Home > Articles > Networking > Network Design & Architecture

Making Free-Space Optics Work

This sample chapter looks at a number of the issues that must be considered for a full understanding of the real-world performance of Free-Space Optics (FSO). Weather, link distance, scattering, absorption, turbulence, misaiming, laser wavelength, and data rates all have an impact and must be factored into either a custom calculated link budget or a manufacturer's distance rating.
This chapter is from the book

At one time, connecting all of the people all of the time around all of the world was a nice idea but completely impractical. The Internet has changed all of that, and the possibility now exists.

How about all the bandwidth desired for all the high-bandwidth users in all the land? Can free-space optics deliver on this proposition? Well, if it weren't for fog (and other assorted atmospheric and installation-related issues) the light beams of FSO might just be that "silver bullet." As it is, FSO, although a bullet indeed, is perhaps a brass-jacketed one.

As with most technologies, knowledge is power. And armed with the knowledge of FSO's enemies, you will possess the power to properly deploy FSO where it is the right choice. You will also be capable of avoiding the chasm of "right tool, wrong application," and thus avoid incorrect selection when it is nonoptimal. This chapter discusses the factors that can affect the viability and success of FSO.

Transmission of IR Signals Through the Atmosphere

Even a clean, clear atmosphere is composed of oxygen and nitrogen molecules. The weather can contribute large amounts of water vapor. Other constituents can exist, as well, especially in polluted regions. These particles can scatter or absorb infrared photons propagating in the atmosphere.

Although it is not possible to change the physics of the atmosphere, it is possible to take advantage of optimal atmospheric windows by choosing the transmission wavelengths accordingly. To ensure a minimum amount of signal attenuation from scattering and absorption, FSO systems operate in atmospheric windows in the IR spectral range. As discussed in Chapter 2, "Fundamentals of FSO Technology," today's commercially available FSO systems operate in the near IR spectral windows located around 850 nm and 1550 nm. Other windows exist in the wavelength ranges between 3–5 μm and 8–14 μm. However, their commercial use is limited by the availability of devices and components and difficulties related to the practical implementation such as low-temperature cooling.

The impact of scattering and absorption on the transmission of light through the atmosphere is discussed in more detail in the following sections.

Beer's Law

Beer's Law describes the attenuation of light traveling through the atmosphere due to both absorption and scattering. In general, the transmission, τ, of radiation in the atmosphere as a function of distance, x, is given by Beer's Law, as

where IR/I0 is the ratio between the detected intensity IR at the location x and the initially launched intensity I0, and γ is the attenuation coefficient.

The attenuation coefficient is a sum of four individual parameters—molecular and aerosol scattering coefficients α and molecular and aerosol absorption coefficients β—each of which is a function of the wavelength. You will see the application of this relationship among received intensity, scattering, and absorption a little later in this chapter.

The attenuation coefficient is given as

This formula shows that the total attenuation, represented by the attenuation coefficient γ, results from the superposition of various scattering and absorption processes. This will be discussed in more detail in the following sections.

Scattering

Scattering refers to the "pinball machine" nature of light trying to pass through the atmosphere. Light scattering can drastically impact the performance of FSO systems. Scattering is not related to a loss of energy due to a light absorption process. Rather, it can be understood as a redirection or redistribution of light that can lead to a significant reduction of received light intensity at the receiver location. A nice overview of these processes can be found in the literature 1.

Several scattering regimes exist, depending on the characteristic size of the particles, (r), the light encounters on the trip to its destination. One description is given as x0 = 2þr/λ, where λ is the transmission wavelength and r is particle radius. For x0 << 1, the scattering is in the Rayleigh regime; for x0 &` 1, the scattering is in the Mie regime; and for x0 >> 1, the scattering can be handled using geometric optics. Compared to infrared wavelengths usually used in free-space optics, the average radius of fog particles is about the same size. This is the reason that fog is the primary enemy of the beam. Rain and snow particles, on the other hand, are larger, and thus present significantly less of an obstacle to the beam.

Rayleigh Scattering

A radiation incident on the bound electrons of an atom or molecule induces a charge imbalance or dipole that oscillates at the frequency of the incident radiation. The oscillating electrons reradiate the light in the form of a scattered wave. Rayleigh's classical formula for the scattering cross section is as follows:

where f is the oscillator strength, e is the charge on an electron, λ0 is the wavelength corresponding to the natural frequency, ω0 = 2þc/λ0, ε0 is the dielectric constant, c is the speed of light, and m is the mass of the oscillating entity. The λ-4 dependence and the size of particles found in the atmosphere imply that shorter wavelengths are scattered much more than longer wavelengths. Rayleigh scattering is the reason why the sky appears blue under sunny weather conditions. However, for FSO systems operating in the longer wavelength near infrared wavelength range, the impact of Rayleigh scattering on the transmission signal can be neglected. The wavelength dependence of the Rayleigh scattering cross section in the infrared spectral range is shown in Figure 3.1.

