Brad Dayley

SamsTeach Yourself

NoSQL vith
MongoDB

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f 8 8B @ ®

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672337130
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672337130
https://plusone.google.com/share?url=http://www.informit.com/title/9780672337130
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672337130
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672337130/Free-Sample-Chapter

Brad Dayley

SamsTeach Yourself

NoSQL with
MongoDB

N
|'iOlII‘S

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself NoSQL with MongoDB in 24 Hours

Copyright © 2015 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 9780672337130

ISBN-10: 0672337134

Library of Congress Control Number: 2014942748
Printed in the United States of America

First Printing: September 2014

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Pearson cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside of the U.S., please contact international@pearsoned.com.

Acquisitions Editor
Mark Taber

Managing Editor
Kristy Hart

Project Editors
Melissa Schirmer
Elaine Wiley

Copy Editor
Krista Hansing
Editorial
Services, Inc.

Indexer
WordWise
Publishing Services

Proofreader
Kathy Ruiz

Technical Editor
Russell Kloepfer
Publishing
Coordinator
Vanessa Evans

Cover Designer
Mark Shirar

Compositor
Gloria Schurick

Contents at a Glance

Introduction

Part I: Getting Started with NoSQL and MongoDB

HOUR 1
HOUR 2
HOUR 3

Introducing NoSQL and MongoDB
Installing and Configuring MongoDB
Using JavaScript in the MongoDB Shell

Part II: Implementing NoSQL in MongoDB

HOUR 4
HOUR 5
HOUR 6

HOUR 7
HOUR 8
HOUR 9

Configuring User Accounts and Access Control
Managing Databases and Collections from the MongoDB Shell

Finding Documents in the MongoDB Collection from the
MongoDB Shell

Additional Data-Finding Operations Using the MongoDB Shell
Manipulating MongoDB Documents in a Collection
Utilizing the Power of Grouping, Aggregation, and Map Reduce

Part Ill: Using MongoDB in Applications

HOUR 10
HOUR 11
HOUR 12
HOUR 13
HOUR 14
HOUR 15
HOUR 16
HOUR 17
HOUR 18
HOUR 19
HOUR 20
HOUR 21

Implementing MongoDB in Java Applications
Accessing Data from MongoDB in Java Applications
Working with MongoDB Data in Java Applications
Implementing MongoDB in PHP Applications
Accessing Data from MongoDB in PHP Applications
Working with MongoDB Data in PHP Applications
Implementing MongoDB in Python Applications
Accessing Data from MongoDB in Python Applications
Working with MongoDB Data in Python Applications
Implementing MongoDB in Node.js Applications
Accessing Data from MongoDB in Node.js Applications
Working with MongoDB Data in Node.js Applications

Part 1V: Additional MongoDB Concepts

HOUR 22
HOUR 23
HOUR 24

Database Administration Using the MongoDB Shell
Implementing Replication and Sharding in MongoDB
Implementing a MongoDB GridFS Store

21
37

69
85

107
125
143
167

185
209
231
251
273
293
311
331
349
367
391
411

433
459
481

Table of Contents

Introduction
How This Book Is Organized
Code Examples
Special Elements
Q&A, Quiz, and Exercises

Part I: Getting Started with NoSQL and MongoDB

HOUR 1: Introducing NoSQL and MongoDB
What Is NoSQL?
Choosing RDBMS, NoSQL, or Both
Understanding MongoDB
MongoDB Data Types
Planning Your Data Model
Summary
Q&A
Workshop

HOUR 2: Installing and Configuring MongoDB
Building the MongoDB Environment
Accessing the MongoDB HTTP Interface
Accessing MongoDB from the Shell Client
Scripting the MongoDB Shell
Summary
Q&A
Workshop

HOUR 3: Using JavaScript in the MongoDB Shell
Defining Variables
Understanding JavaScript Data Types
Outputting Data in a MongoDB Shell Script

W NN =R

o N o O

10

17
18
18

21
21
26
27
31
34
35
35

37
37
38
40

Contents

Using Operators 40
Implementing Looping 44
Creating Functions 49
Understanding Variable Scope 52
Using JavaScript Objects 53
Manipulating Strings 56
Working with Arrays 60
Adding Error Handling 65
Summary 67
Q&A 67
Workshop 67

