSS2 borders;
however, some line styles do not work.

Mozilla’s extensions allow for even more decorative borders. Borders can
have fancy corners and may be multicolored. Borders can have transparent
lines along their length. Table 3.1 lists these extensions.

These extensions bear some explaining. Mozilla has two separate border
enhancements, and they don’t work together. Listing 3.3 illustrates both.

Listing 3.3 Mozilla border style examples.
#box1 {
 border:solid thick;
 border-width:20px; margin:20px; padding:20px;
 border-color:gray;

 -moz-border-radius-topright: 20px;
 -moz-border-radius-bottomright: 40px;
 }

AppDevMozilla-03 Page 92 Thursday, December 4, 2003 6:25 PM

3.4 Style Options 93

#box2 {
 border:solid thick;
 border-width:20px; margin:20px; padding:20px;
 border-top-color : gray;

 -moz-border-right-colors :
 #000000 #101010 #202020 #303030
 #404040 #505050 #606060 #707070
 #808080 #909090 #A0A0A0 #B0B0B0
 #C0C0C0 #D0D0D0 transparent #000000;

 -moz-border-bottom-colors :
 #000000 #101010 #202020 #303030
 #404040 #505050 #606060 #707070
 #808080 #909090 #A0A0A0 #B0B0B0
 #C0C0C0 #D0D0D0 transparent #000000;
}

The first enhancement provides corner rounding, but the border must be
one solid color. A few border-style values (like double) are supported, but not
all are maintained. The second enhancement allows a border to be shaded dif-
ferent colors. In this case, the border is drawn as a series of concentric lines
one pixel wide. Each line is drawn in a different color from a supplied color
list, starting from the outside edge of the border. If colors run out, the last
color is used until the border is finished. If rounding is attempted for a shaded

Table 3.1 Style extensions for Box Model borders

Property or Selector Values Use

-moz-border-radius As for margin, use px units
only

Dictates the roundness of
the corners of a border or
outline.

-moz-border-radius-topleft -moz-border-radius-topright -moz-border-radius-bottom-
left

-moz-border-radius-bottomright Px Roundness or flatness of a
single border corner. 0 for
square. Curved for single-
color borders; slanted for
multicolor borders.

-moz-border-bottom-colors -moz-border-top-colors -moz-border-left-colors

-moz-border-right-colors Color list plus “transpar-
ent” and CSS2 special val-
ues

Colors for a single border.
Any number of colors may
be specified, with each color
painted one pixel wide. The
last color fills the remain-
der.

AppDevMozilla-03 Page 93 Thursday, December 4, 2003 6:25 PM

94 Static Content Chap. 3

border, then the corners are drawn cut instead of rounded. Figure 3.4 shows
the result.

It is possible using these extensions to create jagged, nonmatching bor-
der corners, but that is a consequence of poor XUL use rather than any funda-
mental flaw in Mozilla.

Some of these border styles also apply to CSS2 outlines. Mozilla’s outline
support is described in the “Style Options” section of Chapter 7, Forms and
Menus.

Mozilla also supports style extensions for images. The list-style-
image property discussed earlier is a standard CSS2 property, not an exten-
sion. Table 3.2 illustrates.

Separate to both layout and content issues are a few miscellaneous and
generally applicable style extensions. They are noted in Table 3.3.

Note that XUL does not support the CSS2 text-decoration style. That
style provides underline and strikethrough decorations.

CSS3 is in development as this is written, and Mozilla has partial sup-
port for it. CSS3 will include support for Internet Explorer 6.0’s “border box
model.” Mozilla will likely support this eventually, but that has not happened
yet.

Fig. 3.4 Mozilla custom border styles.

Table 3.2 Style extensions for HTML—new features

Property Values Use

-moz-background-clip Border, padding Near-complete CSS3 background-
border support. Mozilla 1.2+.

-moz-background-origin Border, pad-
ding, content

Near-complete CSS3 background-
origin support. Mozilla 1.2+.

-moz-force-broken-image-icon 1=true, 0=false Display the “image failed to load”
image instead of a real image.

