Richard Blum
Christine Bresnahan

SamsTeach Yourself

Python
Programming
for Raspberry Pi

Second Edition

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

fF 9 B A ®

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337642
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337642
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337642
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337642
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337642/Free-Sample-Chapter

Richard Blum and
Christine Bresnahan

SamsTeach Yourself

Python
Programming for
Raspberry

lII'S

SECOND EDITION

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Python Programming for Raspberry Pi in 24 Hours,
Second Edition

Copyright © 2016 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33764-2

ISBN-10: 0-672-33764-9

Library of Congress Control Number: 2015914178

Printed in the United States of America

First Printing December 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect

to any loss or damages arising from the information contained in this book or from the use of
programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,

training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Editor-in-Chief
Greg Wiegand
Executive Editor
Rick Kughen
Development
Editor

Mark Renfrow
Managing Editor
Sandra Schroeder

Project Editor
Seth Kerney

Copy Editor
Megan Wade-Taxter

Indexer
Ken Johnson

Proofreader
Paula Lowell

Technical Editor
Kevin Ryan
Publishing
Coordinator
Cindy Teeters

Book Designer
Mark Shirar

Compositor
codeMantra

Contents at a Glance

Introduction

Part I: Python Programming on the Raspberry Pi

HOUR 1 Setting Up the Raspberry Pi
2 Understanding the Raspbian Linux Distribution

3 Setting Up a Programming Environment

Part II: Python Fundamentals

HOUR 4 Understanding Python Basics
5 Using Arithmetic in Your Programs
6 Controlling Your Program

7 Learning About Loops

Part lll: Advanced Python

HOUR 8 Using Lists and Tuples
9 Dictionaries and Sets
10 Working with Strings
11 Using Files
12 Creating Functions
13 Working with Modules

14 Exploring the World of Object-Oriented Programming

15 Employing Inheritance
16 Regular Expressions

17 Exception Handling

Part IV: Graphical Programming

HOUR 18 GUI Programming

19 Game Programming

29
47

73
99
117
137

159
179
207
225
249
269
291
307
331
351

373
397

iv Contents at a Glance

Part V: Business Programming

HOUR 20 Using the Network
21 Using Databases in Your Programming

22 Web Programming

Part VI: Raspberry Pi Python Projects

HOUR 23 Creating Basic Pi/Python Projects
24 Working with Advanced Pi/Python Projects

Appendixes

A Loading the Raspbian Operating System onto an SD Card
B Raspberry Pi Models Synopsis

Index

427
453
475

497
533

557
567

573

Table of Contents

Introduction

Programming with Python
Who Should Read This Book?

Conventions Used in This Book

Part I: Python Programming on the Raspberry Pi

HOUR 1: Setting Up the Raspberry Pi

Obtaining a Raspberry Pi

Acquiring a Raspberry Pi

Determining the Necessary Peripherals
Nice Additional Peripherals

Deciding How to Purchase Peripherals
Getting Your Raspberry Pi Working
Troubleshooting Your Raspberry Pi
Summary

Q&A

Workshop

HOUR 2: Understanding the Raspbian Linux Distribution

Learning About Linux

Interacting with the Raspbian Command Line
Interacting with the Raspbian GUI

The LXDE Graphical Interface

Summary

Q&A

Workshop

HOUR 3: Setting Up a Programming Environment

Exploring Python
Checking Your Python Environment
Installing Python and Tools

w W =

10
15
18
18
24
26
26
27

29
29
30
35
36
43
44
44

47
47
48
50

vi

Table of Contents

Learning About the Python Interpreter

Learning About the Python Interactive Shell

Learning About the Python Development Environment
Creating and Running Python Scripts

Knowing Which Tool to Use and When

Summary

Q&A

Workshop

Part II: Python Fundamentals

HOUR 4: Understanding Python Basics

Producing Python Script Output
Formatting Scripts for Readability
Understanding Python Variables
Assigning Value to Python Variables
Learning About Python Data Types
Allowing Python Script Input
Summary

Q&A

Workshop

HOUR 5: Using Arithmetic in Your Programs

Working with Math Operators
Calculating with Fractions

Using Complex Number Math
Getting Fancy with the math Module
Using the NumPy Math Libraries
Summary

Q&A

Workshop

HOUR 6: Controlling Your Program

Working with the if Statement
Grouping Multiple Statements
Adding Other Options with the else Statement

52
53
57
63
68
69
69
70

73
73
80
83
85
89
90
96
97
97

929

99
105
107
108
112
114
115
115

117
117
119
121

Table of Contents vii

Adding More Options Using the e1if Statement 123
Comparing Values in Python 126
Checking Complex Conditions 130
Negating a Condition Check 131
Summary 132
Q&A 132
Workshop 133
HOUR 7: Learning About Loops 137
Performing Repetitive Tasks 137
Using the for Loop for Iteration 137
Using the while Loop for Iteration 148
Creating Nested Loops 154
Summary 156
Q&A 156
Workshop 157

Part lll: Advanced Python

HOUR 8: Using Lists and Tuples 159
Introducing Tuples 159
Introducing Lists 164
Using Multidimensional Lists to Store Data 171
Working with Lists and Tuples in Your Scripts 172
Creating Lists by Using List Comprehensions 173
Working with Ranges 174
Summary 175
Q&A 175
Workshop 176

HOUR 9: Dictionaries and Sets 179
Understanding Python Dictionary Terms 179
Exploring Dictionary Basics 180
Programming with Dictionaries 186
Understanding Python Sets 192

Exploring Set Basics 193

viii

Table of Contents

Obtaining Information from a Set
Modifying a Set

Programming with Sets

Summary

Q&A

Workshop

HOUR 10: Working with Strings

The Basics of Using Strings

Using Functions to Manipulate Strings
Formatting Strings for Output
Summary

Q&A

Workshop

HOUR 11: Using Files

Understanding Linux File Structures
Managing Files and Directories via Python
Opening a File

Reading a File

Closing a File

Writing to a File

Summary

Q&A

Workshop

HOUR 12: Creating Functions

Utilizing Python Functions in Your Programs
Returning a Value

Passing Values to Functions

Handling Variables in a Function

Using Lists with Functions

Using Recursion with Functions

Summary

Q&A

Workshop

194
197
199
203
203
203

207
207
210
217
223
223
223

225
225
227
229
233
239
240
246
246
247

249
249
253
254
260
263
264
265
265
266

Table of Contents ix

HOUR 13: Working with Modules 269
Introducing Module Concepts 269
Exploring Standard Modules 271
Learning About Python Modules 273
Creating Custom Modules 277
Summary 287
Q&A 288
Workshop 288

HOUR 14: Exploring the World of Object-Oriented Programming 291
Understanding the Basics of Object-Oriented Programming 291
Defining Class Methods 294
Sharing Your Code with Class Modules 302
Summary 304
Q&A 305
Workshop 305

HOUR 15: Employing Inheritance 307
Learning About the Class Problem 307
Understanding Subclasses and Inheritance 308
Using Inheritance in Python 310
Using Inheritance in Python Scripts 316
Summary 328
Q&A 328
Workshop 328

HOUR 16: Regular Expressions 331
What Are Regular Expressions? 331
Working with Regular Expressions in Python 333
The match () Function 333
The search () Function 334
The findall () and finditer () Functions 334
Defining Basic Patterns 335
Using Advanced Regular Expressions Features 343
Working with Regular Expressions in Your Python Scripts 346

Summary 348

Table of Contents

Q&A
Workshop

HOUR 17: Exception Handling
Understanding Exceptions
Handling Exceptions
Handling Multiple Exceptions
Summary
Q&A
Workshop

Part IV: Graphical Programming
HOUR 18: GUI Programming

Programming for a GUI Environment
Examining Python GUI Packages

Using the tkinter Package
Exploring the tkinter Widgets
Summary

Q&A

Workshop

HOUR 19: Game Programming

Understanding Game Programming

Learning About Game Tools
Setting Up the PyGame Library
Using PyGame

Learning More About PyGame
Dealing with PyGame Action
Summary

Q&A

Workshop

Part V: Business Programming

HOUR 20: Using the Network

Finding the Python Network Modules

Working with Email Servers

348
349

351
351
356
358
370
371
371

373
373
375
376
384
395
395
395

397
397
398
399
400
409
414
423
424
424

427
427
428

Table of Contents Xi

Working with Web Servers 436
Linking Programs Using Socket Programming 442
Summary 449
Q&A 449
Workshop 450
HOUR 21: Using Databases in Your Programming 453
Working with the MySQL Database 453
Using the PostgreSQL Database 464
Summary 472
Q&A 472
Workshop 473
HOUR 22: Web Programming 475
Running a Web Server on the Pi 475
Programming with the Common Gateway Interface 478
Expanding Your Python Webpages 481
Processing Forms 488
Summary 493
Q&A 494
Workshop 494

Part VI: Raspberry Pi Python Projects

HOUR 23: Creating Basic Pi/Python Projects 497
Thinking About Basic Pi/Python Projects 497
Displaying HD Images via Python 497
Playing Music 517
Summary 530
Q&A 530
Workshop 530

HOUR 24: Working with Advanced Pi/Python Projects 533
Exploring the GPIO Interface 533
Using the RPi.GPIO Module 539
Controlling GPIO Output 541

Detecting GPIO Input 546

Xii Table of Contents

Summary 553
Q&A 553
Workshop 554

Appendixes

APPENDIX A: Loading the Raspbian Operating System onto an SD Card 557
Downloading NOOBS 558
Verifying NOOBS Checksum 559
Unpacking the NOOBS Zip File 561
Formatting the MicroSD Card 562
Copying NOOBS to a MicroSD Card 566

APPENDIX B: Raspberry Pi Models Synopsis 567
Raspberry Pi 2 Model B 567
Raspberry Pi 1 Model B+ 568
Raspberry Pi 1 Model A+ 569
Older Raspberry Pi Models 570

About the Authors

Richard Blum has worked in the IT industry for more than 30 years as a network and
systems administrator, managing Microsoft, Unix, Linux, and Novell servers for a network
with more than 3,500 users. He has developed and teaches programming and Linux
courses via the Internet to colleges and universities worldwide. Rich has a master’s degree
in management information systems from Purdue University and is the author of several
Linux books, including Linux Command Line and Shell Scripting Bible (coauthored with
Christine Bresnahan); Linux for Dummies, Ninth Edition; and Professional Linux Programming
(coauthored with Jon Masters). When he’s not busy being a computer nerd, Rich enjoys
spending time with his wife, Barbara, and two daughters, Katie Jane and Jessica.

Christine Bresnahan started working in the IT industry more than 30 years ago as a
system administrator. Christine is currently an adjunct professor at Ivy Tech Community
College in Indianapolis, Indiana, teaching Python programming, Linux system
administration, and Linux security classes. Christine produces Unix/Linux educational
material and is the author of Linux Bible, Eighth Edition (coauthored with Christopher
Negus) and Linux Command Line and Shell Scripting Bible (coauthored with Richard Blum).
She has been an enthusiastic owner of a Raspberry Pi since 2012.

Dedication

To the Lord God Almighty.

“I am the vine, you are the branches; he who abides in Me and I in him,
he bears much fruit, for apart from Me you can do nothing.”
—John 15:5

Acknowledgments

First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things
possible and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at Sams Publishing for their outstanding
work on this project. Thanks to Rick Kughen, the executive editor, for offering us the
opportunity to work on this book and keeping things on track. We are grateful to
development editor Mark Renfrow, who provided diligence in making our work more
presentable. Thanks to the production editor, Seth Kerney, for making sure the book was
produced. Many thanks to the copy editor, Megan Wade-Taxter, for her endless patience
and diligence in making our work readable. Also, we are indebted to our technical editor,
Kevin E. Ryan, who put in many long hours double-checking all our work and keeping the
book technically accurate.

Thanks to Tonya of Tonya Wittig Photography, who created incredible pictures of our
Raspberry Pis and was very patient in taking all the photos we wanted for the book, and

to the talented Daniel Anez (theanez.com) for his illustration work. We would also like to
thank Carole Jelen at Waterside Productions, Inc., for arranging this opportunity for us and
for helping us out in our writing careers.

Christine would also like to thank her student, Paul Bohall, for introducing her to the
Raspberry Pi, and her husband, Timothy, for his encouragement to pursue the “geeky stuff”
students introduce her to.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you're willing to pass
our way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them with the
author and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Officially launched in February 2012, the Raspberry Pi personal computer took the world by
storm, selling out the 10,000 available units immediately. It is an inexpensive credit card-sized
exposed circuit board, a fully programmable PC running the free open-source Linux operating
system. The Raspberry Pi can connect to the Internet, can be plugged into a TV, and—with the
latest version 2—runs on a fast ARM processor, rivaling the performance of many tablet devices,
all for around §$35.

Originally created to spark schoolchildren’s interest in computers, the Raspberry Pi has caught
the attention of home hobbyists, entrepreneurs, and educators worldwide. Estimates put the sales
figures around 6 million units as of June 2015.

The official programming language of the Raspberry Pi is Python. Python is a flexible programming
language that runs on almost any platform. Thus, a program can be created on a Windows PC
or Mac and run on the Raspberry Pi, and vice versa. Python is an elegant, reliable, powerful,

and very popular programming language. Making Python the official programming language of
the popular Raspberry Pi was genius.

Programming with Python

The goal of this book is to help guide both students and hobbyists through using the Python
programming language on a Raspberry Pi. You don’t need to have any programming experience
to benefit from this book; we walk through all the necessary steps in getting your Python
programs up and running!

Part I, “Python Programming on the Raspberry Pi,” walks through the core Raspberry Pi system
and how to use the Python environment that’s already installed in it. Hour 1, “Setting Up

the Raspberry Pi,” demonstrates how to set up a Raspberry Pi system, and then in Hour 2,
“Understanding the Raspbian Linux Distribution,” we take a closer look at Raspbian—the Linux
distribution designed specifically for the Raspberry Pi. Hour 3, “Setting Up a Programming
Environment,” examines the various ways you can run your Python programs on the Raspberry
Pi, and it goes through some tips on how to build your programs.