Part II: Implementing NoSQL in MongoDB

HOUR 4: Configuring User Accounts and Access Control 69
Understanding the Admin Database 69
Administrating User Accounts 70
Configuring Access Control 78
Summary 83
Q&A 83
Workshop 83

HOUR 5: Managing Databases and Collections from the MongoDB Shell 85
Understanding the Database and Collection Objects 85
Managing Databases 91
Managing Collections 96
Implementing the Example Dataset 100
Summary 104
Q&A 104
Workshop 104

HOUR 6: Finding Documents in the MongoDB Collection from the

MongoDB Shell 107
Understanding the Cursor Object 107
Understanding Query Operators 109

Getting Documents from a Collection 112

vi

Sams Teach Yourself NoSQL with MongoDB in 24 Hours

Finding Specific Sets of Documents
Summary

Q&A

Workshop

HOUR 7: Additional Data-Finding Operations Using the MongoDB Shell

Counting Documents
Sorting Results Sets

Limiting Result Sets

Finding Distinct Field Values
Summary

Q&A

Workshop

HOUR 8: Manipulating MongoDB Documents in a Collection

Understanding the Write Concern

Configuring Database Connection Error Handling

Getting the Status of Database Write Requests

Understanding Database Update Operators

Adding Documents to a Collection in the MongoDB Shell
Updating Documents in a Collection from the MongoDB Shell
Saving Documents in a Collection Using the MongoDB Shell
Upserting Documents in Collections Using the MongoDB Shell
Deleting Documents from a Collection Using the MongoDB Shell
Summary

Q&A

Workshop

HOUR 9: Utilizing the Power of Grouping, Aggregation, and Map Reduce

Grouping Results of Find Operations in the MongoDB Shell

Using Aggregation to Manipulate the Data During Requests from the
MongoDB Shell

Applying Map Reduce to Generate New Data Results Using the
MongoDB Shell

Summary
Q&A
Workshop

117
122
122
123

125
125
128
130
138
141
141
141

143
143
144
145
146
149
151
155
158
161
163
164
164

167
167

171

178
183
184
184

Contents vii

Part Ill: Using MongoDB in Applications

HOUR 10: Implementing MongoDB in Java Applications 185
Understanding MongoDB Driver Objects in Java 185
Finding Documents Using Java 194
Counting Documents in Java 201
Sorting Results Sets in Java 203
Summary 207
Q&A 207
Workshop 207

HOUR 11: Accessing Data from MongoDB in Java Applications 209
Limiting Result Sets Using Java 209
Finding a Distinct Field Value in Java 218
Grouping Results of Find Operations in Java Applications 221
Using Aggregation to Manipulate the Data During Requests from Java
Applications 225
Summary 228
Q&A 229
Workshop 229

HOUR 12: Working with MongoDB Data in Java Applications 231
Adding Documents from Java 231
Removing Documents from Java 236
Saving Documents from Java 239
Updating Documents from Java 241
Upserting Documents from Java 245
Summary 249
Q&A 249
Workshop 249

HOUR 13: Implementing MongoDB in PHP Applications 251
Understanding MongoDB Driver Objects in PHP 251
Finding Documents Using PHP 259
Counting Documents in PHP 265

Sorting Result Sets in PHP 267

viii

HOUR 14: Accessing Data from MongoDB in PHP Applications

HOUR 15: Working with MongoDB Data in PHP Applications

Sams Teach Yourself NoSQL with MongoDB in 24 Hours

Summary
Q&A
Workshop

Limiting Result Sets Using PHP
Finding Distinct Field Values in PHP

Grouping Results of Find Operations in PHP Applications
Using Aggregation to Manipulate the Data During Requests from PHP

Applications
Summary
Q&A
Workshop

Adding Documents from PHP
Removing Documents from PHP
Saving Documents from PHP
Updating Documents from PHP
Upserting Documents from PHP
Summary

Q&A

Workshop

HOUR 16: Implementing MongoDB in Python Applications

Understanding MongoDB Driver Objects in Python
Finding Documents Using Python

Counting Documents in Python

Sorting Result Sets in Python

Summary

Q&A

Workshop

270
270
270

273
273
281
283

287
290
290
290

293
293
297
299
302
305
308
309
309

311
311
318
324
326
329
329
329

Contents ix

HOUR 17: Accessing Data from MongoDB in Python Applications 331
Limiting Result Sets Using Python 331
Finding Distinct Field Value in Python 339
Grouping Results of Find Operations in
Python Applications 341
Using Aggregation to Manipulate the Data During Requests from Python
Applications 344
Summary 347
Q&A 347
Workshop 348