-moz-image-region As for clip Display only a portion of an
image.

AppDevMozilla-03 Page 94 Thursday, December 4, 2003 6:25 PM

3.5 Hands On: NoteTaker Boilerplate 95

3.5 HANDS ON: NOTETAKER BOILERPLATE

In this “Hands On” session, we will fill with text the skeletal structure of the
dialog box started in the last chapter. We also will explain how to set up
locales, although they’re not used in the NoteTaker running example.

Layout is a kind of content, but to the user it’s invisible. Real user content
is visible. Boilerplate text is text in the panel of a window that never changes.
The term boilerplate comes from the early days of printing and is also used in
form design. Our content strategy is to include enough boilerplate text that a
useful screenshot can be taken. Our overall goal is to produce something ultra-
quickly that we can throw to the wolves: that is, to the users, analysts, and
usability people. They will almost certainly tear it apart, and large pieces will
be thrown out. By providing a very early draft, hours rather than weeks of
work are thrown out. Ideally, this will all happen long before the specification
stage—by then the details of the screens will be rigidly locked down.

3.5.1 Adding Text

Because we haven’t covered any widgets yet, the content part of this dialog
box will be fairly simple. Anywhere a widget should be, we’ll just put an empty
box as a placeholder, with its border turned on. Listing 3.4 shows the frag-
ments of content added to the layout.

Listing 3.4 XUL content for the NoteTaker dialog box.
<text value="Edit"/>
<text value="Keywords"/>

Table 3.3 Style extensions applicable to most XULtags

Property Value Use

Any property -moz-initial Set this property to the value it would have if
there were no style cascading or inheritance.

Most properties inherit As for HTML/XHTML.

Any font property Desktop fonts See “Style Options,” Chapter 10, Windows and
Panes

Any color property Desktop colors See “Style Options,” Chapter 10, Windows and
Panes

-moz-binding None or url() Attaches a nominated XBL binding to the tag.
See XBL.

-moz-opacity 0.0 to 1.0 Make content semitransparent—equivalent to
an alpha channel

AppDevMozilla-03 Page 95 Thursday, December 4, 2003 6:25 PM

96 Static Content Chap. 3

<description>Summary</description>
<box/>
<description>Details</description>
<box flex="1"/>

<caption label="Options"/>
<description>Chop Query</description>
<description>Home Page</description>

<caption label="Size"/>
<description>Width</description>
<description>Height</description>
<description>Top</description>
<description>Left</description>

<box/>
<box/>
<box/>
<box/>

<description>px</description>
<description>px</description>
<description>px</description>
<description>px</description>

<text value="Cancel"/>
<spacer flex="1"/>
<text value="Save"/>

As you can see, this is all fairly trivial. Note how <text> is used where
the content has a command-like purpose and <description> is used where
the content has an instructional purpose. By systematically listing the con-
tent, we have already picked up and corrected one error: Bottom should read
Left, since content elements are positioned with the top and left pair of style
properties.

The result of adding this content is shown in Figure 3.5.
All that remains is to clean up the styles so that unwanted box borders

disappear. Proud as we are of this achievement, the resultant window is still
pretty ugly and primitive. It needs real widgets, and it needs a beautifully
designed stylesheet. In the next chapter, we’ll add button widgets and a skin
to NoteTaker.

We can stop there, and we will, but we also have the option of interna-
tionalizing NoteTaker so that it can be presented in different languages. To do
this, we use a DTD file (with .dtd extension) and set up Mozilla’s locale sys-
tem. Doing that reduces the readability of the examples in this book, so we
don’t apply it here.