2 Introduction

Part II, “Python Fundamentals,” focuses on the Python 3 programming language. Python

v3 is the newest version of Python and is fully supported in the Raspberry Pi. Hours 4-7 take
you through the basics of Python programming, from simple assignment statements (Hour 4,
“Understanding Python Basics”), arithmetic (Hour 5, “Using Arithmetic in Your Programs”), and
structured commands (Hour 6, “Controlling Your Program”), to complex structured commands
(Hour 7, “Learning About Loops”).

Hour 8, “Using Lists and Tuples,” and Hour 9, “Dictionaries and Sets,” kick off Part III,
“Advanced Python,” showing how to use some of the fancier data structures supported by
Python—lists, tuples, dictionaries, and sets. You'll use these a lot in your Python programs, so it
helps to know all about them!

In Hour 10, “Working with Strings,” we take a little extra time to go over how Python handles
text strings. String manipulation is a hallmark of the Python programming language, so we
want to make sure you're comfortable with how that all works.

After that primer, we walk through some more complex concepts in Python: using files (Hour 11,
“Using Files”), creating your own functions (Hour 12, “Creating Functions”), creating your own
modules (Hour 13, “Working with Modules”), object-oriented Python programming (Hour 14,
“Exploring the World of Object-Oriented Programming”), inheritance (Hour 15, “Employing
Inheritance”), regular expressions (Hour 16, “Regular Expressions”), and working with exceptions
(Hour 17, “Exception Handling”).

Part IV, “Graphical Programming,” is devoted to using Python to create real-world applications.
Hour 18, “GUI Programming,” discusses GUI programming so you can create your own windows
applications. Hour 19, “Game Programming,” introduces you to the world of Python game
programming.

Part V, “Business Programming,” takes a look at some business-oriented applications you can
create. In Hour 20, “Using the Network,” we look at how to incorporate network functions

such as email and retrieving data from webpages into your Python programs. Hour 21, “Using
Databases in Your Programming,” shows how to interact with popular Linux database servers,
and Hour 22, “Web Programming,” demonstrates how to write Python programs you can access
from across the Web.

Part VI, “Raspberry Pi Python Projects,” walks through Python projects that focus specifically on
features found on the Raspberry Pi. Hour 23, “Creating Basic Pi/Python Projects,” shows how

to use the Raspberry Pi video and sound capabilities to create multimedia projects. Hour 24,
“Working with Advanced Pi/Python Projects,” explores connecting your Raspberry Pi with electronic
circuits using the General Purpose Input/Output (GPIO) interface.

Conventions Used in This Book 3

Who Should Read This Book?

This book is aimed at readers interested in getting the most from their Raspberry Pi system by
writing their own Python programs, including these three groups:

» Students interested in an inexpensive way to learn Python programming
» Hobbyists who want to get the most out of their Raspberry Pi system

» Entrepreneurs looking for an inexpensive Linux platform to use for application deployment

If you are reading this book, you are not necessarily new to programming, but you might
be new to using Python programming, or at least Python programming in the Raspberry Pi
environment. This book will prove to be a good resource for quickly finding Python features
and modules that you can use for all types of programs.

Conventions Used in This Book

To make your life easier, this book includes various features and conventions that help you get
the most out of this book and out of your Raspberry Pi:

Steps Throughout the book, we’ve broken many coding tasks into easy-to-follow,
step-by-step procedures.

Filenames, folder These things appear in a monospace font.

names, and code

Commands Commands and their syntax use bold.

Menu commands We use the following style for all application menu commands: Menu,
Command, where Menu is the name of the menu you pull down and Command
is the name of the command you select. Here’'s an example: File, Open. This
means you select the File menu and then select the Open command.

This book also uses the following boxes to draw your attention to important or interesting
information:

BY THE WAY

By the Way boxes present asides that give you more information about the current topic. These
tidbits provide extra insights that offer better understanding of the task.

4 Introduction

DID YOU KNOW?

Did You Know boxes call your attention to suggestions, solutions, or shortcuts that are often hidden,
undocumented, or just extra useful.

WATCH OUT!

Watch Out! boxes provide cautions or warnings about actions or mistakes that bring about data loss
or other serious consequences.

This page intentionally left blank

HOUR 4

Understanding Python Basics

What You’ll Learn in This Hour:

» How to produce output from a script
» Making a script readable

» How to use variables

» Assigning value to variables

» Types of data

» How to put information into a script

In this hour, you get a chance to learn some Python basics, such as using the print function to
display output. You will read about using variables and how to assign values to variables, and
you will gain an understanding of their data types. By the end of the hour, you will know how
to get data into a script by using the input function and write your first Python script!

Producing Python Script Output

Understanding how to produce output from a Python script is a good starting point for those
who are new to the Python programming language. You get instant feedback on your Python
statements from the Python interactive interpreter and can experiment with proper syntax. The
print function, which you met in Hour 3, “Setting Up a Programming Environment,” is a good

place to focus your attention.

Exploring the print Function

A function is a group of Python statements that are put together as a unit to perform a specific
task. You simply enter a single Python statement to perform a task for you.

74 HOUR 4: Understanding Python Basics

BY THE WAY

The “New” print Function

In Python v2, print is not a function. It became a function when Python v3 was created. This is
important to know, in case you are ever tasked with converting a script from v2 to v3.

The print function’s task is to output items. The items to output are correctly called an
argument. The basic syntax of the print function is as follows:

print (argument)

DID YOU KNOW?

Standard Library of Functions

The print function is called a built-in function because it is part of the Python standard functions
library. You don’t need to do anything special to get this function. It is provided for your use when
you install Python.

The argument portion of the print function can be characters, such as ABC or 123. It also can
be values stored in variables. You learn about variables later in this hour.

Using Characters as print Function Arguments

To display characters (also called string literals) using the print function, you need to enclose
the characters in either a set of single quotes or double quotes. Listing 4.1 shows using a pair of
single quotes to enclose characters (a sentence) so it can be used as a print function argument.

LISTING 4.1 Using a Pair of Single Quotes to Enclose Characters

>>> print ('This is an example of using single quotes.')
This is an example of using single quotes.

>>>

Listing 4.2 shows the use of double quotes with the print function. You can see that the result-
ing output in both Listing 4.1 and Listing 4.2 does not contain the quotation marks, only the
characters.

LISTING 4.2 Using a Pair of Double Quotes to Enclose Characters

>>> print ("This is an example of using double quotes.")
This is an example of using double quotes.

>>>

Producing Python Script Output 75

BY THE WAY

Choose One Type of Quotes and Stick with It

If you like to use single quotation marks to enclose string literals in a print function argument,
then consistently use them. If you prefer double quotation marks, then consistently use them. Even
though Python doesn’t care, it is considered poor form to use single quotes on one print function
argument and then double quotes on the next. Mixing your quotation marks back and forth makes
the code harder for humans to read.

Sometimes you need to output a character string that contains a single quote mark to show
possession or a contraction. In such a case, you should use double quotes around the print
function argument, as shown in Listing 4.3.

LISTING 4.3 Protecting a Single Quote with Double Quotes

>>> print ("This example protects the output's single quote.")
This example protects the output's single quote.

>>>

At other times, you need to output a string of characters that contain double quotes, such as
for a quotation. Listing 4.4 shows an example of protecting a quote, using single quotes in the
argument.

LISTING 4.4 Protecting a Double Quote with Single Quotes

>>> print('I said, "I need to protect my quotation!" and did so.')
I said, "I need to protect my quotation!" and did so.

>>>

DID YOU KNOW?

Protecting Single Quotes with Single Quotes

You also can embed single quotes within single quote marks and double quotes within double quote
marks. However, when you do, you need to use something called an escape sequence, which is
covered later in this hour.

Formatting Output with the print Function

You can perform various output formatting features by using the print function. For example,
you can insert a single blank line by using the print function with no arguments, like this:

print ()

76 HOUR 4: Understanding Python Basics

The screen in Figure 4.1 shows a short Python script that inserts a blank line between two other
lines of output.

pi@raspberrypi:~§

pi@raspberrypi:~§ cat py3prog/sample_a.py
print("This is the first line.")

print()

print("This is the first line after a blank line.")
pi@raspberrypi:~§

pi@raspberrypi:~$ python3 py3prog/sample_a.py

This is the first line.

This is the first line after a blank line.
pi@raspberrypi:~$
pi@raspberrypi:~$ I

FIGURE 4.1
Adding a blank line in script output.

Another way to format output using the print function is via triple quotes. Triple quotes are
simply three sets of double quotes (" " ").

Listing 4.5 shows how to use triple quotes to embed a linefeed character (via pressing the Enter
key). When the output is displayed, each embedded linefeed character causes the next sentence
to appear on the next line. Thus, the linefeed moves your output to the next new line. Notice
that you cannot see the linefeed character embedded on each code line—you can see only its
effect in the output.

LISTING 4.5 Using Triple Quotes

>>> print("""This is line one.
. This is line two.
. This is line three.""")
This is line one.
This is line two.
This is line three.

>>>

BY THE WAY

But I Prefer Single Quotes

Triple quotes don’t have to be three sets of double quotes. You can use three sets of single quotes
instead to get the same result!

Producing Python Script Output 77

By using triple quotes, you also can protect single and double quotes that need to be displayed in
the output. Listing 4.6 shows triple quotes in action to protect both single and double quotes in
the same character string.

LISTING 4.6 Using Triple Quotes to Protect Single and Double Quotes

>>> print("""Raz said, "I didn't know about triple quotes!" and laughed.""")

Raz said, "I didn't know about triple quotes!" and laughed.

>>>

Controlling Output with Escape Sequences

An escape sequence is a character or series of characters that allow a Python statement to escape
from normal behavior. The new behavior can be the addition of special formatting for the
output or the protection of characters typically used in syntax. Escape sequences all begin with
the backslash (\) character.

An example of using an escape sequence to add special formatting for output is the \n escape
sequence. The \n escape sequence forces any characters listed after it onto the displayed output’s
next line. This escape sequence is called a newline, and the formatting character it inserts is a
linefeed. Listing 4.7 shows an example of using \n to insert a linefeed. Notice that it causes the
output to be formatted exactly as it was in Listing 4.5 using triple quotes.

LISTING 4.7 Using an Escape Sequence to Add a Linefeed

>>> print("This is line one.\nThis is line two.\nThis is line three.")

This is line one.
This is line two.
This is line three.

>>>

Typically, the print function puts a linefeed only at the end of displayed output. However, the
print function in Listing 4.7 is forced to escape its normal formatting behavior because of the
\n escape sequence addition.

DID YOU KNOW?

Quotes and Escape Sequences

Escape sequences work whether you use single quotes, double quotes, or triple quotes to surround
your print function argument.

78 HOUR 4: Understanding Python Basics

You also can use escape sequences to protect various characters used in syntax. Listing 4.8 shows
the backslash (\) character used to protect a single quote so that it will not be used in the print
function’s syntax. Instead, the quote is displayed in the output.

LISTING 4.8 Using an Escape Sequence to Protect Quotes

>>> print('Use backslash, so the single quote isn\'t noticed.')
Use backslash, so the single quote isn't noticed.

>>>

You can use many different escape sequences in your Python scripts. Table 4.1 shows a few of
the available sequences.

TABLE 4.1 A Few Python Escape Sequences

Escape Sequence Description

\' Displays a single quote in output

\" Displays a double quote in output

\\ Displays a single backslash in output

\a Produces a bell sound with output

\f Inserts a form feed into the output

\n Inserts a linefeed into the output

\t Inserts a horizontal tab into the output
\u#### Displays the Unicode character denoted by the

character’s four hexadecimal digits (####)

Notice in Table 4.1 that not only can you insert formatting into your output, but you can pro-
duce sound as well! Another interesting escape sequence involves displaying Unicode characters
in your output.

Now for Something Fun!

Thanks to the Unicode escape sequence, you can print all kinds of characters in your output. You
learned a little about Unicode in Hour 3, “Setting Up a Programming Environment.” You can
display Unicode characters by using the \u escape sequence. Each Unicode character is repre-
sented by a hexadecimal number. These hexadecimal numbers are found at www.unicode.org/
charts. There are lots of Unicode characters!

http://www.unicode.org

Producing Python Script Output 79

The Unicode hexadecimal number for the pi () symbol is 03c0. To display this symbol using
the Unicode escape sequence, you must precede the number with \u in your print function
argument. Listing 4.9 displays the pi symbol to output.

LISTING 4.9 Using a Unicode Escape Sequence

>>> print ("I love my Raspberry \u03cO!")
I love my Raspberry m!

>>>

TRY IT YOURSELF V¥

Create Output with the print Function

This hour you have been reading about creating and formatting output by using the print
function. Now it is your turn to try this versatile Python tool. Follow these steps:

1. If you have not already done so, power up your Raspberry Pi and log in to the system.

2. If you do not have the GUI started automatically at boot, start it now by typing startx and
pressing Enter.

3. Open a terminal by double-clicking the Terminal icon.

4. At the command-line prompt, type python3 and press Enter. You are taken to the Python
interactive shell, where you can type Python statements and see immediate results.

5. At the Python interactive shell prompt (>>>), type print ('I learned about the
print function.') and press Enter.

6. At the prompt, type print ('I learned about single quotes.') and press Enter.

7. At the prompt, type print ("Double quotes can also be used.") and press Enter.

BY THE WAY

Multiple Lines with Triple Double Quotes

In steps 8-10, you will not be completing the print function on one line. Instead, you will be using
triple double quotes to enable multiple lines to be entered and displayed.

8. At the prompt, type print ("""I learned about things like... and press Enter.
9. Type triple quotes, and press Enter.

10. Type and displaying text on multiple lines.""") and press Enter. Notice that
the Python interactive shell did not output the Python print statement’s argument until
you had fully completed it with the closing parenthesis.

80 HOUR 4: Understanding Python Basics

n 11. At the prompt, type print ('Single quotes protect "double quotes" in

output.') and press Enter.