HOUR 18: Working with MongoDB Data in Python Applications 349
Adding Documents from Python 349
Removing Documents from Python 353
Saving Documents from Python 355
Updating Documents from Python 358
Upserting Documents from Python 361
Summary 364
Q&A 364
Workshop 365

HOUR 19: Implementing MongoDB in Node.js Applications 367
Understanding MongoDB Driver Objects in Node.js 367
Finding Documents Using Node.js 377
Counting Documents in Node.js 383
Sorting Results Sets in Node.js 385
Summary 388
Q&A 389
Workshop 389

HOUR 20: Accessing Data from MongoDB in Node.js Applications 391
Limiting Result Sets Using Node.js 391
Finding Distinct Field Value in Node.js 400
Grouping Results of Find Operations in Node.js Applications 402

Using Aggregation to Manipulate the Data During Requests
from Node.js Applications 406

Sams Teach Yourself NoSQL with MongoDB in 24 Hours

Summary 409
Q&A 409
Workshop 410
HOUR 21: Working with MongoDB Data in Node.js Applications 411
Adding Documents from Node.js 411
Removing Documents from Node.js 416
Saving Documents from Node.js 419
Updating Documents from Node.js 423
Upserting Documents from Node.js 427
Summary 431
Q&A 431
Workshop 431

Part IV: Additional MongoDB Concepts

HOUR 22: Database Administration Using the MongoDB Shell 433
Working with Databases and Collections 433
Working with Indexes 438
Understanding Performance and
Diagnostic Tasks 443
Repairing a MongoDB Database 453
Backing Up MongoDB 454
Summary 455
Q&A 456
Workshop 456

HOUR 23: Implementing Replication and Sharding in MongoDB 459
Applying Replication in MongoDB 459
Implementing Sharding in MongoDB 468
Summary 479
Q&A 479

Workshop 479

Contents

HOUR 24: Implementing a MongoDB GridFS Store

Index

Understanding the GridFS Store
Implementing a GridFS in the MongoDB Shell

Implementing a MongoDB GridFS Using
the Java MongoDB Driver

Implementing a MongoDB GridFS Using the PHP MongoDB Driver
Implementing a MongoDB GridFS Using the Python MongoDB Driver
Implementing a MongoDB GridFS Using the Node.js MongoDB Driver
Summary

Q&A

Workshop

481
481
482

484
489
494
497
502
502
502

505

xi

About the Author

Brad Dayley is a senior software engineer with more than 20 years of experience develop-
ing enterprise applications. He has designed and developed large-scale business applica-
tions, including SAS applications with NoSQL database back ends and rich Internet web
applications as front ends. He is the author of the jQuery and JavaScript Phrasebook, Sams
Teach Yourself jQuery and JavaScript in 24 Hours, and Node.js, MongoDB and Angular]S Web
Development.

Dedication

For D!

A&F

Acknowledgments

I'd like to take this page to thank all those who made this title possible. First, I thank my
wonderful wife and boys for giving me the inspiration and support I need. I'd never make
it far without you. Thanks to Mark Taber for getting this title rolling in the right direction,
Russell Kloepfer for his technical review, and Melissa Schirmer for managing everything on
the production end.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom you're willing to pass our
way.

You can email or write to let us know what you did or didn’t like about this book—as well
as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title, edition number, and author, as
well as your name and contact information.

Email: feedback@samspublishing.com

Mail: Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Introduction

With billions of people using the Internet today, traditional RDBMS database solutions have dif-
ficulty meeting the rapidly growing need to handle large amounts of data. The growing trend is
to introduce specialized databases that are not restricted to the conventions and the legacy over-
head of traditional SQL databases. These databases are given the term NoSQL, meaning “Not
Only SQL.” They are designed not to replace SQL databases, but to provide a different perspec-
tive in storing data.

This book teaches you the concepts of NoSQL through the MongoDB perspective. MongoDB is a
NoSQL database that has a reputation for being easy to implement while still robust and scal-

able. It is currently the most popular NoSQL database in use. MongoDB has matured into a sta-
ble platform that several companies have leveraged to provide the data scalability they require.