AppDevMozilla-03 Page 96 Thursday, December 4, 2003 6:25 PM

3.5 Hands On: NoteTaker Boilerplate 97

3.5.2 Configuring and Using Locales

For your own projects, here is how to get localization working. First, all static
text in the original XUL must be replaced with XML entity references. That
means that a tag like

<text value="Cancel"/>

gains a suggestively named entity reference like

<text value="&editDialog.cancel"/>

In this chapter, we identified all the static text, so the set of changes is
totally obvious. The entity editDialog.cancel needs to be declared and
defined in a DTD. We merely create a file with one or more lines like this in it:

<!ENTITY editDialog.cancel "Cancel">

It really is that simple. Since “Cancel” is English, this file must contain
an English language locale, such as en-US, or en-UK. For U.S. English, we put
this file at this path:

chrome/notetaker/locale/en-US/edit.dtd

The name edit.dtd just reminds us this file is for the edit dialog we’re
making. It could be used for the whole NoteTaker application, or any part of it.
This DTD fragment must be included in the application, so we expand the
<!DOCTYPE> declaration in editDialog.xul to do that, using standard XML
syntax. It goes from

Fig. 3.5 First draft of the NoteTaker dialog box.

AppDevMozilla-03 Page 97 Thursday, December 4, 2003 6:25 PM

98 Static Content Chap. 3

<!DOCTYPE window>

to

<!DOCTYPE window [
<!ENTITY % editDTD SYSTEM "chrome://notetaker/locale/edit.dtd">
%editDTD;
]>

Note that this chrome: URL doesn’t have any locale name. It will be
mangled by Mozilla at run time so that the locale name is added. If the cur-
rent locale is en-US, the URL will be mangled to read:

chrome://notetaker/locale/en-US/edit.dtd

This matches where we put the locale-specific information. In fact, that
new URL is incompletely changed. It illustrates how the current locale is sub-
stituted in, but the fully modified URL will be:

resource://chrome/notetaker/locale/en-US/edit.dtd

Finally, we want the platform to understand that this locale-specific
information is available for use, and that NoteTaker should benefit from it.
Otherwise, Mozilla won’t bother to look for package-specific locale files. To do
that, we need to give the locale a contents.rdf file and to update the
installed-chrome.txt file again. The contents.rdf file looks like List-
ing 3.5.

Listing 3.5 contents.rdf for a chrome locale.
<?xml version="1.0"?>
<RDF
 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:chrome="http://www.mozilla.org/rdf/chrome#">

 <Seq about="urn:mozilla:locale:root">
 <li resource="urn:mozilla:locale:en-US"/>
 </Seq>

 <Description about="urn:mozilla:locale:en-US">
 <chrome:packages>
 <Seq about="urn:mozilla:locale:en-US:packages">
 <li resource="urn:mozilla:locale:en-US:notetaker"/>
 </Seq>
 </chrome:packages>
 </Description>

</RDF>

This file can be used for any locale, just by changing the strings “en-US”
and “notetaker.” Just treat this file as an anonymous block of text for the
minute. RDF is described in detail from Chapter 11, RDF, onward. The three
chrome: attributes of the <Description> tag can be dropped if the locale

AppDevMozilla-03 Page 98 Thursday, December 4, 2003 6:25 PM

3.6 Debug Corner: The DOM Inspector 99

exists anywhere in the chrome already. In this case, they could be dropped
because the Classic Browser already uses U.S. English. This file just says that
the locale en-US exists (the three early lines), and that the notetaker package
has en-US locale information (the seven later lines).

After creating this file, bring the installed-chrome.txt file up to
date. It needs this one additional line:

locale,install,url,resource:/chrome/notetaker/locale/en-US/

That tells the platform that the locale exits, and the saved file tells the
platform to reinspect the chrome the next time it starts. If the user swaps
locales in the platform preferences, then notetaker will now automatically
use different.dtd files for its referenced entities.

The chrome locale system also supports versioning. Version information
can be supplied in the contents.rdf files in the chrome. See Chapter 15,
XBL Bindings, for more information on versions.

3.6 DEBUG CORNER: THE DOM INSPECTOR

The DOM Inspector is a tool supplied with the Classic Browser. It is a great
toy to play with and has two immediate uses: It is a diagnostic aid, and it is a
learning aid. Here we point to those immediate uses. You can explore its func-
tionality for yourself.