12. At the prompt, type print ("Double quotes protect 'single quotes' in
output.") and press Enter.

13. At the prompt, type print ("A backslash protects \"double quotes\" in
output.") and press Enter.

14. At the prompt, type print ('A backslash protects \'single quotes\' in
output.') and press Enter. Using the backslash to protect either single or double quotes
enables you to maintain your chosen method of consistently using single (or double)
quotes around your print function argument.

15. At the prompt, type print ("The backslash character \\ is an escape
character.") and press Enter.

16. At the prompt, type print ("Use escape sequences to \n insert a linefeed.")
and press Enter. In the output, notice how part of the sentence, Use escape sequences
to, is on one line and the end of the sentence, insert a linefeed., is on another line.
This is due to your insertion of the escape sequence \n in the middle of the sentence.

17. At the prompt, type print ("Use escape sequences to \t\t insert two tabs
or" and press Enter.

18. Atthe ... prompt, type "insert a check mark: \u2714") and press Enter.

You can do a lot with the print function to display and format output! In fact, you could spend
this entire hour just playing with output formatting. However, there are additional important
Python basics you need to learn, such as formatting scripts for readability.

Formatting Scripts for Readability

Just as the development environment, IDLE, will help you as your Python scripts get larger, a
few minor practices also will be helpful to you. Learn these tips early on, so they become habits
as your Python skills grow (and as the length of your scripts grow!).

Long Print Lines

Occasionally you will have to display a very long output line using the print function, such as
a paragraph of instructions for the script user. The problem with long output lines is that they
make your script code hard to read and the logic behind the script harder to follow. Python is
supposed to “fit in your brain.” The habit of breaking up long output lines will help you meet
that goal. There are a couple of ways you can accomplish this.

Formatting Scripts for Readability 81

BY THE WAY

A Script User?

You might be one of those people who have never heard the term user in association with comput-
ers. A user is a person who is using the computer or running the script. Sometimes the term end
user is used instead. You should always keep the user in mind when you write your scripts, even if
the user is just you!

The first way to break up a long output character line is to use something called string concat-
enation. String concatenation takes two or more strings of text and “glues” them together, so they
become one text string. The “glue” in this method is the plus (+) symbol. However, to get this to
work properly, you also need to use the backslash (\) to escape out of the print function’s nor-
mal behavior—putting a linefeed at a character string’s end. Thus, the two items you need are
+\, as shown in Listing 4.10.

LISTING 4.10 String Concatenation for Long Text Lines

>>> print("This is a really long line of text " +\
"that I need to display!")
This is a really long line of text that I need to display!

>>>

As Listing 4.10 shows, the two strings are concatenated and displayed as one string in the
output. However, there is an even simpler and cleaner method of accomplishing this. You
can forgo the +\ and simply keep each character string in its own sets of quotation marks.
The character strings will be automatically concatenated by the print function! The print
function handles this perfectly and is a lot cleaner looking. This method is demonstrated in
Listing 4.11.

LISTING 4.11 Combining for Long Text Lines

>>> print("This is a really long line of text "
. "that I need to display!")
This is a really long line of text that I need to display!

>>>

It is always a good rule to keep your Python syntax simple to provide better script readability.
However, sometimes you need to use complex syntax. This is where comments will help you.
No, not comments spoken aloud, like “I think this syntax is complicated!” We're talking about
comments that are embedded in your Python script.

82 HOUR 4: Understanding Python Basics

Creating Comments

In scripts, comments are notes from the Python script author. A comment’s purpose is to provide
understanding of the script’s syntax and logic. The Python interpreter ignores any comments.
However, comments are invaluable to humans who need to modify or debug scripts.

DID YOU KNOW?

Standard of Good Form

If you are serious about Python programming, it’s important that you consistently have good form
in your code. The good form standard is the Style Guide for Python Code located at https://
www.python.org/dev/peps/pep-0008/.

To add a comment to a script, you precede it with the pound or hash symbol (#). The Python
interpreter ignores anything that follows the hash symbol.

For example, when you write a Python script, it is a good idea to insert comments that include
your name, when you wrote the script, and the script’s purpose. Figure 4.2 shows an example.
Some script writers believe in putting these comments at their script’s top, while others put them
at the bottom. At the very least, if you include a comment with your name as the author in your
script, when the script is shared with others, you will get credit for its writing.

pi@raspberrypi:~$
pi@raspberrypi:~$ cat py3prog/sample b.py
sample_b.py - Demonstrate inserting a blank 1line using print.

Author: Christine Bresnahan
Date: 11/22/2016
it RHRRE.
%
print("This is the first line.")
print() # Inserts a blank line in output

print("This is the first line after a blank line.")
pi@raspberrypi:~$
pi@raspberrypi:~$ I

FIGURE 4.2
Comments in a Python script.

You also can provide clarity by breaking up sections of your scripts using long lines of the # symbol.
Figure 4.2 shows a long line of hash symbols used to separate the comment section from the
main body of the script.

Finally, you can put comments at the end of a Python statement. Notice in Figure 4.2 that the
print () statement is followed by the comment # Inserts a blank line in output.

A comment placed at the statement’s end is called an end comment, and it provides clarity about
that particular code line.

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Understanding Python Variables 83

Those few simple tips will help improve your code’s readability. Putting these tips into practice
will save you time as you write and modify Python scripts.

Understanding Python Variables

A variable is a name that stores a value for later use in a script. A variable is like a coffee cup.

A coffee cup typically holds coffee, of course! But a coffee cup also can hold tea, water, milk, rocks,
gravel, sand...you get the picture. Think of a variable as an object holder that you can look at
and use in your Python scripts.

BY THE WAY

An Object Reference

Python really doesn’t have variables. Instead, they are object references. However, for now, just think
of them as variables.

When you name your coffee cup...err, variable, you need to be aware that Python variable
names are case sensitive. For example, the variables named CoffeeCup and coffeecup are
two different variables. Other rules are associated with creating Python variable names, as well:

» You cannot use a Python keyword as a variable name.
» The first character of a variable name cannot be a number.

» No spaces are allowed in a variable name.

Python Keywords

The Python keywords list changes every so often. Therefore, it is a good idea to take a look at
the current keywords list before you start creating variable names. To look at the keywords, you
need to use a standard library function. However, this function is not built in, like the print
function is. You have this function on your Raspbian system, but before you can use it, you need
to import the function into Python. (You'll learn more about importing a function in Hour 13,
“Working with Modules.”) The function’s name is keyword.kwlist. Listing 4.12 shows you
how to import into Python and determine keywords.

LISTING 4.12 Determining Python Keywords

>>> import keyword

>>> print (keyword.kwlist)

['False', 'None', 'True', 'and', 'as',
'assert', 'break', 'class', 'continue',
'def', 'del', 'elif', 'else', 'except',

84 HOUR 4: Understanding Python Basics

'finally', 'for', 'from', 'global', 'if',
'"import', 'in', 'is', 'lambda', 'nonlocal',
'not', 'or', 'pass', 'raise', 'return',
'try', 'while', 'with', ‘'yield']

>>>

In Listing 4.12, the command import keyword brings the keyword functions into the Python
interpreter so they can be used. Then the statement print (keyword.kwlist) uses the
keyword.kwlist and print functions to display the current list of Python keywords. These
keywords cannot be used as Python variable names.

Creating Python Variable Names

For the first character in your Python variable name, you must not use a number. The first
character in the variable name can be any of the following:

> A letter a-z
> A letter A-Z

» The underscore character (_)

After the first character in a variable name, the other characters can be any of the following:
» The numbers 0-9
» The letters a-z
» The letters A-Z

» The underscore character ()

DID YOU KNOW?

Using Underscore for Spaces

Because you cannot use spaces in a variable’s name, you should use underscores in their place to
make your variable names readable. For example, instead of creating a variable name like cof feecup,
use the variable name coffee cup.

After you determine a name for a variable, you still cannot use it. A variable must have a value
assigned to it before it can be used in a Python script.

Assigning Value to Python Variables 85

Assigning Value to Python Variables

Assigning a value to a Python variable is fairly straightforward. You put the variable name first,
then an equal sign (=), and finish up with the value you are assigning to the variable. This is the
syntax:

variable=value

Listing 4.13 creates the variable coffee cup and assigns a value to it.

LISTING 4.13 Assigning a Value to a Python Variable

>>> coffee cup='coffee'

>>> print (coffee cup)
coffee

>>>

As Listing 4.13 shows, the print function can output the variable’s value without any quotation
marks around it. You can take output a step further by putting a string and a variable together
as two print function arguments. The print function knows they are two distinct arguments
because they are separated by a comma (,), as shown in Listing 4.14.

LISTING 4.14 Displaying Text and a Variable

>>> print ("My coffee cup is full of", coffee cup)

My coffee cup is full of coffee

>>>

Formatting Variable and String Output

Using variables brings additional formatting issues. For example, the print function auto-
matically inserts a space whenever it encounters a comma (,) in a statement. This is why you
do not need to add a space at the My coffee cup is full of string’s end, as shown in
Listing 4.14. Sometimes, however, you might want something else besides a space to separate a
character string from a variable in the output. In such a case, you can use a separator in your
statement. Listing 4.15 uses the sep separator to place an asterisk (*) in the output instead of a
space.

LISTING 4.15 Using Separators in Output

>>> coffee_ cup='coffee'

>>> print ("I love my", coffee cup, "!", sep='*"')
I love my*coffeex*!

>>>

86 HOUR 4: Understanding Python Basics

Notice you also can put variables between various strings in your print statements. In Listing 4.15,
four arguments are given to the print function:

» The string "I love my"
» The variable coffee cup
» The string "!"

» The separator designation ' *'

The variable coffee cup is between two strings. Thus, you get two asterisks (*), one between
each argument to the print function. Mixing strings and variables in the print function gives
you a lot of flexibility in your script’s output.

BY THE WAY

At the End

Using the end keyword instead of sep allows you to tack on characters (and/or one of the
escape sequences in Table 4.1) at a print statement’s end. For example, you could tack on an
exclamation mark and a linefeed using this statement: print ("I love my", coffee cup,
end="'!/n")

Avoiding Unassigned Variables

You cannot use a variable until you have assigned a value to it. A variable is created when it is
assigned a value and not before. Listing 4.16 shows an example of this.

LISTING 4.16 Behavior of an Unassigned Variable

>>> print(glass)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'glass' is not defined
>>>

>>> glass='water'

>>> print(glass)

water

>>>

When the first print (glass) statement was issued in Listing 4.16, the glass variable had not
been given a value. Thus, the Python interpreter delivered an error message. Before the second
time the print (glass) statement was issued, the glass variable was assigned the character

Assigning Value to Python Variables 87

string, water. Therefore, the glass variable was created and no error message was delivered for
the second print (glass) statement.

Assigning Long String Values to Variables

If you need to assign a long string value to a variable, you can break it up onto multiple lines by
using a couple methods. Earlier in the hour, in the “Formatting Scripts for Readability” section,
you looked at using the print function with multiple lines of outputted text. The concept here is
similar.

The first method involves using string concatenation (+) to put the strings together and an
escape character (\) to keep a linefeed from being inserted. Listing 4.17 shows that two long
lines of text were concatenated together in the long string variable assignment.

LISTING 4.17 Concatenating Text in Variable Assignment

>>> long string="This is a really long line of text" +\
" that I need to display!"
>>> print(long string)
This is a really long line of text that I need to display!

>>>

Another method is to use parentheses to enclose your variable’s value. Listing 4.18 eliminates
the +\ and uses parentheses () on either side of the entire long string. This makes the value into
a single long character string in output.

LISTING 4.18 Combining Text in Variable Assighment

>>> long string=("This is a really long line of text"
. " that I need to display!™")
>>> print(long string)

This is a really long line of text that I need to display!

>>>

The method used in Listing 4.18 is a much cleaner method. It also helps improve the script’s
readability.

BY THE WAY

Assigning Short Strings to Variables

You can use parentheses for assigning short strings to variables, too! This is especially useful and
may also improve the readability of your Python script.

88 HOUR 4: Understanding Python Basics

More Variable Assignments

A variable’s value does not have to be only a character string—it also can be a number. In
Listing 4.19, the amount of coffee consumed is assigned to the variable cups consumed.

LISTING 4.19 Assigning a Numeric Value to a Variable

>>> coffee_cup='coffee'

>>> cups_consumed=3

>>> print ("I had", cups_consumed, "cups of", coffee cup, "today!")
I had 3 cups of coffee today!

>>>

You also can assign an expression’s result to a variable. The equation 3+1 is calculated in
Listing 4.20, and the resulting value 4 is assigned to the variable cups consumed.

LISTING 4.20 Assigning an Expression Result to a Variable

>>> coffee cup='coffee'

>>> cups_consumed=3 + 1

>>> print ("I had", cups_consumed, "cups of", coffee cup, "today!")
I had 4 cups of coffee today!

>>>

You learn more about performing mathematical operations within Python scripts in Hour 5,
“Using Arithmetic in Your Programs.”

Reassigning Values to a Variable

After you assign a value to a variable, the variable is not stuck with that value. It can be
reassigned. Variables are called variables because their values can be varied. (Say that three
times fast!)

In Listing 4.21, the variable coffee cup has its value changed from coffee to tea.
To reassign a value, you simply enter the assignment syntax with a new value at its end.

LISTING 4.21 Reassigning a Variable

>>> coffee cup='coffee'

>>> print ("My cup is full of", coffee cup)
My cup is full of coffee

>>> coffee_cup='tea'

>>> print ("My cup is full of", coffee cup)
My cup is full of tea

>>>

Learning About Python Data Types 89

DID YOU KNOW?

Variable Name Case

Python script writers tend to use all lowercase letters in the names of variables whose values might
change, such as coffee cup. For variable names that are never reassigned values, all uppercase
letters are used (for example, PI=3.14159). These unchanging variables are called symbolic
constants.

Learning About Python Data Types

When a variable is created by an assignment such as variable=value, Python determines and
assigns a data type to the variable. A data type defines how the variable is stored and the rules
governing how the data can be manipulated. Python uses the variable’s assigned value to
determine its type.