Each hour in the book provides fundamentals for implementing and using MongoDB as back-
end storage for high-performing applications. As you complete the 24 one-hour lessons in this
book, you will gain practical understanding of how to build, use, and maintain a MongoDB
database.

So pull up a chair, sit back, and enjoy the process of learning NoSQL through the perspective of
MongoDB development.

How This Book Is Organized

This book is organized into four main parts:

Part I, “Getting Started with NoSQL and MongoDB,” covers the basic concepts of NoSQL, why
you might want to use it, and available database types. It also covers MongoDB data structures
and design concepts and explores what it takes to get MongoDB installed and running.

Part II, “Implementing NoSQL in MongoDB,” discusses the fundamental basics for implement-
ing MongoDB. The hours in this part focus on creating databases and collections. They also
cover the different methods of storing, finding, and retrieving data from the MongoDB database.

Part III, “Using MongoDB in Applications,” introduces you to the MongoDB drivers for some of
the most common programming environments. A MongoDB driver is a library that provides the
necessary tools to programmatically access and use the MongoDB database. This section covers

2 Introduction

the drivers for Java, PHP, Python, and Node.js. Each programming language section is isolated,
so if you have no interest in a particular language, you can skip its corresponding hour.

Part IV, “Additional MongoDB Concepts,” rounds out your knowledge of MongoDB by teaching
you additional MongoDB concepts. In this part, you learn some of the basics of administrating
MongoDB databases and look at more advanced MongoDB concepts such as replication, shard-
ing, and GridFS storage.

Code Examples

Two types of code examples appear in this book. The most common are code snippets that
appear in-line with the text to illustrate talking points. Try It Yourself sections also provide code
examples. These examples are more robust and are designed to run as standalone mini applica-
tions. To keep the code examples small and easy to follow, they are compressed, with little or no
error checking, for example.

The Try It Yourself examples are presented in listings that include line numbers to make them
easier to follow. They also include a filename in the listing title to indicate which file the listing
came from. If the code listing in the Try It Yourself section has specific output, a follow-up listing
shows you the console output of the code so that you can follow along as you are reading the
book.

Special Elements

As you complete each lesson, margin notes help you immediately apply what you just learned to
your own web pages.

Whenever a new term is used, it is clearly highlighted—no flipping back and forth to a glossary.

TIP

Tips and tricks to save you precious time are set aside in Tip boxes so that you can spot them
quickly.

NOTE

Note boxes highlight interesting information you want to be sure not to miss.

CAUTION

When you need to watch out for something, you're warned about it in Caution boxes.

Q&A, Quiz, and Exercises

Q&A, Quiz, and Exercises

Every hour ends with a short question-and-answer session that addresses the kind of “dumb
questions” all readers wish they dared to ask. A brief but complete quiz lets you test yourself to
be sure you understand everything presented in the hour. Finally, one or two optional exercises
give you a chance to practice your new skills before you move on.

This page intentionally left blank

HOUR 1

Introducing NoSQL and
MongoDB

What You’ll Learn in This Hour:

» How MongoDB structures data

» What data types MongoDB supports

» When to normalize and denormalize data

» How to plan your data model

» How capped collections work

» When to use indexing, sharding, and replication
» How to determine data life cycles

At the core of most large-scale applications and services is a high-performance data storage
solution. The back-end data store is responsible for storing important data such as user account
information, product data, accounting information, and blogs. Good applications require the
capability to store and retrieve data with accuracy, speed, and reliability. Therefore, the data
storage mechanism you choose must be capable of performing at a level that satisfies your
application’s demand.

Several data storage solutions are available to store and retrieve the data your applications
need. The three most common are direct file system storage in files, relational databases, and
NoSQL databases. The NoSQL data store chosen for this book is MongoDB because it is the most
widely used and the most versatile.

The following sections describe NoSQL and MongoDB and discuss the design considerations to
review before deciding how to implement the structure of data and the database configuration.
The sections cover the questions to ask and then address the mechanisms built into MongoDB
that satisfy the resulting demands.

6 Introducing NoSQL and MongoDB

What Is NoSQL?

A common misconception is that the term NoSQL stands for “No SQL.” NoSQL actually stands for
“Not only SQL,” to emphasize the fact that NoSQL databases are an alternative to SQL and can,
in fact, apply SQL-like query concepts.

