Home > Articles > Programming > C/C++

This chapter is from the book

This chapter is from the book

13.13 Lock-Based Synchronization with synchronized classes

A historically popular method of writing multithreaded programs is lock-based synchronization. Under that discipline, access to shared data is protected by mutexes—synchronization objects that serialize execution of portions of the code that temporarily break data coherence, or that might see such a temporary breakage. Such portions of code are called critical sections.7

A lock-based program's correctness is ensured by introducing ordered, serial access to shared data. A thread that needs access to a piece of shared data must acquire (lock) a mutex, operate on the data, and then release (unlock) that mutex. Only one thread at a time may acquire a given mutex, which is how serialization is effected: when several threads want to acquire the same mutex, one "wins" and the others wait nicely in line. (The way the line is served—that is, thread priority—is important and may affect applications and the operating system quite visibly.)

Arguably the "Hello, world!" of multithreaded programs is the bank account example—an object accessible from multiple threads that must expose a safe interface for depositing and withdrawing funds. The single-threaded baseline version looks like this:

import std.contracts;

// Single-threaded bank account
class BankAccount {
   private double _balance;
   void deposit(double amount) {
      _balance += amount;
   }
   void withdraw(double amount) {
      enforce(_balance >= amount);
      _balance -= amount;
   }
   @property double balance() {
      return _balance;
   }
}

In a free-threaded world, += and -= are a tad misleading because they "look" atomic but are not—both are read-modify-write operations. Really _balance += amount is encoded as _balance = _balance + amount, which means the processor loads _balance and _amount into its own operating memory (registers or an internal stack), adds them, and deposits the result back into _balance.

Unprotected concurrent read-modify-write operations lead to incorrect behavior. Say your account has _balance == 100.0 and one thread triggered by a check deposit calls deposit(50). The call gets interrupted, right after having loaded 100.0 from memory, by another thread calling withdraw(2.5). (That's you at the corner coffee shop getting a latte with your debit card.) Let's say the coffee shop thread finishes the entire call uninterrupted and updates _balance to 97.5, but that event happens unbeknownst to the deposit thread, which has loaded 100 into a CPU register already and still thinks that's the right amount. The call deposit(50) computes a new balance of 150 and writes that number back into _balance. That is a typical race condition. Congratulations—free coffee for you (be warned, though; buggy book examples may be rigged in your favor, but buggy production code isn't). To introduce proper synchronization, many languages offer a Mutex type that lock-based threaded programs use to protect access to balance:

// This is not D code
// Multithreaded bank account in a language with explicit mutexes
class BankAccount {
   private double _balance;
   private Mutex _guard;
   void deposit(double amount) {
      _guard.lock();
      _balance += amount;
      _guard.unlock();
   }
   void withdraw(double amount) {
      _guard.lock();
      try {
         enforce(_balance >= amount);
         _balance -= amount;
      } finally {
         _guard.unlock();
      }
   }
   @property double balance() {
      _guard.lock();
      double result = _balance;
      _guard.unlock();
      return result;
   }
}

All operations on _balance are now protected by acquiring _guard. It may seem there is no need to protect balance with _guard because a double can be read atomically, but protection must be there for reasons hiding themselves under multiple layers of Maya veils. In brief, because of today's aggressive optimizing compilers and relaxed memory models, all access to shared data must entail some odd secret handshake that has the writing thread, the reading thread, and the optimizing compiler as participants; absolutely any bald read of shared data throws you into a world of pain (so it's great that D disallows such baldness by design). First and most obvious, the optimizing compiler, seeing no attempt at synchronization on your part, feels entitled to optimize access to _balance by holding it in a processor register. Second, in all but the most trivial examples, the compiler and the CPU feel entitled to freely reorder bald, unqualified access to shared data because they consider themselves to be dealing with thread-local data. (Why? Because that's most often the case and yields the fastest code, and besides, why hurt the plebes instead of the few and the virtuous?) This is one of the ways in which modern multithreading defies intuition and confuses programmers versed in classic multithreading. In brief, the balance property must be synchronized to make sure the secret handshake takes place.

To guarantee proper unlocking of Mutex in the presence of exceptions and early returns, languages with scoped object lifetime and destructors define an ancillary Lock type to acquire the lock in its constructor and release it in the destructor. The ensuing idiom is known as scoped locking [50] and its application to BankAccount looks like this:

// C++ version of an interlocked bank account using scoped locking
class BankAccount {
private:
   double _balance;
   Mutex _guard;
public:
   void deposit(double amount) {
      auto lock = Lock(_guard);
      _balance += amount;
   }
   void withdraw(double amount) {
      auto lock = Lock(_guard);
      enforce(_balance >= amount);
      _balance -= amount;
   }
   double balance() {
      auto lock = Lock(_guard);
      return _balance;
   }
}

Lock simplifies code and improves its correctness by automating the pairing of locking and unlocking. Java, C#, and other languages simplify matters further by embedding _guard as a hidden member and hoisting locking logic up to the signature of the method. In Java, the example would look like this:

// Java version of an interlocked bank account using
//    automated scoped locking with the synchronized statement
class BankAccount {
   private double _balance;
   public synchronized void deposit(double amount) {
      _balance += amount;
   }
   public synchronized void withdraw(double amount) {
      enforce(_balance >= amount);
      _balance -= amount;
   }
   public synchronized double balance() {
      return _balance;
   }
}

The corresponding C# code looks similar, though synchronized should be replaced with [MethodImpl(MethodImplOptions.Synchronized)].

Well, you've just seen the good news: in the small, lock-based programming is easy to understand and seems to work well. The bad news is that in the large, it is very difficult to pair locks with data appropriately, choose locking scope and granularity, and use locks consistently across several objects (not paying attention to the latter issue leads to threads waiting for each other in a deadlock). Such issues made lock-based coding difficult enough in the good ole days of classic multithreading; modern multithreading (with massive concurrency, relaxed memory models, and expensive data sharing) has put lock-based programming under increasing attack [53]. Nevertheless, lock-based synchronization is still useful in a variety of designs.

D offers limited mechanisms for lock-based synchronization. The limits are deliberate and have the advantage of ensuring strong guarantees. In the particular case of BankAccount, the D version is very simple:

// D interlocked bank account using a synchronized class
synchronized class BankAccount {
   private double _balance;
   void deposit(double amount) {
      _balance += amount;
   }
   void withdraw(double amount) {
      enforce(_balance >= amount);
      _balance -= amount;
   }
   double balance() {
      return _balance;
   }
}

D hoists synchronized one level up to the entire class. This allows D's BankAccount to provides stronger guarantees: even if you wanted to make a mistake, there is no way to offer back-door unsynchronized access to _balance. If D allowed mixing synchronized and unsynchronized methods in the same class, all bets would be off. In fact, experience with method-level synchronized has shown that it's best to either define all or none as synchronized; dual-purpose classes are more trouble than they're worth.

The synchronized class-level attribute affects objects of type shared(BankAccount) and automatically serializes calls to any method of the class. Also, protection checks get stricter for synchronized classes. Recall that according to § 11.1 on page 337, normal protection checks ordinarily do allow access to non-public members for all code within a module. Not so for synchronized classes, which obey the following rules:

  • No public data is allowed at all.
  • Access to protected members is restricted to methods of the class and its descendants.
  • Access to private members is restricted to methods of the class.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020