So far, this hour has focused on character strings. When the Python statement coffee
cup="'tea' was entered, Python saw the characters in quotation marks and determined the
variable coffee_ cup to be a string literal data type, or str. Table 4.2 lists a few of the basic
data types Python assigns to variables.

TABLE 4.2 Python Basic Data Types

Data Type Description

float Floating-point number

int Integer

long Long integer

str Character string or string literal

You can determine which data type Python has assigned to a variable by using the type
function. In Listing 4.22, the variables have been assigned two different data types.

LISTING 4.22 Assigned Data Types for Variables

>>> coffee cup='coffee'

>>> type(coffee cup)
<class 'str's>

>>> cups_consumed=3

>>> type (cups_consumed)
<class 'int's>

>>>

90 HOUR 4: Understanding Python Basics

Python assigned the data type str to the variable coffee cup because it saw a string of char-
acters between quotation marks. However, for the cups_consumed variable, Python saw a
whole number, and thus it assigned the integer data type, int.

DID YOU KNOW?

The print Function and Data Types

The print function assigns to its arguments the string literal data type str. It does this for anything
that is given as an argument, such as quoted characters, numbers, variables values, and so on.
Thus, you can mix data types in your print function argument. The print function will evaluate
any variables, convert everything to a string literal data type, and spit it out to the display.

Making a small change in the cups_consumed variable assignment statement causes Python to
change its data type. In Listing 4.23, the number assigned to cups_consumed is reassigned from
3 to 3.5. This causes Python to reassign the data type to cups consumed from int to float.

LISTING 4.23 Changed Data Types for Variables

>>> cups_consumed=3

>>> type (cups_consumed)
<class 'int's>

>>> cups_consumed=3.5
>>> type (cups_consumed)
<class 'float's>

>>>

You can see that Python does a lot of the “dirty work” for you. This is one of the many reasons
Python is so popular.

Allowing Python Script Input

Sometimes you might need a script user to provide data into your script from the keyboard. To
accomplish this task, Python provides the input function. The input function is a built-in
function and has the following syntax:

variable=input (user prompt)

In Listing 4.24, the variable cups_consumed is assigned the value returned by the input
function. The script user is prompted to provide this information. An input function argument
designates the prompt provided to the user. The script user types an answer and presses the Enter
key. This action causes the input function to assign the answer 3 as a value to the variable

cups_consumed.

Allowing Python Script Input 91

LISTING 4.24 Variable Assignment via Script Input

>>> cups_consumed=input ("How many cups did you drink? ")
How many cups did you drink? 3

>>> print ("You drank", cups consumed, "cups!")

You drank 3 cups!

>>>

For the user prompt, you can enclose the prompt’s string characters in either single or double
quotes. The prompt is shown enclosed in double quotes in Listing 4.24’s input function.

BY THE WAY

Be Nice to Your Script User

Be nice to the user of your script, even if it is just yourself. It is no fun typing an answer that is
“squished” up against the prompt. Add a space at the end of each prompt to give the end user a
little breathing room for prompt answers. Notice in the input function in Listing 4.24 that a space
is added between the question mark (?) and the enclosing double quotes.

The input function treats all input as strings. This is different from how Python handles other
variable assignments. Remember that if cups consumed=3 were in your Python script, it would
be assigned the data type integer, int. When using the input function, as shown in Listing 4.25,
the data type is set to string, str.

LISTING 4.25 Data Type Assignments via Input

>>> cups_consumed=3

>>> type (cups_consumed)

<class 'int'>

>>> cups_consumed=input ("How many cups did you drink? ")
How many cups did you drink? 3

>>> type (cups_consumed)

<class 'str's>

>>>

To convert variables (input from the keyboard) from strings, you can use the int function. The
int function will convert a number from a string data type to an integer data type. You can use
the float function to convert a number from a string to a floating-point data type. Listing 4.26
shows how to convert the variable cups_consumed to an integer data type.

LISTING 4.26 Data Type Conversion via the int Function

>>> cups_consumed=input ("How many cups did you drink? ")
How many cups did you drink? 3

92 HOUR 4: Understanding Python Basics

>>> type (cups_consumed)

<class 'str's>

>>> cups_consumed=int (cups_consumed)
>>> type (cups_consumed)

<class 'int's>

>>>

You can get really tricky here and use a nested function. Nested functions are functions within
functions. The general format is as follows:

variable=functionA (functionB())

Listing 4.27 uses this method to properly change the input data type from a string to an integer.

LISTING 4.27 Using Nested Functions with input

>>> cups_consumed=int (input ("How many cups did you drink? "))

How many cups did you drink? 3
>>> type (cups consumed)
<class 'int's>

>>>

Using nested functions makes a Python script more concise. However, the trade-off is that the
script is a little harder to read.

V¥ TRY IT YOURSELF

Explore Python Input and Output with Variables

You are now going to explore Python input and output using variables. In the following steps, you
write a script to play with, instead of using the interactive Python shell:

1. If you have not already done so, power up your Raspberry Pi and log in to the system.

2. If you do not have the GUI started automatically at boot, start it now by typing startx and
pressing Enter.

3. Open the Terminal by double-clicking the Terminal icon.

4. If you want to follow along with the book, you will need to create a directory to hold your
Python scripts. At the command-line prompt, type mkdir py3prog and press Enter.

5. At the command-line prompt, type nano py3prog/script0401.py and press Enter. The
command puts you into the nano text editor and creates the file py3prog/script0401.py.

Allowing Python Script Input 93

6. Type the following code into the nano editor window, pressing Enter at the end of each line: n

My first real Python script.
Written by <your name herex>

#
H##H###H#AHH Define Variables ######H#####
#
amount=4 #Number of vessels.
vessels="'glasses' #Type of vessels used.
liquid="'water' #What is contained in the vessels.
location='on the table' #Location of vessels.
#
HH####H#H##H#E Output Variable Description ########H#H#H#H##HEHS
#
print ("This script has four variables pre-defined in it.")
print ()
#
print ("The variables are as follows:")
#
print ("name: amount", "data type:", type(amount), "value:", amount)
#
print ("name: vessels", "data type:", type(vessels),"value:", vessels)
#
print ("name: liquid", "data type:", type(liquid),"value:", liquid)
#
print ("name: location", "data type:", type(location), "value:", location)
print ()
#
###H##HH#H##RH#H Output Sentence Using Variables #############
#
print ("There are", amount, vessels, "full of", liquid, location, end='.\n')
print ()
#
BY THE WAY

Be Careful!

Be sure to take your time here and avoid making typographical errors. Double-check and make sure
you have entered the code into the nano text editor window as shown here. You can make correc-
tions by using the Delete key and the up- and down-arrow keys.

7. Write out the information you just typed in the text editor to the script by pressing Ctrl+O.
The script filename will show along with the prompt filename to write. Press Enter to write
out the contents to the script0401.py script.

8. Exit the nano text editor by pressing Ctrl+X.

94 HOUR 4: Understanding Python Basics

n 9. Type python3 py3prog/script0401.py and press Enter to run the script. If you
encounter any errors, note them so you can fix them in the next step. You should see
output like the output shown in Figure 4.3. The output is okay, but it’s a little sloppy. You
can clean it up in the next step.

pi@raspberrypi:~%
pi@raspberrypi:~% python3 py3prog/scriptG401.py
This script has four variables pre-defined in it.

The variables are as follows:

name: amount data type: =class 'int's valua: 4

name: vessels data type: =class 'str's value: glasses
name: liquid data type: <class 'str's value: water

name: location data type: <class 'str's> value: on the table

There are 4 glasses full of water on the table.

pieraspberrypi:~§ i

FIGURE 4.3
Output for the Python script script0401.py.

10. At the command-line prompt, type nano py3prog/script0401.py and press Enter. The
command puts you into the nano text editor, where you can modify the script0401.py
script.

11. Go to the Output Variable Description portion of the script and add a separator to the end
of each line. The lines of code to be changed; how they should look when you are done is

shown here:

print ("name: amount", "data type:", type (amount), "value:", amount, sep='\t')
#

print ("name: vessels", "data type:", type (vessels), "value:", vessels, sep='\t')
#

print ("name: liquid", "data type:", type (liquid), "value:", liquid, sep='\t')
#

print ("name: location","data type:",type (location), "value:",location,sep='\t')

12. Write out the modified script by pressing Ctrl+0. Don’t press Enter yet! Change the filename
10 script0402.py and then press Enter. When nano asks Save file under DIFFERENT
NAME ?, type Y and press Enter.

13. Exit the nano text editor by pressing Ctrl+X.

14. Type python3 py3prog/script0402.py and press Enter to run the script. You should
see output like the output shown in Figure 4.4. Much neater!

Allowing Python Script Input 95

pi@raspberrypi:~$
pi@raspberrypi:~$ python3 py3prog/script8482.py
This script has four variables pre-defined in it.

The variables are as follows:

name: amount data type: <class 'int's value: 4

name: vessels data type: =<class 'str'= value: glasses
name: liquid data type: <class 'str's value: water

name: location data type: <class 'str's wvalue: on the table

There are 4 glasses full of water on the tabla.

pigraspberrypi:~$ i

FIGURE 4.4
The script 0402 .py output, properly tabbed.

. To try adding some input into your script, at the command-line prompt, type nano
py3prog/script0402.py and press Enter.

Go to the bottom of the script and add the Python statements shown here:

HHSHHAHHHAHHARHERE Get Input HEHHHSHHEHHASHHERHEHE

#

print ()

print ("Now you may change the variables' values.")
print ()

#

amount=int (input ("How many vessels are there? "))

print ()

#

vessels = input ("What type of vessels are being used? ")
print ()

#

liquid = input ("What type of liquid is in the vessel? ")
print ()

#

location=input ("Where are the vessels located? ")
print ()

#

HHHHHAHH AR HHARHHE Display New Input to Output HH##HH##HHH#HH
#

print ("So you believe there are",

amount, vessels, "of", liquid, location, end='. \n')
print ()

#

HEHAHAEHHHHEHAHAEHAHAS End of Script H#HAHAHEHHHHSHEHAHEHAHHS

. Write out the modified script by pressing Ctrl+0. Don’t press Enter yet! Change the filename
to script0403.py and then press Enter. When nano asks Save file under DIFFERENT
NAME ?, type Y and press Enter.

96 HOUR 4: Understanding Python Basics

n 18. Exit the nano text editor by pressing Ctrl+X.

19. Type python3 py3prog/script0403.py and press Enter to run the script. Answer the
prompts any way you want. (You are supposed to be having fun here!) Figure 4.5 shows
what your output should look like.

pi@raspberrypi:-§
pi@raspberrypi:~$ python3 py3prog/script84e3.py
This script has four variables pre-defined in it.

The variables are as follows:

name: amount data type: <class 'int's wvalue: 4

name: vessels data type: =class 'str'> value: glasses
name: liquid data type: =class 'str'> wvalue: water

name: location data type: =class 'str's wvalue: on the table

There are 4 glasses full of water on the table.

Now you may change the variables' values.
How many vessels are there? 99

What type of vessels are being used? bottles
What type of liquid is in the vessel? tea

Where are the vessels located? on the wall

So you believe thers are 99 bottles of tea on the wall.
pieraspberrypi:~§ [l

FIGURE 4.5
The complete script 0403 .py output.

Run this script as many times as you want. Experiment with the various types of answers you
enter and see what the results are. Also try making some minor modifications to the script and
see what happens. Experimenting and playing with your Python script will enhance your learning.

Summary

In this hour, you got an overview of Python basics. You learned about output and formatting
output from Python, creating legal variable names and assigning values to variables, and

about various data types and when they are assigned by Python. You explored how Python can
handle input from the keyboard and how to convert the data types of the variables receiving
that input. Finally, you got to play with your first Python script. In Hour 5, your Python explora-
tion will continue as you delve into mathematical algorithms with Python.

Workshop 97

Q&A

. Can | do any other kind of output formatting besides what | learned about in this chapter?

. Yes, you can also use the format function, which is covered in Hour 5.

Which is better to use with a print function, double quotes or single quotes?

Neither one is better than the other. Which one you use is a personal preference. However,
whichever one you choose, it's best to consistently stick with it.

Bottles of tea on the wall?!

This is a family-friendly tutorial. Feel free to modify your answers to script0403.py to
your liking.

Workshop
Quiz

1.

The print function is part of the Python standard library and is considered a built-in
function. True or false?

When is a variable created and assigned a data type?

A(n) sequence enables a Python statement to “escape” from its normal
behavior.

Which of the following is a valid Python escape sequence?

a. //

b. \'

c. ESC
Which Python escape sequence will insert a linefeed in output?
A comment in a Python script should begin with which character?
Which of the following is a valid Python data type?

a. int

b. input

Cc. print

Which function enables you to view a variable’s data type?

98

HOUR 4: Understanding Python Basics

9. If a variable is assigned the number 3.14, which data type will it be assigned?
10. The input function is part of the Python standard library and is considered a built-in
function. True or false?
Answers
1. True. The print function is a built-in function of the standard library. There is no need to
import it.
2. A variable is created and assigned a data type when it is assigned a value. The value and

data type for a variable can be changed with a reassignment.

3. An escape sequence enables Python statement to “escape” from its normal behavior.

10.

b. \’ is a valid Python escape sequence. Refer to Table 4.1 for a few valid Python escape
sequences.

. The \n Python escape sequence will insert a linefeed in output.

. A comment in a Python script should begin with the pound or hash symbol (#) for the

Python interpreter to ignore it.

. a. int is a Python data type. input and print are both Python functions. Refer to

Table 4.2 for a refresher on the data types.
The type function enables you to view a variable’s data type.

If a variable is assigned the number 3.14, it will be assigned the float data type by
Python. Refer to Table 4.2 for data types.

True. The input function is a built-in function of the standard library. There is no need to
import it.