NoSQL covers any database that is not a traditional relational database management system
(RDBMS). The motivation behind NoSQL is mainly simplified design, horizontal scaling, and
finer control over the availability of data. NoSQL databases are more specialized for types of
data, which makes them more efficient and better performing than RDBMS servers in most
instances.

NoSQL seeks to break away from the traditional structure of relational databases, and enable
developers to implement models in ways that more closely fit the data flow needs of their system.
This means that NoSQL databases can be implemented in ways that traditional relational data-
bases could never be structured.

Several different NoSQL technologies exist, including the HBase column structure, the Redis key/
value structure, and the Virtuoso graph structure. However, this book uses MongoDB and the
document model because of the great flexibility and scalability offered in implementing back-
end storage for web applications and services. In addition, MongoDB is by far the most popular
and well-supported NoSQL language currently available. The following sections describe some of
the NoSQL database types.

Document Store Databases

Document store databases apply a document-oriented approach to storing data. The idea is
that all the data for a single entity can be stored as a document, and documents can be stored
together in collections.

A document can contain all the necessary information to describe an entity. This includes the
capability to have subdocuments, which in RDBMS are typically stored as an encoded string or
in a separate table. Documents in the collection are accessed via a unique key.

Key-Value Databases

The simplest type of NoSQL database is the key-value stores. These databases store data in a
completely schema-less way, meaning that no defined structure governs what is being stored. A
key can point to any type of data, from an object, to a string value, to a programming language
function.

The advantage of key-value stores is that they are easy to implement and add data to. That
makes them great to implement as simple storage for storing and retrieving data based on a key.
The downside is that you cannot find elements based on the stored values.

Choosing RDBMS, NoSQL, or Both 7

Column Store Databases

Column store databases store data in columns within a key space. The key space is based on a
unique name, value, and timestamp. This is similar to the key-value databases; however, col-
umn store databases are geared toward data that uses a timestamp to differentiate valid content
from stale content. This provides the advantage of applying aging to the data stored in the
database.

Graph Store Databases

Graph store databases are designed for data that can be easily represented as a graph. This
means that elements are interconnected with an undetermined number of relations between
them, as in examples such as family and social relations, airline route topology, or a standard
road map.

Choosing RDBMS, NoSQL, or Both

When investigating NoSQL databases, keep an open mind regarding which database to use and
how to apply it. This is especially true with high-performance systems.

You might need to implement a strategy based on only RDBMS or NoSQL—or you might find
that a combination of the two offers the best solution in the end.

With all high-performance databases, you will find yourself trying to balance speed, accuracy,
and reliability. The following is a list of just some considerations when choosing a database:

» What does my data look like? Your data might favor a table/row structure of RDBMS, a
document structure, or a simple key-value pair structure.

» How is the current data stored? If your data is stored in an RDBMS database, you must
evaluate what it would take to migrate all or part to NoSQL. Also consider whether it
is possible to keep the legacy data as is and move forward with new data in a NoSQL
database.

» How important is the guaranteed accuracy of database transactions? A downside of
NoSQL is that most solutions are not as strong in ACID (Atomic, Consistency, Isolation,
Durability) as in the more well-established RDBMS systems.

» How important is the speed of the database? If speed is the most critical factor for your
database, NoSQL might fit your data well and can provide a huge performance boost.

» What happens when the data is not available? Consider how critical it is for custom-
ers when data is not available. Keep in mind that customers view situations in which
your database is too slow to respond as unavailability. Many NoSQL solutions, including
MongoDB, provide a good high availability plan using replication and sharding.

8 Introducing NoSQL and MongoDB

» How is the database being used? Specifically, consider whether most operations on the
database are writes to store data or whether they are reads. You can also use this exercise
as an opportunity to define the boundaries of how to split up data, enabling you to gear
some data toward writes and other data toward reads.

» Should I split up the data to leverage the advantages of both RDBMS and NoSQL?
After you have looked at the previous questions, you might want to consider putting some
of the data, such as critical transactions, in an RDBMS while putting other data, such as
blog posts, in a NoSQL database.

Understanding MongoDB

MongoDB is an agile and scalable NoSQL database. The name Mongo comes from the word
humongous. MongoDB is based on the NoSQL document store model, in which data objects are
stored as separate documents inside a collection instead of in the traditional columns and rows
of a relational database. The documents are stored as binary JSON or BSON objects.