Figure 3.1 Rayleigh scattering cross section versus infrared wavelength.

Mie Scattering

The Mie scattering regime occurs for particles about the size of the wavelength. Therefore, in the near infrared wavelength range, fog, haze, and pollution (aerosols) particles are the major contributors to the Mie scattering process. The theory is complicated, but well understood. The problem arises in comparing the theory to an experiment. Because absorption dominates most of the spectrum, data must be collected in wavelength ranges that occur in an atmospheric window, with the assumption that only scattering is taking place. In addition, the particle distributions must be known. For aerosols, this distribution depends on location, time, relative humidity, wind velocity, and so on. An empirical simplified formula that can be found in literature 1 and that is used in the FSO community for a long time to calculate the attenuation coefficient due to the Mie scattering is given by the following:

In this formula, V corresponds to the visibility, and λ is the transmission wavelength. However, this formula has been challenged recently by the FSO research community. The transmission wavelength dependency of the attenuation coefficient γ does not follow the predicted empirical formula. More precise numerical simulations of the exact Mie scattering formula suggest that the attenuation coefficient does not drastically depend on wavelength as far as the near infrared wavelength range typically used in FSO systems is concerned. The overall conclusion that can be derived from empirical observation is that Mie scattering caused by fog characterizes the primary source of beam attenuation, and that this effect is geometrically accentuated as distance is increased. For all practical purposes, the visibility conditions in the FSO deployment area must be studied. Visibility data collected over several decades is available from the National Weather Services and can be used to derive distance-dependent availability figures for a particular geographic region of deployment. However, a complication results from the fact that weather conditions are typically measured at airports that can be located away from the actual FSO installation location. Some FSO vendors have started to collect data directly from metropolitan areas and cross-correlate these findings with data collected at nearby airports to optimize the availability statistics. Environments with strong variations in microclimate are especially challenging. For most commercial FSO deployments, operation in heavy fog environments requires keeping the distances between FSO terminals short to maintain high levels of availability. The link power margins of most vendor equipment allow for availabilities that exceed 99.99% if distances are kept below 200 m.

Absorption

Atoms and molecules are characterized by their index of refraction. The imaginary part of the index of refraction, k, is related to the absorption coefficient, α, by the following:

where σa is the absorption cross section and Na is the concentration of the absorbing particles. In other words, the absorption coefficient is a function of the absorption strength of a given species of particle, as well as a function of the particle density.

Atmospheric Windows

In the atmospheric window most commonly used for FSO, infrared range, the most common absorbing particles are water, carbon dioxide, and ozone. A typical absorption spectrum is shown in Figure 3.2. Vibrational and rotational energy states of these particles are capable of absorption in many bands. Well-known windows exist between 0.72 and 15.0 μm, some with narrow boundaries. The region from 0.7–2.0 μm is dominated by water vapor absorption, whereas the region from 2.0–4.0 μm is dominated by a combination of water and carbon dioxide absorption.

Figure 3.2 Atmospheric transmittance measured over a sea level 1820 m horizontal path 2.

Atmospheric Absorbers

The abundance of absorbing species determines how strongly the signal will be attenuated. These species can be broken up into two general classes: molecular and aerosol absorbers. Figure 3.3 shows the transmission spectrum for clear sky conditions with a standard urban aerosol concentration providing a visibility of 5.0 km. This graph was generated by using the Air Force's MODTRAN 3 program. Included in this calculation was absorption from water vapor, carbon dioxide, and so on.

In the near infrared, water vapor is the primary molecular absorber, with many absorption lines to attenuate the signal. Above 2.0 μm, both water vapor and carbon dioxide play a large role. The vibrational and rotational transitions determine which energies are easily absorbed, but the large number of permutations greatly increases the number of lines. Figure 3.4 shows the clear sky transmission for water vapor only. You can see that water vapor dominates the clear sky transmission in the near infrared. The large number of lines contributes to a complicated spectrum with occasional windows at popular FSO frequencies, such as 850 and 1,550 nm. Figure 3.4 shows the carbon dioxide transmission. Occasional sharp resonant peaks are superimposed on an overall relatively flat background.

Figure 3.3 Transmission as a function of wavelength under urban aerosol conditions (visibility = 5 km), as calculated by MODTRAN.