This page intentionally left blank

Symbols

* (asterisk) in regular expressions,
342-343

{} (braces) in regular
expressions, 344

, (comma), comma-separated text
files, 225

< comparison operator (Python
scripts), 124

<= comparison operator (Python
scripts), 124

> comparison operator (Python
scripts), 124

== (double equal signs) in Python
scripts, 118

| (pipe symbol) in regular
expressions, 344-345

+ (plus sign) in regular
expressions, 344

? (question mark) in regular
expressions, 343
" (double quotes)
displaying via print function,
74-75
formatting via print function,
76-77
' (single quotes)
displaying via print function,
74-75

Index

formatting via print function,
76-77
""" (triple quotes), formatting via
print function, 76-77

A

absolute directory references
(Linux directory structure),
226-227, 232

accessor methods (OOP classes),
295-297

Allied Electronics, Inc. website, 9
Amazon.com website, 29

anchor characters (regular
expressions), 337-339

Android phones, 29
Apache web server, 475-476
CGI programming, 478-479

creating Python programs,
479-480

defining, 479

running Python
programs, 479

files and folders, 476
HTML files, serving, 477-478
installing, 476-477

574 Apache web server

web forms, 488
cgi module, 491-493
creating, 488-490
HTML elements, 488-489
webpages, publishing, 478

arguments, passing to functions,
254-256

default parameter values,
setting, 256-257

variable numbers of
arguments, 258-259

arithmetic in Python scripts
complex numbers, 107-108
fractions, 105-106
imaginary numbers, 107
math module, 108-112
math operators, 99-105

NumPy math libraries,
112-114

arrays in NumPy math libraries,
113-114

ASCII, Python v3, 207-208

asterisk (*) in regular expressions,
342-343

asynchat module (network
programming), 427

asynchronous events, GPIO
interface input, 551-553

asyncore module (network
programming), 427

attributes (OOP classes), 292
default values, 293-294
defining, 293-294
private attributes, 295

binary files, 225

blank passwords, 32

Blender3D game library, 398

Boolean comparisons (Python
scripts), 128

booting straight to GUI, 37

braces ({}) in regular
expressions, 344

break statements (Python
scripts), 151

bus-powered USB hubs, 18

Button widget (GUI programming),
374, 384-385

buying
peripherals
cases, 16-17

determining necessary
peripherals, 10

keyboards, 14-15

kits (prepackaged), 18
MicroSD cards, 10-12
mouses (mice), 14-15
network cables, 15
output displays, 14

portable power

supplies, 17
power supplies, 12-13
USB hubs, 18
Wi-Fi adapters, 15
Raspberry Pi

retailers, 9-10
tips for, 8-9-10
.bzip2 files, 225

C

cables
connections,
troubleshooting, 24
HDMI cables, new Raspberry
Pi setups, 22

network cables, buying, 15
Pi Cobbler ribbon cable, 537
power supplies, 12

troubleshooting
connections, 24

calendar command, 33

cases
buying, 16-17
Raspberry Pi 1 Model B, 17
Raspberry Pi 2 Model B, 16
static electricity, 17

cat command, 31

cd command, 31

centering HD images, 507-508

CGI (Common Gateway Interface)
programming and Apache web
server, 478-479

defining, 479
Python programs

creating Python programs,
479-480

debugging, 486-488
running, 479
web forms, 491-493
cgi module
network programming, 427

web programming,
491-493

Checkbutton widget (GUI
programming), 374, 385-387
checksums
defining, 20

NOOBS installation software,
559-560

downloading, 20-21
Linux checksums, 560

mismatched
checksums, 561

0OS X checksums, 560

Windows checksums, 560

circuit boards and static
electricity, 17

classes (OOP), 292

attributes, 292

default values, 293-294

defining, 293-294

private attributes, 295
defining, 292
destructors, 299-300
documenting, 300-301
duplication in, 307-308
instances

creating, 293

deleting, 299-300
methods, 292, 294

accessor methods,
295-297

constructors, 297-299
customizing output, 299
helper methods, 297-302
mutator methods, 294-295

property() helper method,
301-302

modules

creating class modules,
302-304

sharing code with,
302-304

problem with, 307-308

subclasses and inheritance,
308-316

client programs (socket
programming), 446-449

closing files, 239-240
cocos2d game library, 398
command-line

LXTerminal command-line
interface (LXDE GUI), 39

Raspbian 0S

basic commands, 31

directory-related
commands, 33

entering commands, 31-33
file-related commands, 33

comma (,), comma-separated text
files, 225

comments in Python scripts,
82-83

comparison operators (Python
scripts), 126

< comparison operator, 124
<= comparison operator, 124
> comparison operator, 124
Boolean comparisons, 128
grouping via logic operators,
130-131

numeric comparisons, 126
string comparisons, 127-128

complex numbers (Python scripts),
107-108

compressed files, 225

condition checks (Python scripts),
130-132

configuring
keyboards for Python, 51-52
MicroSD cards, 21
Raspberry Pi
installation software, 19

NOOBS installation
software, 19-21
0S installation, 22-24
plugging in peripherals,
21-22
researching possible
setups, 19
constructors (OOP classes),
297-299
cookie module (network
programming), 427
cookielib module (network
programming), 427

databases 575

data types

for loops, assigning data
types from lists, 141-142

MySQL database, 458

NumPy math libraries, 112

Python scripts, 89-92
databases

MySQL database, 453

creating databases,
455-456

creating Python scripts,
460-464

creating tables, 457-459

creating user accounts,
456-457

data types, 458

database connections,
461

database security, 461

downloading Debian
packages, 460

inserting data, 461-463

installing, 454

installing Python MySQL/
Connector module,
459-460

installing Python
PostgreSQL module, 469
primary key data
constraints, 463
querying data, 463-464
root user accounts, 454
setting up, 454-459
PostgreSQL database, 464

creating databases,
465-466

creating tables, 467-469

creating user accounts,
466-467

576 databases

database connections,
469-470

formatting data, 470
inserting data, 470-471
installing, 464

psycopg2 module,
469-472

querying data, 471-472
setting up, 464-469
security, 461-485
Debian
online resources, 30

packages, downloading in
MySQL database, 460
Raspbian OS distribution,
29-30
debugging Python programs,
486-488

destructors (OOP classes),
299-300

development environments (IDE),
53, 57
IDLE development
environment shell, 57-58
grouping statements, 119
if statements, 117-119
interactive mode, 59-60
scripting in, 60-66
Komodo IDE development
environment shell, 57

PyCharm development
environment shell, 57

PyDev Open Source Plug-In for
Eclipse, 57

dictionaries (Python), 180
creating, 180
defining, 179-180

management operations,
185-186

obtaining data from, 182-184

populating, 180-181
programming, 186-192

retrieving values from
dictionaries for functions,
259-260

updating, 184-185
differences (sets), 196-197
directories

command-line commands, 33

files

opening, 231
troubleshooting, 231
Linux directory structure, 226

absolute directory
references, 226-227,
232

relative directory
references, 226-227

top root directory, 226
modules

creating in test directories,
278279

moving to production
directories, 280-284

opening files, 231

Python directories, 227

scripts, displaying, 227

troubleshooting files, 231
displays (output)

buying, 14

DvI, 14

HDMI, 14

NTSC color encoding, 25

PAL color encoding, 25

RCA connectors, 14

troubleshooting, 25

VGA, 14

documenting classes (OOP),
300-301

dot character (regular
expressions), 339-340

double equal signs (==) in Python
scripts, 118, 126

double quotes (") in Python
scripts, 74-77

downloading NOOBS installation
software, 19-21

DVI output displays, 14
dynamic webpages, 482-485

electricity (static)

cases, 17

circuit boards, 17
elementli4.com website, 9

elif statements (Python scripts),
123-126

else statements (Python scripts),
121-123

email module (network
programming), 427

email servers and network
programming, 428-429

Gmail security, 436

Linux modular email
environment, 429-431

Postfix, 430

remote email servers, 432

sending email messages
example of, 433-435
Gmail security, 436
to multiple recipients, 436
smtplib module, 431-433

sendmail, 430

smtplib module, 430-431
class methods of, 431

classes of, 431

sending email messages,
431-433

Entry widget (GUI programming),
374, 387-388
equal signs (=) in Python scripts,
118, 126
error exceptions (Python scripts)
defining, 351
exception groups, 362-364
handling
generic exemptions, 364

multiple exceptions,
358-370

try except statement,
356-358, 361-370

runtime error exceptions,
354-356

syntactical error exceptions,
351-353

escape sequences in Python
scripts, 77-80
event-driven GUI programming,
374-375, 382-384
exception handling
exception groups, 362-364
multiple exception handling,
358-361
exception groups,
362-364
generic exemptions, 364
try except statement
blocks, 361-370
try except statement
options, 364-365
try except statement,
356-358
statement blocks,
361-370
statement options,
364-365

F

fifengine game library, 398
files, 225
binary files, 225
.bzip2 files, 225
closing, 239-240
command-line commands, 33

comma-separated text files,
225

compressed files, 225
creating, 240-241

.gzip files, 225

Linux directory structure, 226

absolute directory
references, 226-227,
232

relative directory
references, 226-227

top root directory, 226

managing via os function,
227-229

numeric files, 225

opening, 237-240
absolute directory
references, 232

designating open mode,
230-231

determining file attributes,
231-232

file object methods,
231-232

open function, 229-230
troubleshooting, 231
Python directories, 227
reading, 233, 237-239
entire files, 233-234
line-by-line, 234-235
nonsequentially, 236-237

stripping newline characters
from scripts, 235

formatting 577

string files, 225

types of files unable to be
processed by Python,
225-226

writing, 240-245
numbers as strings, 242
preexisting files, 243-244
write mode removals, 241

XML files, 225

xz files, 225

.zip files, 225

findall() function (regular
expressions), 333-335

finding modules, 272-273

finditer() function (regular
expressions), 333-335

flapping, GPIO interface input,
548-549

floating point accuracy (Python
math operators), 103-104

for loops (Python scripts), 137

data types, assigning from
lists, 141-142

indentation in, 138
iterating

character strings in lists,
142-143

iterating using range
function, 143-146

iterating using variables,
143

numeric values in lists,
138-140

operation of, 138
syntax of, 138
troubleshooting, 140-141

validating user input via,
146-148

formatting
MicroSD cards, 562-566
webpage data, 480-482

578 fractions in Python scripts

fractions in Python scripts,
105-106

frame templates (GUI
programming), 378-379

Frame widget (GUI
programming), 374

framing HD images, 508

ftplib module (network
programming), 427

functions, 249
creating, 250
defining, 250-251
redefining functions, 252

using functions before they
are defined, 251-252

lists and, 263-264
modules

determining how to use
functions within,
274-276

gathering functions for
custom modules, 278

listing functions in
modules, 274

role of functions in
modules, 269

passing values to, 254

passing arguments,
254-256

setting default parameter
values, 256-257

variable numbers of
arguments, 258-259

recursion and, 264-265

retrieving values via
dictionaries, 259-260

returning values from,
253-254

using in scripts, 250-252
variables
global variables, 260-263
local variables, 260-261

G

game programming, 397-399

Blender3D game
library, 398

cocos2d game library, 398

developers versus designers,
398
fifengine game library, 398
game screen
interacting with graphics
on screen, 415-416

moving graphics on
screen, 414-423

setting up, 403-409

image handling, 410-413,
416-423

kivy game library, 398
Panda3D game library, 398
playing games online, 399

PyGame game library, 398,
409

checking for, 400
events, 409
game loops, 409

game screen setup,
403-409

image handling, 410-413,
416-423

initializing, 402-403
installing, 399-400

interacting with graphics
on screen, 415-416

loading, 402-403
modules, 401-402

moving graphics on
screen, 414-423

object classes, 402
setting up, 399-400
sound design, 413-414
sprites, 402

Pyglet game library, 398
PySoy game library, 398
Python-Ogre game library, 398
SDL, 399
sound design, 413-414
generic exemption handling, 364
Gertboard
GPIO interface
connections, 537-539
detecting input, 548

setting up Gertboard for
output, 543

pin block layout, 539

global variables and functions,
260-263

Gmail security, 436
GNOME GUI, 36

gopherlib module (network
programming), 427

GPIO interface, 533
components of, 533-534
connections, 536

Gertboard, 537-539
Pi Cobbler, 536-537
input detection, 546

asynchronous events,
551-553

flapping, 548-549
Gertboard setup, 548
input polling, 549-551
Pi Cobbler setup, 547-548
pin setup, 548
pull-ups/downs, 549
switch bounce, 553
synchronous events, 551
LED light, 544-546
output, 541
Gertboard setup, 543
Pi Cobbler setup, 541-543
testing, 543-544

pins

Gertboard pin block layout,
539

input detection setup, 548
layout of, 534
referencing, 540-541
signals versus, 536

resetting, 544

RPi.GPIO module, 539
installing, 539-540
startup methods, 540-541

grouping
comparisons in Python scripts,
130-131

modules, 271
regular expressions, 345

statements in Python scripts,
119-121

GUI (Graphical User Interface)
accessing, 35
booting straight to, 37
GNOME GUI, 36
KDE GUI, 36
LXDE GUI, 35-36
desktop area, 36-37
LXPanel area, 36-43
programming, 373

creating a GUI program,
392-395

event-driven programming,
374-375

frame templates, 378-379

packages, 375

PyGTK GUI package, 375

PyQT GUI package, 375

tkinter GUI package,
375-395

widgets, 374, 378-382,
384-395

IDE (Integrated Development Environments)

window interface, 374,
376-382

wxPython GUI package,
375

Xfce GUI, 36
.gzip files, 225

Halfacree, Gareth, 19

HD (High Definition) images
centering, 507-508
converting, 512-513
defining, 498-500
delays, removing, 511
finding, 501-502
framing, 508

functions, loading instead of
modules, 511-512

image presentation script,
500

megapixels, 498

modifying, 516-517

mouse/keyboard controls,
514

movies, 502

music, playing music with,
525-530

optimized presentations,
514-516

performance, improving,
510-516

preloading, 513

presentation screen setup,
500-501

removable drives, storing on,
502-505

scaling, 505-507

579

screen buffering, 512
testing, 508-510
title screens, 513-514

HDMI (High-Definition Multimedia
Interface)

cables and new Raspberry Pi
setups, 22

output displays, buying, 14
ports, 497

helper methods (OOP classes),
297-302

HTML (Hypertext Markup
Language)
Apache web server, HTML
files in, 477-478

web forms, 488-489

webpages, formatting data,
480-482

HTTP (Hypertext Transfer Protocol)
lighttp, 475
Monkey HTTP, 475

httplib module (network
programming), 427

hubs (USB)
buying, 18
self-powered USB hubs, 18

hyperbolic functions (math
module), 111

IBM Watson, 29

IDE (Integrated Development
Environments), 53, 57

IDLE development
environment shell, 57-58

grouping statements, 119
if statements, 117-119

580 IDE (Integrated Development Environments)

interactive mode, 59-60

math operators in Python
scripts, 99-102
scripting in, 60-66
Komodo IDE development
environment shell, 57