The motivation of the MongoDB language is to implement a data store that provides high per-
formance, high availability, and automatic scaling. MongoDB is extremely simple to install and
implement, as you will see in upcoming hours. MongoDB offers great website back-end storage
for high-traffic websites that need to store data such as user comments, blogs, or other items
because it is fast, scalable, and easy to implement.

The following are some additional reasons MongoDB has become the most popular NoSQL
database:

» Document oriented: Because MongoDB is document oriented, the data is stored in the
database in a format that is very close to what you will be dealing with in both server-side
and client-side scripts. This eliminates the need to transfer data from rows to objects and
back.

» High performance: MongoDB is one of the highest-performing databases available.
Especially in today’s world, where many people interact with websites, having a back end
that can support heavy traffic is important.

» High availability: MongoDB'’s replication model makes it easy to maintain scalability
while keeping high performance and scalability.

» High scalability: MongoDB’s structure makes it easy to scale horizontally by sharding the
data across multiple servers.

» No SQL injection: MongoDB is not susceptible to SQL injection (putting SQL statements
in web forms or other input from the browser that compromises the DB security) because
objects are stored as objects, not by using SQL strings.

Understanding MongoDB 9

Understanding Collections

MongoDB groups data through collections. A collection is simply a grouping of documents that
have the same or a similar purpose. A collection acts similarly to a table in a traditional SQL
database. However, it has a major difference: In MongoDB, a collection is not enforced by a
strict schema. Instead, documents in a collection can have a slightly different structure from one
another, as needed. This reduces the need to break items in a document into several different
tables, as is often done in SQL implementations.

Understanding Documents

A document is a representation of a single entity of data in the MongoDB database. A collection
consists of one or more related objects. A major difference exists between MongoDB and SQL, in
that documents are different from rows. Row data is flat, with one column for each value in the
row. However, in MongoDB, documents can contain embedded subdocuments, providing a much
closer inherent data model to your applications.

In fact, the records in MongoDB that represent documents are stored as BSON, a lightweight
binary form of JSON. It uses field:value pairs that correspond to JavaScript property:value
pairs that define the values stored in the document. Little translation is necessary to convert
MongoDB records back into JSON strings that you might be using in your application.

For example, a document in MongoDB might be structured similar to the following, with name,
version, languages, admin, and paths fields:

{

name: "New Project",

version: 1,

languages: ["JavaScript", "HTML", "CSS"],
admin: {name: "Brad", password: "xxx*u},

paths: {temp: "/tmp", project:"/opt/project", html: "/opt/project/html"}

Notice that the document structure contains fields/properties that are strings, integers, arrays,
and obijects, just as in a JavaScript object. Table 11.1 lists the different data types for field values
in the BSON document.

The field names cannot contain null characters, dots (.), or dollar signs ($). In addition, the
_id field name is reserved for the Object ID. The _id field is a unique ID for the system that con-
sists of the following parts:

» A 4-byte value representing the seconds since the last epoch
» A 3-byte machine identifier
» A 2-byte process ID

» A 3-byte counter, starting with a random value

10 Introducing NoSQL and MongoDB

The maximum size of a document in MongoDB is 16MB, to prevent queries that result in an
excessive amount of RAM or intensive hits to the file system. You might never come close to this,
but you still need to keep the maximum document size in mind when designing some complex
data types that contain file data into your system.

MongoDB Data Types

The BSON data format provides several different types used when storing the JavaScript objects
to binary form. These types match the JavaScript type as closely as possible. It is important to
understand these types because you can actually query MongoDB to find objects that have a
specific property with a value of a certain type. For example, you can look for documents in a
database whose timestamp value is a String object or query for ones whose timestamp is a
Date object.

MongoDB assigns each data type of an integer ID number from 1 to 255 when querying by type.
Table 1.1 lists the data types MongoDB supports, along with the number MongoDB uses to iden-
tify them.