To get the DOM inspector working, start it from the Tasks | Web Develop-
ment menu in a Navigator window. From the DOM Inspector window, choose
File | Inspect a window … and then choose any window except the one labeled
“DOM Inspector.” Avoid selecting DOM Inspector because it’s confusing to look
at a window that’s analyzing itself. That inspect action should put content in
the left and right panels of the DOM Inspector window. In the DOM Inspector
window, under Edit | Preferences, make sure Blink Selected Element is ticked, and
that Blink Duration is set to at least 2,500 milliseconds (for beginners).

It turns out that most of the DOM Inspector main menu items are of triv-
ial use. The two most useful things to press are the small icons at the top left
of the two content panels. They look like tiny Windows Explorer windows in
“small icons” mode. These icons are buttons and drop-down menus. From the
left menu, choose DOM Nodes; from the right menu choose Computed Style. You
are now ready to explore the content of any Mozilla window. This setup is
shown in Figure 3.6. Interesting items to press are circled.

The left panel is a tree-oriented view of the full XML hierarchy that
makes up a Mozilla window. Since all Mozilla windows start with XUL, this is
a hierarchy of XUL tags. Some Windows, like Navigator windows, also include
HTML tags. You can drill down the hierarchy just by clicking on the branches
of the tree, or you can click-select a single tag. When you click on a tag, that
tag flashes a red border in the real window it comes from. If the tag is invisi-
ble, then a zero height or width border (a line) flashes. This left panel usually

AppDevMozilla-03 Page 99 Thursday, December 4, 2003 6:25 PM

100 Static Content Chap. 3

shows three columns: NodeName, id, and class. More columns can be added
with the column picker icon at the top right of the panel.

The right panel shows one of a number of specialist panels, which also
have column pickers. These panels reveal content for the currently selected
tag. As an example, the Computed Style panel shows the style of the currently
selected tag after all the CSS2 cascading has taken place. This is the “real”
style of the tag, as it appears on the screen.

The circles on the screenshot show the bits of the DOM Inspector that
are interesting to press. If, on Microsoft Windows, you happen to find a button
in the DOM Inspector labeled “Capture”, then pressing it is a great way to
crash the platform before it has a chance to work.

The simplest use of the DOM Inspector is diagnosis. It can help you make
sense of complex XUL documents by showing you the live state of the docu-
ment. The tree-structured view of your document and the flashing red borders
makes it easy to see what tag in the tree is responsible for what visual ele-
ment. It may give you ideas for a better breakdown of your XUL. The id and
class columns let you see immediately if the styles you expected are attached
to the right tags.

The other obvious use of the DOM Inspector is spying, also called learn-
ing. It allows you to deconstruct all the XUL supplied with the Classic
Browser—or in fact, any Mozilla-based product. This is a fascinating activity
that can teach you a great deal about how the Mozilla programmers created
the standard chrome content. It also completely smashes the myth that the
Classic Browser is built mysteriously and cryptically by hard-core program-

Fig. 3.6 DOM inspector breakdown of a Navigator window showing HTML.

AppDevMozilla-03 Page 100 Thursday, December 4, 2003 6:25 PM

3.7 Summary 101

mers. Much of Mozilla is just XUL documents and friends. Try the DOM
Inspector on everything including alert boxes and the preferences window.
Figure 3.6 shows a DOM Inspector breakdown of a Classic Browser window.
Both the browser’s XUL and the contained HTML document are shown in the
screenshot.

3.7 SUMMARY

The simplest thing you can do with XUL is display static text and images.
Such content is very easy to add. The <description> tag has powerful line-
wrap features but usually only supplies small amounts of text at a time.
Images and styles in XUL are very much like HTML. Fancy borders are a
Mozilla feature of both, and Mozilla has numerous style extensions, some of
which are content- or layout-specific.

XUL without GUI widgets is hardly more than HTML. In the next chap-
ter, you’ll see how to add that most famous of widgets, the button. Improving
the overall appearance of XUL is also a theme for Chapter 4, First Widgets
and Themes.

AppDevMozilla-03 Page 101 Thursday, December 4, 2003 6:25 PM