PyCharm development
environment shell, 57

PyDev Open Source Plug-In for
Eclipse, 57

IDLE development environment
shell, 57-58

interactive mode, 59-60

Python scripts
grouping statements, 119
if statements, 118-119
math operators, 99-102

scripting in, 60-66

if statements (Python scripts),
117-121

image handling

game programming, 410-413

HD images
centering, 507-508
converting, 512-513
defining, 498-500
finding, 501-502
framing, 508

image presentation script,
500

improving script
performance, 510-516
megapixels, 498

mouse/keyboard controls,
514

movies, 502

optimized presentation,
514-516

potential modifications,
516-517

preloading, 513

presentation screen setup,
500-501

scaling, 505-507
screen buffering, 512

storing on removable
drives, 502-505

testing script, 508-510
title screens, 513-514
music, playing with, 525-530
imaginary numbers (Python
scripts), 107

imaplib module (network
programming), 427

infinite loops (Python scripts), 151

inheritance and subclasses (OOP
classes), 308-311

object module files

adding additional
subclasses to, 313-315

adding subclasses to,
312-313

putting a subclass in its
own object module file,
315-316

subclasses, creating, 311-312
installation software

NOOBS installation software,
19

composite output, 22
downloading, 19-21

moving files/folders to
MicroSD cards, 21

0S installation, 22-24
troubleshooting, 22, 25
Raspberry Pi setups, 19-21
installing

NOOBS installation software,
19-22

0S in new Raspberry PI
setups, 22-24

Python, 50-51

instances (OOP classes)

creating, 293

deleting, 299-300
interactive shell (Python), 53-55
interpreter (Python), 49, 52-53
intersections (sets), 195
iteration (loops), 137

infinite loops, 151

lists, 172

for loops, 137

assigning data types from
lists, 141-142

indentation in, 138

iterating character strings
in lists, 142-143

iterating numeric values in
lists, 138-140

iterating using range
function, 143-146

iterating using variables,
143

operation of, 138
syntax of, 138
troubleshooting, 140-141

validating user input via,
146-148

while loops, 148

break statements,
151-154

entering data via,
152-154

infinite loops, 151

iterating using numeric
conditions, 149

iterating using string
conditions, 149-151

pretests, 149

syntax of, 148-149

terminating, 150

while True, 151-154

J-K

KDE GUI, 36

keyboards
buying, 14-15
HD image presentation, 514
Python setup, 51-52

USB keyboards, power
consumption, 15

keywords in Python scripts, 83-84
Kindle eBook reader, 29

Kkits (peripherals), buying, 18

kivy game library, 398

Komodo IDE development
environment shell, 57

L

Label widget (GUI programming),
374, 384

LED light (GPIO interface),
544-546

lighttp, 475
linked modules, 270

linking programs via socket
programming, 442

client programs, 446-449

client/server communication
process, 442-443

client programs, 444-449

running client/server
demo, 448-449

server programs, 444-446
closing sockets, 449
defining, 442-443

server programs, 444-446,
448-449

socket module, 443-444

Linux, 29

Debian and Raspbian OS
distribution, 29-30

devices using Linux, 29
directory structure, 226

absolute directory
references, 226-227,
232

relative directory
references, 226-227

top root directory, 226
email servers, 429-430
MDA, 430
MTA, 430
MUA, 430-431
Postfix, 430
sendmail, 430
GUI programming
accessing, 35

creating a GUI program,
392-395

frame templates, 378-379
GNOME GUI, 36

KDE GUI, 36

LXDE GUI, 35-43
packages, 375

PyGTK GUI package, 375
PyQT GUI package, 375

tkinter GUI package,
375-395

widgets, 376-395
wxPython GUI package,

375
Xfce GUI, 36
Linux shell, 31

MySQL database, 453
creating databases,
455-456

creating Python scripts,
460-464

Linux 581

creating tables, 457-459

creating user accounts,
456-457

data types, 458

downloading Debian
packages, 460

installing, 454

installing Python MySQL/
Connector module,
459-460

installing Python
PostgreSQL module, 469
root user accounts, 454
setting up, 454-459
NOOBS installation software

formatting MicroSD cards,
562-564

unpacking zip files, 561
verifying checksums, 560
PostgreSQL database, 464

creating databases,
465-466

creating tables, 467-469

creating user accounts,
466-467

database connections,
469-470

formatting data, 470
inserting data, 470-471
installing, 464

psycopg2 module,
469-472

querying data, 471-472
setting up, 464-469
Raspbian OS

basic command-line
commands, 31

Debian and, 29-30

entering commands at
command-line, 31-33

582 Linux

Linux distribution, 29-30
logins, 30-33
passwords, 32, 35

Listbox widget (GUI programming),
374, 390-391

lists (Python scripts), 164
comprehensions, 173-174
concatenating, 169-170
creating, 164-165
extracting data from, 165
functions and, 263-264
functions of, 170-171
iterating through, 172
multidimensional lists, 171
values

adding new data values,
167-169

deleting, 166-167

popping, 167

replacing, 165-166

reversing, 171-173

sorting, 172-173

sorting in place, 170
local variables and functions,

260-261

logarithmic functions (math
module), 109-110

logic operators (Python scripts),
130-131

logins
Raspberry Pi, 30-33
Raspbian 0S, 30-33
loops (Python scripts), 137
game loops, 409
infinite loops, 151
for loops, 137

assigning data types from
lists, 141-142

indentation in, 138

iterating character strings
in lists, 142-143

iterating numeric values in
lists, 138-140

iterating using range
function, 143-146

iterating using variables,
143

operation of, 138
syntax of, 138
troubleshooting, 140-141

validating user input via,
146-148

nested loops, 154-156

while loops, 148
break statements, 151-154
entering data via, 152-154
infinite loops, 151

iterating using numeric
conditions, 149

iterating using string
conditions, 149-151
pretests, 149
syntax of, 148-149
terminating, 150
while True, 151-154
Is command, 31, 33
LXDE GUI, 35-36
desktop area, 36-37
LXPanel area, 36-37, 40-43
applets, 37-38
LXDE file manager, 38
LXDE menu, 38

LXDE Screensaver
Preferences window,
42-43
LXTerminal command-line
interface, 39
LXML module, installing
(web servers and network
programming), 437-438

mailbox module (network
programming), 427

mailcap module (network
programming), 427

match() function (regular
expressions), 333-334

math module in Python scripts,
108

hyperbolic functions, 111
number theory functions, 109

power and logarithmic
functions, 109-110

statistical math functions,
111-112

trigonometric functions,
110111

math operators in Python scripts,
99-101

displaying numbers, 104-105

floating point accuracy,
103-104

operator shortcuts, 105
order of operations, 101-102

variables in math calculations,
102-103

MDA (Mail Delivery Agents), Linux
modular email environment,
430

megapixels in HD images, 498
memberships (sets), 194

Menu widget (GUI programming),
374, 391-392

methods (OOP classes), 292, 294
accessor methods, 295-297
constructors, 297-299
customizing output, 299
destructors, 299-300

documenting classes,
300-301

helper methods, 297-302
mutator methods, 294-295

property() helper method,
301-302

mhlib module (network
programming), 427

MicroSD cards
buying, 10-12
NOOBS installation software

copying to MicroSD cards,
566

moving files/folders to
MicroSD cards, 21

repartitioning drives, 22
preloaded MicroSD cards, 19
Raspberry Pi 2 Model B, 10
SD cards versus, 10
setting up, 21
size of, 12
troubleshooting, 25

mkdir command, 31, 33
modules, 271
built-in modules, 270
categories of, 271-272
custom modules

creating, 277-278,
284-287

creating in test directories,
278279

gathering functions for,
278

moving to production
directories, 280-284

naming, 278

testing, 279-280, 284

using, 284-287
defining, 269

exploring available modules
on Raspberry Pi, 276-277

finding, 272-273

flavors of, 269-271
functions

determining how to use
functions within,
274276

listing functions in
modules, 274
grouping, 271
importing different flavors of,
270271
linked modules, 270

moving to production
directories, 280-284

naming, 278

network programming,
427-428

online resources, 273
packages, 271

reading module descriptions,
273274

RPi.GPIO module (GPIO
interface), 539

installing, 539-540
startup methods, 540-541
standard modules, 271-272
modules (OOP classes)
creating, 302-304
sharing code with, 302-304
Monkey HTTP, 475
Monty Python’s Flying
Circus, 47
mouses (mice)
buying, 14-15
HD image presentation, 514
power consumption, 15
USB mouses (mice), 15
movies (HD), 502

moving NOOBS files/folders to
microSD cards, 21

MP3 music format, 517-518

MySQL database 583

MTA (Mail Transfer Agents), Linux
modular email environment,
430

MUA (Mail User Agents), Linux
modular email environment,
430-431

multidimensional lists (Python
scripts), 171

multiple exception handling,
358-361

exception groups, 362-364
generic exemptions, 364
try except statement

statement blocks,
361-370

statement options,
364-365

music, 517
basic music script, 517-518
images, playing music with,
525-530
MP3 format, 517-518
playback control, 520-525
playlists
creating, 519-520
randomizing, 525
queuing songs, 518
storing on removable disks,
518-519

mutator methods (OOP classes),
294-295

MySQL database, 453
data types, 458
installing, 454

Python MySQL/Connector
module, installing, 459-460

Python scripts, creating, 460

database connections,
461

database security, 461
inserting data, 461-463

584 MySQL database

primary key data
constraints, 463
querying data, 463-464
root user accounts, 454
setting up, 454-455

creating databases,
455-456

creating tables, 457-459

creating user accounts,
456-457

downloading Debian
packages, 460

naming modules, 278

nested functions in Python
scripts, 92

nested loops (Python scripts),
154-156

network cables, buying, 15

network programming
email servers, 428-429
Gmail security, 436

Linux modular email
environment, 429-431

Postfix, 430
remote email servers, 432

sending email messages,
431-436

sendmail, 430
smtplib module, 430-433
modules, 427-428
socket programming, 442
client programs, 446-449

client/server
communication process,
442-449

closing sockets, 449

defining, 442-443

server programs, 444-446,
448-449

socket module, 443-444
web servers, 436
example of, 427-441
LXML module, 437-441
parsing webpage data,
437-442

relocation of webpages,
442

retrieving webpages,
436-437

urllib module, 436-437
Nginx web server, 475

nntplib module (network
programming), 427

NOOBS installation software, 19,
557-558

composite output, 22

copying to MicroSD cards,
566

downloading, 19-21, 558-559

formatting MicroSD cards,
562

Linux, 562-564
0S X, 565-566
Windows, 564-565

moving files/folders to
microSD cards, 21

online resources, 558
0S installation, 22-24
troubleshooting, 22, 25
unpacking zip files, 561
Linux, 561
0S X, 562
Windows, 561-562
verifying checksums, 559-560
Linux, 560

mismatched checksums,
561

0S X, 560
Windows, 560

NTSC (National Television
Systems Committee) color
encoding, 25

numbers
complex numbers, 107-108

formatting strings for output,
219-222

imaginary numbers, 107

numeric comparisons (Python
scripts), 126

numeric files, 225

theory functons (math
module), 109

NumPy math libraries, 112
arrays, 113-114
data types, 112

o

online resources
Debian-related resources, 30
IDE, 57

Komodo IDE development
environment shell, 57

modules, 273
NOOBS installation software,
558

PyCharm development
environment shell, 57

PyDev Open Source Plug-In for
Eclipse, 57
PyGame game library, 400
Python games, 399
Raspberry Pi Foundation, 19
Raspberry Pi wiki page,
11-12
retailers, buying from, 9-10

OOP (Object-Oriented
Programming), 291

classes, 292
attributes, 292-294

creating class modules,
302-304

defining, 292
destructors, 299-300
documenting, 300-301
duplication in, 307-308
inheritance, 310-327
instances, 293, 299-300
methods, 292, 294-302
problem with, 307-308

property() helper method,
301-302

sharing code with class
modules, 302-304

subclasses, 308-310, 327
defining, 291-292

inheritance and subclasses
(OOP classes), 308-310
opening files, 237-240
absolute directory references,
232

file attributes, determining,
231-232

file object methods, 231-232
open function, 229-230

open mode, designating,
230-231

troubleshooting, 231
0OS (Operating Systems)
new Raspberry Pi setups, 0S
installation, 22-24
Raspbian 0OS
basic command-line
commands, 31
Debian and, 29-30
entering commands at
command-line, 31-33
GNOME GUI, 36