Aerosols occur naturally in the form of meteorite dust, sea-salt particles, desert dust, and volcanic debris. They can also be created as a result of man-made chemical conversion of trace gases to solid and liquid particles and as industrial waste. These particles can range in size from fine dust less than 0.1 μm to giant particles greater than 10.0 μm. One estimate determined that 80% of the aerosol mass is contained within the lowest kilometer of the atmosphere. Land produces more aerosols than ocean, and the Northern Hemisphere produces 61% of the total amount of aerosols in the world.4 Because the radii span the infrared, scattering from these particles can definitely be a problem for FSO systems. However, these particles also absorb in the infrared wavelengths. For example, carbon and iron have many absorption lines, but their abundance in the atmosphere is usually limited. Figure 3.5 shows the clear sky transmission including urban aerosols. A comparison of Figures 3.5 and 3.4 shows how the transmission of the atmosphere is affected by aerosol particles.

Turbulence

The desert might seem the perfect location for an FSO system. This is certainly true as far as the attenuation of the atmosphere is concerned. However, in hot, dry climates, turbulence might cause problems with the transmission. As the ground heats up in the sun, the air heats up as well. Some air cells or air pockets heat up more than others. This causes changes in the index of refraction, which in turn changes the path that the light takes while it propagates through the air. Because these air pockets are not stable in time or in space, the change of index of refraction appears to follow a random motion. To the outside observer, this appears as turbulent behavior.

Figure 3.4 Clear sky transmission as a function of wavelength for water (top) and carbon dioxide (bottom) as calculated by MODTRAN.

Laser beams experience three effects under turbulence. First, the beam can be deflected randomly through the changing refractive index cells. This is a phenomenon known as beam wander. Because refraction through a media such as air works similarly to light passing through any other kind of refractive media such as a glass lens, the light will be focused or defocused randomly, following the index changes of the transmission path. Second, the phase front of the beam can vary, producing intensity fluctuations or scintillation (heat shimmer). Third, the beam can spread more than diffraction theory predicts.1

A good measure of turbulence is the refractive index structure coefficient, Cn2. Because the air needs time to heat up, the turbulence is typically greatest in the middle of the afternoon (Cn2 = 10-13 m-2/3) and weakest an hour after sunrise or sunset (Cn2 = 10-17 m-2/3). Cn2 is usually largest near the ground, decreasing with altitude. To minimize the effects of scintillation on the transmission path, FSO systems should not be installed close to hot surfaces. Tar roofs, which can experience a high amount of scintillation on hot summer days, are not preferred installation spots. Because scintillation decreases with altitude, it is recommended that FSO systems be installed a little bit higher above the rooftop (>4 feet) and away from a side wall if the installation takes place in a desert-like environment.

Figure 3.5 Transmission as a function of wavelength for urban aerosol only as calculated by MODTRAN.

Beam Wander

For a beam in the presence of large cells of turbulence compared to the beam diameter, geometrical optics can be used to describe the radial variance, σr, as a function of wavelength and distance, L, as follows:

This relationship implies that longer wavelengths will have less beam wander than shorter wavelengths, although the wavelength dependence is weak. Although keeping a narrow beam on track might be a problem, the rate of fluctuations is slow (under a kHz or two), such that a tracking system can be used.

Scintillation

When you have seen a mirage that appears as a lake in the middle of a hot asphalt parking lot, you have experienced the effects of atmospheric scintillation. Of the three turbulence effects, free-space optical systems might be most affected by scintillation. Random interference with the wave front can cause peaks and dips, resulting in receiver saturation or signal loss. "Hot spots" in the beam cross section can occur of the size , about 3 cm for an 850 nm beam 1 Km away. A great deal of work was done on this topic for applications like telescope signals and earth-satellite links, where a majority of the scintillation could be observed near the Earth's surface. FSO systems operate horizontally in the atmosphere near the surface, experiencing the maximum scintillation possible.

Scintillation effects for small fluctuations follow a log-normal distribution, characterized by the variance, σi, for a plane wave given by the following:

where k = 2þ/λ. This expression suggests that larger wavelengths would experience a smaller variance, all other factors being equal. For FSO systems with a narrow, slightly diverging beam, the plane wave expression is more appropriate than that for a spherical beam. Even if the wave front is curved when it reaches the detector, the transmitting beam is so much larger than the detector that the wave front would be effectively flat.

The expression for the variance for large fluctuations is as follows: 5

suggesting that shorter wavelengths would experience a smaller variance. In FSO deployment, the beam path must be more than 5 m above city streets or other potential sources of severe scintillation.

Beam Spreading

The beam size can be characterized by the effective radius, at, the distance from the center of the beam (z = 0) to where the relative mean intensity has decreased by 1/e. The effective radius is given by the following:

The wavelength dependency on beam spreading is not strong. The spot size can often be observed to be twice that of the diffraction-limited beam diameter. Many FSO systems incur approximately 1 m of beam spread per kilometer of distance. In a perfect world with no environmental attenuators present, beam spread would be the only distance-limiting variable.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020