KDE GUI, 36

Linux distribution, 29-30
logins, 30-33

LXDE GUI, 35-43
passwords, 32, 35
software packages, 30
Xfce GUI, 36

os function, file/directory
management, 227-229

0S X and NOOBS installation
software

checksums, verifying, 560

MicroSD cards, formatting,
565-566

zip files, unpacking, 562
output displays

buying, 14

DvI, 14

HDMI, 14

NTSC color encoding, 25

PAL color encoding, 25

RCA connectors, 14

troubleshooting, 25

VGA, 14

P

packages, 271

PAL (Phase Alternating Line) color
encoding, 25

Panda3D game library, 398
passwords
blank passwords, 32
Raspberry Pi, 32, 35, 43
Raspbian 0S, 32
peripherals
cases
buying, 16-17
static electricity, 17

peripherals

keyboards

buying, 14-15

power consumption, 15

Python setup, 51-52

USB keyboards, 15
kits (prepackaged), 18
MicroSD cards

buying, 10-12

moving NOOBS files/

585

folders to MicroSD cards,

21

preloaded MicroSD cards,

19

repartitioning drives, 22

SD cards versus, 10

size of, 12

troubleshooting, 25
mouses (mice)

buying, 14-15

power consumption, 15

USB mouses (mice), 15

necessary peripherals,
determining, 10

network cables, buying, 15
new Raspberry Pi setups,
plugging in peripherals,
21-22
output displays
buying, 14
DvI, 14
HDMI, 14
NTSC color encoding, 25
PAL color encoding, 25
RCA connectors, 14
troubleshooting, 25
VGA, 14
power supplies
buying, 12-13
cables, 12

portable power supplies, 17

586 peripherals

troubleshooting, 26
USB hubs
bus-powered USB hubs, 18
buying, 18
self-powered USB hubs, 18
Wi-Fi adapters, buying, 15
Pi Cobbler
GPIO interface
connections, 536-537
detecting input, 547-548
setting up Pi Cobbler for
output, 541-543
ribbon cable, 537
pipe symbol (|) in regular
expressions, 344-345

plain text searches in regular
expressions, 335-337
playback control (music), 520-525
playlists (music)
creating, 519-520
randomizing, 525
plugging in peripherals to new
Raspberry Pi setups, 21-22
plus sign (+) in regular
expressions, 344

polling and GPIO interface input,
549-551

poplib module (network
programming), 427

portable power supplies,
buying, 17
POSIX BRE (Basic Regular
Expression) engine, 332
POSIX ERE (Extended Regular
Expression) engine, 332
Postfix, 430
PostgreSQL database, 464
installing, 464
psycopg2 module, 469

database connections,
469-470

formatting data, 470
inserting data, 470-471
querying data, 471-472
Python PostgreSQL module,
installing, 469
setting up, 464-465

creating databases,
465-466

creating tables, 467-469

creating user accounts,
466-467

power and logarithmic functions
(math module), 109-110

power supplies

buying, 12-13

cables, 12

portable power supplies, 17
preloaded MicroSD cards, 19
print function (Python), 73-74

displaying characters via,

74-75
formatting output, 75-77

private attributes (OOP classes),
295

procedural programming, 291

Progressbar widget (GUI
programming), 374

property() helper method (OOP
classes), 301-302

psycopg2 module and PostgreSQL
database operation, 469

database connections,
469-470

formatting data, 470
inserting data, 470-471
querying data, 471-472
pull-ups/downs in GPIO interface
input, 549
pwd command, 31, 33

PyCharm development
environment shell, 57

PyDev Open Source Plug-In for
Eclipse, 57
PyGame game library, 398, 409
checking for, 400
events, 409
game loops, 409
game screen
displaying text, 405-409
interacting with graphics
on screen, 415-416

moving graphics on
screen, 414-415

putting text on, 405
setting up, 403-409
image handling, 410-413
initializing, 402-403
installing, 399-400
loading, 402-403
modules, 401-402
object classes, 402
online resources, 400
setting up, 399-400
sound design, 413-414
sprites, 402
Pyglet game library, 398
PyGTK GUI package, 375
PyQT GUI package, 375
PySoy game library, 398
Python, 47
debugging, 486-488
development environment, 49,
53, 57
IDLE development
environment shell,
57-62, 99-102
Komodo IDE development
environment shell, 57
PyCharm development
environment shell, 57
PyDev Open Source Plug-In
for Eclipse, 57

dictionaries, 180
creating, 180
defining, 179-180

management operations,
185-186

obtaining data from,
182-184

populating, 180-181
programming, 186-192

retrieving values from

dictionaries for functions,

259-260
updating, 184-185
directories, 227
closing files, 239-240
creating files, 240-241

creating modules in,
278279

managing, 227-229

moving modules to
production directories,
280-284

opening files, 229-232,
240
reading files, 233-239
writing files, 240-245
error exceptions
defining, 351

exception groups, 362-364

generic exemptions, 364

handling multiple
exceptions, 358-370

handling via try except
statement, 356-358,
361-370

runtime error exceptions,
354-356

syntactical error
exceptions, 351-353

file management
closing files, 239-240
creating files, 240-241

opening files, 229-232,
240

os function, 227-229
reading files, 233-239
writing files, 240-245

functions, 249

creating, 250
defining, 250-252

determining how to use
functions within,
274-276

gathering for custom
modules, 278

global variables, 260-263
lists and, 263-264

local variables, 260-261
modules and, 269, 274

passing values to,
254-259

recursion and, 264-265

retrieving values via
dictionaries, 259-260

returning values from,
253-254

using, 250-252

game programming, 397-399

Blender3D game library,
398

cocos2d game library, 398

developers versus
designers, 398

fifengine game
library, 398

game screen setup,
403-409

image handling, 410-413,
416-423

interacting with graphics
on screen, 415-416

kivy game library, 398

moving graphics on
screen, 414-423

Python 587

Panda3D game library,
398

playing games online, 399

PyGame game library,
398423

Pyglet game library, 398

PySoy game library, 398

Python-Ogre game library,
398

SDL, 399

sound design, 413-414

GUI programming, 373

creating a GUI program,
392-395

event-driven programming,
374-375

frame templates,
378-379

packages, 375
PyGTK GUI package, 375
PyQT GUI package, 375

tkinter GUI package,
375-395

widgets, 374-395
window interface, 374

wxPython GUI package,
375

HD images

centering, 507-508
converting, 512-513
defining, 498-500
finding, 501-502
framing, 508

image presentation script,
500

improving script
performance, 510-516
megapixels, 498

mouse/keyboard controls,
514

movies, 502

588

Python

optimized presentation,
514-516

playing music with,
525-530

potential modifications,
516-517

preloading, 513

presentation screen setup,
500-501

scaling, 505-507
screen buffering, 512

storing on removable
drives, 502-505

testing script, 508-510

title screens, 513-514
history of, 47-48
inheritance, 310-311

adding additional
subclasses to object
module files, 313-315

adding subclasses to
object module files,
312-313

creating subclasses,
311-312

putting a subclass in its
own object module file,
315-316

installing, 50-51
interactive shell, 49, 53-55
interpreter, 49, 52-53
introduction to, 1
keyboard setup, 51-52
modules, 271
built-in modules, 270
categories of, 271-272

creating custom modules,
277-279, 284-287

creating in test directories,
278279

defining, 269

determining how to use
functions within,
274-276

exploring available
modules on Raspberry
Pi, 276-277

finding, 272-273
flavors of, 269-271
grouping, 271

importing different flavors
of, 270-271

linked modules, 270

listing functions in
modules, 274

moving to production
directories, 280-284

naming, 278
online resources, 273

reading module
descriptions, 273-274

standard modules,
271-272

testing, 279-280, 284
using, 284-287
music, 517

basic music script,
517-518

creating playlists, 519-520

MP3 format, 517-518

playback control, 520-525

playing with images,
525-530

queuing songs, 518

randomizing playlists, 525

storing on removable
disks, 518-519

MySQL database, creating
Python scripts, 460-464

network programming
email servers, 428-436
modules, 427-428

socket programming,
442-449

web servers, 436-442
00P, 291

classes, 291-294,
302-304, 307-308

defining, 291-292

inheritance, 308-310

instances, 293, 299-300

subclasses, 308-310
packages, 271

Python MySQL/Connector
module, installing, 459-460

Python PostgreSQL module,
installing, 469

Python v2, 48
Python v3, 48
ASCIl in, 207-208
Python v2 versus, 48
Raspberry Pi's relationship
to, 7-8
regular expressions

anchor characters,
337-339

asterisk (*) in, 342-343
braces ({}) in, 344

character classes,
340-343

compiling, 334-335
defining, 331-332
dot character, 339-340

findall() function, 333,
334-335

finditer() function, 333-335

functions, 333

grouping, 345

match() function, 333-334

pipe symbol (|) in, 344-345

plain text searches,
335-337

plus sign (+) in, 344
POSIX BRE engine, 332
POSIX ERE engine, 332
question mark (?) in, 343
search() function, 333-334
special characters, 337
types of, 332

using, 346-348

scripts, 73-74

allowing input, 90-96
Boolean comparisons, 128

break statements,
151-154

comments, 82-83

comparison operators,
124, 126-130

complex numbers,
107-108

condition checks, 130-132
creating, 68

creating output via print
function, 79-80

data types, 89-92

displaying characters via
print function, 74-75

elif statements, 123-126
else statements, 121-123
escape sequences, 77-80

formatting for readability,
80-83

formatting output via print
function, 75-77

fractions, 105-106

grouping statements,
119121

if statements, 117-121
imaginary numbers, 107
inheritance, 316-327
iteration (loops), 137

jumping to a line, 353
keywords, 83-84

list comprehensions,
173-174

lists, 164-173, 263-264
logic operators, 130-131
long print lines, 80-81
for loops, 137-148

math module, 108-112
math operators, 99-105

multidimensional lists,
171

negating conditions,
131-132

nested functions, 92

nested loops, 154-156

numeric comparisons, 126

NumPy math libraries,
112-114

ranges, 174-175
running, 53, 68-69

string comparisons,
127-128

stripping newline
characters from, 235

testing functions, 129-130
testing statements, 68
tuples, 159-164, 172-173
variables, 83-96, 102-103
while loops, 148-154

sets

creating, 193
defining, 192-193

deleting elements from,
198-199

differences, 196-197
intersections, 195
memberships, 194

obtaining data from,
194-197

quotes in Python scripts 589

populating, 193-194
programming, 199-202

symmetric set differences,
196-197

traversing, 197
unions, 195
updating, 197-198

statements and escape
sequences, 77-80

strings, 207
altering values, 210-212
assigning values, 209-210
creating, 208-209
formats of, 207-208

formatting for output,
217-222

joining, 213
manipulation functions,
210-212
searching, 215-217
slices, 210
splitting, 212-213
testing, 213-214
text editor, 50, 53
Python-Ogre game library, 398

Q

question mark (?) in regular
expressions, 343

queuing songs in music script,
518

quotes in Python scripts

double quotes (")
displaying via print
function, 74-75

formatting via print
function, 76-77

590 quotes in Python scripts

single quotes (')
displaying via print
function, 74-75

formatting via print
function, 76-77

triple quotes ("""), formatting

via print function, 76-77

Radiobutton widget (GUI
programming), 374

randomizing music playlists, 525
ranges (Python scripts), 174-175
Raspberry Pi, 5
buying
peripherals, 10-18
retailers, 9-10
tips for, 8-10
components, 1, 89
development of, 1, 5-6
different names for, 6
GUI, booting straight to, 37
HDMI port, 497
history of, 5-6
introduction to, 1
logins, 30-33
models of, 9

modules available on,
276277

passwords, 32, 35, 43
Python's relationship to, 7-8
rebooting, 34-35
setting up

installation software, 19

NOOBS installation
software, 19-21

0S installation, 22-24

plugging in peripherals,
21-22
researching possible
setups, 19
troubleshooting
cable connections, 24
microSD cards, 25

NOOBS installation
software, 25

output displays, 25
peripherals, 26
uses for, 7
Raspberry Pi 1 Model A, 570-571
Raspberry Pi 1 Model A+, 7, 569
diagram of, 569
features of, 569
Raspberry Pi 1 Model B, 570
cases, 17
features of, 571
Raspberry Pi 1 Model B+, 568
diagram of, 567-568
features of, 568
Raspberry Pi 2 Model B, 567
cases, 16
diagram of, 9, 567
features of, 567
microSD cards, 10
SD cards, 10
Raspberry Pi Foundation, 6-7, 19

NOOBS installation software,
557-558

support for, 9
Raspberry Pi User Guide, 19
Raspberry Pi wiki page, 11-12
Raspbian 0S
command-line
basic commands, 31
entering commands, 31-33
Debian and, 29-30

GUI, accessing, 35
Linux distribution, 29-30
logins, 30-33
passwords, 32, 35

SD cards, loading Raspbian
0S via NOOBS, 557-558

downloading NOOBS,
558-559

formatting MicroSD cards,
562-566

unpacking zip files,
561-562

verifying checksums,
559-561

software packages, 30

RCA connectors, output displays,
14

reading files, 233, 237-239
entire files, 233-234
line-by-line, 234-235
newline characters, stripping

from scripts, 235
nonsequentially, 236-237

rebooting Raspberry Pi, 34-35

recursion and functions, 264-265

regular expressions
anchor characters, 337-339
asterisk (*) in, 342-343
braces ({}) in, 344
character classes

asterisk (*) in, 342-343
creating, 340-341
negating, 341
ranges, 341-342
compiling, 334-335
defining, 331-332
dot character, 339-340
functions, 333
findall() function, 333-335
finditer() function, 333-335

match() function, 333-334
search() function, 333-334
grouping, 345
pipe symbol (|) in, 344-345
plain text searches, 335-337
plus sign (+) in, 344
POSIX BRE engine, 332
POSIX ERE engine, 332
question mark (?) in, 343
special characters, 337
types of, 332
using, 346-348

relative directory references (Linux
directory structure), 226-227

remote email servers, 432

removable disks and music
storage, 518-519

removable drives and HD image
storage, 502-505

repartitioning drives, MicroSD
cards, 22

researching possible setups
(Raspberry Pi configuration), 19

resetting GPIO interface, 544
resources (online)
Debian-related resources, 30
IDE, 57

Komodo IDE development
environment shell, 57

modules, 273
NOOBS installation software,
558

PyCharm development
environment shell, 57

PyDev Open Source Plug-In for
Eclipse, 57

PyGame game library, 400
Python games, 399
Raspberry Pi Foundation, 19
Raspberry Pi wiki page, 11-12
retailers, buying from, 9-10

resources (print), Raspberry Pi
User Guide, 19

retailers, buying from, 9-10
robotparser module (network
programming), 427

root user accounts in MySQL
database, 454

RPi.GPIO module, 539
installing, 539-540
startup methods, 540-541

RS Components website, 10

runtime error exceptions, 354-356

S

scaling HD images, 505-507

screen buffering and HD images,
512

scripts
Boolean comparisons, 128

break statements,
151-154

comments, 82-83

comparison operators, 124,
126-130

complex numbers, 107-108

condition checks, 130-132

characters, displaying via print
function, 74-75

conditions, negating, 131-132

creating, 68

output via print function,
79-80

via MySQL database,
460-464

via text editor, 66-68
data types, 89-92
directories, displaying scripts

in, 227
elif statements, 123-126

scripts 591

else statements, 121-123
error exceptions
defining, 351
exception groups, 362-364
generic exemptions, 364

handling multiple
exceptions, 358-370

handling via try except
statement, 356-358,
361-370

runtime error exceptions,
354-356

syntactical error
exceptions, 351-353

for loops, 137-148
formatting
for readability, 80-83

output via print function,
7577

fractions, 105-106

functions, 249
creating, 250
defining, 250-252

determining how to use
functions within,
274-276

gathering for custom
modules, 278

global variables, 260-263
lists and, 263-264

local variables, 260-261
modules and, 269, 274
nested functions, 92

passing values to,
254-259

print function, 73-74

recursion and, 264-265

retrieving values via
dictionaries, 259-260

returning values from,
253-254

592

scripts

testing, 129-130
using, 250-252
HD images
converting, 512-513
improving script
performance, 510-516

mouse/keyboard controls,

514
playing music with,
525-530

potential modifications,
516-517

preloading images, 513
screen buffering, 512
testing script, 508-510
title screens, 513-514

IDLE development
environment shell, 60-66

if statements, 117-121
imaginary numbers, 107
inheritance, 316-327
input, allowing, 90-96
iteration (loops), 137
keywords, 83-84

lines, jumping to, 353
lists, 164-174

comprehensions,
173174

functions, 263-264

multidimensional lists,
171

logic operators, 130-131
long print lines, 80-81
loops
for loops, 137-148
iteration, 137
nested loops, 154-156
while loops, 148-154
math module, 108-112
math operators, 99-105

modules, 271

built-in modules, 270
categories of, 271-272

creating custom modules,
277-279, 284-287

creating in test directories,
278279

defining, 269

determining how to use
functions within,
274-276

exploring available
modules on Raspberry
Pi, 276-277

finding, 272-273

flavors of, 269-271

grouping, 271

importing different flavors
of, 270-271

linked modules, 270

listing functions in
modules, 274

moving to production
directories, 280-284

naming, 278
online resources, 273

reading module
descriptions, 273-274

standard modules,
271-272

testing, 279-280, 284
using, 284-287

multidimensional lists, 171

music, 517

basic music script,
517-518

creating playlists, 519-520

MP3 format, 517-518

playback control, 520-525

playing with images,
525-530

queuing songs, 518
randomizing playlists, 525

storing on removable
disks, 518-519

nested functions, 92
nested loops, 154-156

newline characters, stripping
from scripts, 235

numeric comparisons, 126

NumPy math libraries,
112-114

packages, 271

print function, 73-74
ranges, 174-175
regular expressions

anchor characters,
337-339

asterisk (*) in, 342-343
braces ({}) in, 344

character classes,
340-343

compiling, 334-335
defining, 331-332

dot character, 339-340
findall() function, 333-335
finditer() function, 333-335
functions, 333

grouping, 345

match() function, 333-334
pipe symbol (|) in, 344-345

plain text searches,
335-337

plus sign (+) in, 344
POSIX BRE engine, 332
POSIX ERE engine, 332
question mark (?) in, 343
search() function, 333-334
special characters, 337
types of, 332

using, 346-348

running, 53, 68-69
statements
grouping, 119-121
if statements, 117-121
testing, 68
string comparisons, 127-128
testing
functions, 129-130
statements, 68
tuples, 159-164, 172-173
variables, 83-96, 102-103
while loops, 148-154

Scrollbar widget (GUI
programming), 374

SD cards
MicroSD cards
formatting, 562-566
SD cards versus, 10
Raspberry Pi 2 Model B, 10

Raspbian OS, loading on SD
cards via NOOBS, 557-558

downloading NOOBS,
558-559

formatting MicroSD cards,
562-566

unpacking zip files,
561-562

verifying checksums,
559-561

SDL and game programming, 399

search() function (regular
expressions), 333-334

security
databases, 461, 485
Gmail, 436

webpages, 485
self-powered USB hubs, 18
sendmail, 430

Separator widget (GUI
programming), 374

socket programming, linking programs using

servers and network programming
email servers, 428-429
Gmail security, 436

Linux modular email
environment, 429-431

Postfix, 430
remote email servers, 432

sending email messages,
431-436

sendmail, 430
smtplib module, 430-433

server programs (socket
programming), 444-446,
448-449

web servers, 436
example of, 427-441
LXML module, 437-441

parsing webpage data,
437-442

relocation of webpages,
442

retrieving webpages,
436-437
urllib module, 436-437
sets (Python)
creating, 193
defining, 192-193

deleting elements from,
198-199

differences, 196-197
intersections, 195
memberships, 194

obtaining data from, 194-197
populating, 193-194
programming, 199-202

symmetric set differences,
196-197

traversing, 197
unions, 195
updating, 197-198

setting up
keyboards for Python, 51-52
MicroSD cards, 21
Raspberry Pi
installation software, 19

NOOBS installation
software, 19-21

OS installation, 22-24

plugging in peripherals,
21-22

researching possible
setups, 19

shortcuts (math operator) in
Python scripts, 105

SimpleXMLRPCServer module
(network programming), 427

single quotes (') in Python scripts,
7477
slices
strings, 210
tuples, 161-162

smtpd module (network
programming), 427

smtplib module (network
programming), 427, 430-431

class methods of, 431
classes of, 431
email servers, 428-429

sending email messages,
431-433

SoC (System on a Chip), 9

socket programming, linking
programs using, 442

client programs, 446-449

client/server communication
process, 442-443

client programs, 444-449

running client/server
demo, 448-449

server programs, 444-446

593

594 socket programming, linking programs using

closing sockets, 449
defining, 442-443

server programs, 444-446,
448-449

socket module, 443-444

software packages, Raspbian
0s, 30

sound design in game
programming, 413-414

Spinbox widget (GUI
programming), 374
sprites (PyGame game library), 402
startx command, 35
statements
escape sequences in, 77-79
exception handling
exception groups, 362-364

try except statements,
356-358, 361-370

grouping, 119-121
if statements, 117-119
testing, 68
static electricity
cases, 17
circuit boards, 17

statistical math functions (math
module), 111-112

storing

HD images on removable
drives, 502-505

music on removable disks,
518519

string files, 225
strings (Python), 207
comparisons, 127-128
creating, 208-209
formats of, 207-208
formatting for output, 217
format() function, 217-218

named placeholders,
218219

numbers, 219-222
positional formatting, 222

positional placeholders,
218

joining, 213
manipulation functions,
210-212
searching, 215-217
splitting, 212-213
testing, 213-214
values
altering, 210-212
assigning, 209-210
slices, 210
subclasses (OOP classes)
creating, 311-312
inheritance and, 308-311,
316-327
adding additional
subclasses to object
module files, 313-315
adding subclasses to
object module files,
312-313
creating subclasses,
311-312
putting a subclass in its
own object module file,
315-316
object module files
adding additional
subclasses to, 313-315
adding subclasses to,
312-313
putting a subclass in its
own object module file,
315-316
sudo command
booting straight to GUI, 37
rebooting Raspberry Pi, 33-35
switch bounce, GPIO interface
input, 553

symmetric set differences,
196-197

synchronous events, GPIO
interface input, 551

syntactical error exceptions,
351-353

T

tables, creating in
MySQL database, 457-459

PostgreSQL database,
467-469

telnetlib module (network
programming), 427

test directories, custom modules
in, 278-279
testing
functions in scripts, 129

GPIO interface output,
543-544

modules, 279-280, 284
text editors (Python), 50, 53,
66-68
Text widget (GUI programming),
374, 388-390

title screens (HD images),
513-514

tkinter GUI package, 375-376,
384

Button widget, 384-385
Checkbutton widget, 385-387
Entry widget, 387-388

Label widget, 384

Listbox widget, 390-391
Menu widget, 391-392

Text widget, 388-390

window interface

adding widgets to,
378-382

creating, 376-377

defining event handlers,
382-384

top root directory (Linux directory
structure), 226

trigonometric functions (math
module), 110-111

triple quotes (""") in Python
scripts, 76-77
troubleshooting
directories, 231
files, opening, 231
for loops, 140-141
MicroSD cards, 25

NOOBS installation software,
22,25

output displays, 25
peripherals, 26
Raspberry Pi
cable connections, 24
microSD cards, 25
output displays, 25
peripherals, 26

try except statement and
exception handling, 356-358

statement blocks, 361-370
statement options, 364-365
tuples (Python scripts), 159, 162

accessing

data in, 161

ranges of value, 161-162
concatenating, 164
creating, 159-160
iterating through, 172
slices, 161-162
values

checking, 162-163

finding minimum/maximum

values, 163

finding the number of, 163

U

unassigned variables in Python
scripts, 86-87

Unicode escape sequences, 78-80

unions (sets), 195
Upton, Eben, 5-6, 19

urllib module (network
programming), 427, 436-437

urlparse module (hetwork
programming), 427

USB hubs
bus-powered USB hubs, 18
buying, 18
self-powered USB hubs, 18

USB keyboards and power
consumption, 15

USB mouses (mice) and power
consumption, 15

user accounts, creating in
MySQL database, 456-457

PostgreSQL database,
466-467

Vv

van Rossum, Guido, 47
variables
functions and
global variables, 260-263
local variables, 260-261
Python scripts, 83
assigning expression
results to, 88
assigning long string
values to, 87

assigning numeric values
to, 88

assigning value to, 85

web programming 595

creating variable
names, 84

data types and, 89-90
formatting output, 85-86
reassigning values to,
88-89
unassigned variables,
86-87
VGA output displays, 14

w

Watson (IBM), 29
web forms, 488
cgi module, 491-493
creating, 488-490
HTML elements, 488-489
web programming, 475
Apache web server, 475-476
CGI programming, 478-480
files and folders, 476
installing, 476-477
publishing webpages, 478
serving HTML files,
AT77-478

web forms, 488-493
cgi module, 491-493
CGI programming

creating Python programs,
479-480

debugging Python
programs, 486-488

defining, 479

running Python programs,
479

web forms, 491-493
lighttp, 475
Monkey HTTP, 475

596 web programming

Nginx web server, 475
web forms, 488
creating, 488-490
HTML elements, 488-489
webpages
dynamic webpages,
482-485
formatting data, 480-482
publishing, 478
security, 485
web resources
Debian-related resources, 30
IDE, 57

Komodo IDE development
environment shell, 57

modules, 273

NOOBS installation software,
558

PyCharm development
environment shell, 57

PyDev Open Source Plug-In for
Eclipse, 57

PyGame game library, 400
Python games, 399
Raspberry Pi Foundation, 19
Raspberry Pi wiki page, 11-12
retailers, buying from, 9-10
web servers and network
programming, 436

example of, 427-441
LXML module, 437-438

finding data via CSS,
439-440

parsing HTML via etree
method, 438-439

urllib module, 436-437
webpages
parsing data, 437-442
relocation of, 442
retrieving, 436-437

web servers and web
programming, 475
Apache web server, 475-476
CGI programming, 478-480
files and folders, 476
installing, 476-477
publishing webpages, 478
serving HTML files,
A477-478
web forms, 488-493
cgi module, 491-493
CGI programming
creating Python programs,
479-480
debugging Python
programs, 486-488
defining, 479
running Python programs,
479
web forms, 491-493
lighttp, 475
Monkey HTTP, 475
Nginx web server, 475
web forms, 488
creating, 488-490
HTML elements, 488-489
webpages
dynamic webpages, 482-485
formatting data, 480-482
publishing, 478
security, 485
web servers and network
programming
parsing webpage data,
437-442
retrieving webpages,
436-437
while loops (Python scripts), 148
break statements, 148
entering data via, 152-154

infinite loops, 151
iterating using
numeric conditions, 149
string conditions, 149-151
pretests, 149
syntax of, 148-149
terminating, 150
while True, 151-154
widgets (GUI programming), 374
Button widget, 374, 384-385

Checkbutton widget, 374,
385-387

defining, 380-382
Entry widget, 374, 387-388
Frame widget, 374
Label widget, 374, 384
Listbox widget, 374, 390-391
Menu widget, 374, 391-392
Progressbar widget, 374
Radiobutton widget, 374
Scrollbar widget, 374
Separator widget, 374
Spinbox widget, 374
Text widget, 374, 388-390
window interface
adding widgets to,
378-382
frame templates, 378-379
positioning widgets in,
379-380
Wi-Fi adapters, buying, 15
window interface (GUI

programming), tkinter GUI
package, 374

creating, 376-377
event handlers, 382-384
widgets, adding, 378-382
Windows and NOOBS installation
software

checksums, verifying, 560

MicroSD cards, formatting,
564-565

zip files, unpacking, 561-562
writing files, 240-245

numbers as strings, 242

preexisting files, 243-244

write mode removals, 241
wxPython GUI package, 375

X

Xfce GUI, 36
XML files, 225

xmirpclib module (network
programming), 427

xz files, 225

.zip files 597

Y-Z

.zip files, 225
Linux and NOOB unpackaging,
561
0OS X and NOOB unpackaging,
562
Windows and NOOB
unpackaging, 561-562

	Cover
	Table of Contents
	Introduction
	Programming with Python
	Who Should Read This Book?
	Conventions Used in This Book

	HOUR 4: Understanding Python Basics
	Producing Python Script Output
	Formatting Scripts for Readability
	Understanding Python Variables
	Assigning Value to Python Variables
	Learning About Python Data Types
	Allowing Python Script Input
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