TABLE 1.1 MongoDB Data Types and Corresponding ID Number

Type Number
Double 1
String 2
Object 3
Array 4
Binary data 5
Object ID 7
Boolean 8
Date 9
Null 10
Regular expression 11
JavaScript 13
Symbol 14
JavaScript (with scope) 15
32-bit integer 16
Timestamp 17
64-bit integer 18

Planning Your Data Model 11

Type Number
Min key 255
Max key 127

Another point to be aware of when working with the different data types in MongoDB is the
order in which they are compared when querying to find and update data. When comparing
values of different BSON types, MongoDB uses the following comparison order, from lowest to
highest:

1. Min key (internal type)

2. Null

Numbers (32-bit integer, 64-bit integer, double)
Symbol, String

Object

Array

Binary data

Object ID

© ® N o a0 » @

Boolean
10. Date, timestamp
11. Regular expression

12. Max key (internal type)

Planning Your Data Model

Before you begin implementing a MongoDB database, you need to understand the nature of the
data being stored, how that data will be stored, and how it will be accessed. Understanding these
concepts helps you make determinations ahead of time and structure the data and your applica-
tion for optimal performance.

Specifically, you should ask yourself the following questions:
» What basic objects will my application be using?

» What is the relationship between the different object types—one-to-one, one-to-many, or
many-to-many?

12 Introducing NoSQL and MongoDB

» How often will new objects be added to the database?

» How often will objects be deleted from the database?

» How often will objects be changed?

» How often will objects be accessed?

» How will objects be accessed—by ID, property values, comparisons, or other?

» How will groups of object types be accessed—common ID, common property value,
or other?

When you have the answers to these questions, you are ready to consider the structure of collec-
tions and documents inside MongoDB. The following sections discuss different methods of docu-
ment, collection, and database modeling you can use in MongoDB to optimize data storage and
access.

Normalizing Data with Document References

Data normalization is the process of organizing documents and collections to minimize redun-
dancy and dependency. This is done by identifying object properties that are subobjects and
that should be stored as a separate document in another collection from the object’s document.
Typically, this is useful for objects that have a one-to-many or many-to-many relationship with
subobjects.

The advantage of normalizing data is that the database size will be smaller because only a
single copy of objects will exist in their own collection instead of being duplicated on multiple
objects in single collection. Additionally, if you modify the information in the subobject fre-
quently, then you need to modify only a single instance instead of every record in the object’s
collection that has that subobject.

A major disadvantage of normalizing data is that, when looking up user objects that require the
normalized subobject, a separate lookup must occur to link the subobject. This can result in a
significant performance hit if you are accessing the user data frequently.

An example of when normalizing data makes sense is a system that contains users who have
a favorite store. Each User is an object with name, phone, and favoriteStore properties.
The favoriteStore property is also a subobject that contains name, street, city, and zip
properties.

However, thousands of users might have the same favorite store, so you see a high one-to-many
relationship. Therefore, storing the FavoriteStore object data in each User object doesn't
make sense because it would result in thousands of duplications. Instead, the FavoriteStore
object should include an _id object property that can be referenced from documents in the user’s

Planning Your Data Model 13

stores collection. The application can then use the reference ID favoriteStore to link data
from the Users collection to FavoriteStore documents in the FavoriteStores collection.

Figure 1.1 illustrates the structure of the Users and FavoriteStores collections just described.

B Server
rowser
- Webserver Other
Ja_vaSctlpt =»| Apache/IIS/ .
| Client Side S ofc Services
e |
= T
JSON/XML/ HTTP GET/PUT/AJAX -
DY cl - Seprer i
| \%ﬁ <[] , PHP/Java/.NET/
— \\ HTML/ css C++/etc.
User CSss/
Images
AN
N User N DB
Interactions N MySQL
Oracle

FIGURE 1.1
Defining normalized MongoDB documents by adding a reference to documents in another collection.

Denormalizing Data with Embedded Documents

Denormalizing data is the process of identifying subobjects of a main object that should be
embedded directly into the document of the main object. Typically, this is done on objects
that have mostly one-to-one relationships or that are relatively small and do not get updated
frequently.

The major advantage of denormalized documents is that you can get the full object back in a
single lookup without needing to do additional lookups to combine subobjects from other col-
lections. This is a major performance enhancement. The downside is that, for subobjects with a
one-to-many relationship, you are storing a separate copy in each document; this slows insertion
a bit and takes up additional disk space.

An example of when normalizing data makes sense is a system that contains users’ home and
work contact information. The user is an object represented by a User document with name,
home, and work properties. The home and work properties are subobjects that contain phone,
street, city, and zip properties.

The home and work properties do not change often for the user. Multiple users might reside in
the same home, but this likely will be a small number. In addition, the actual values inside the
subobijects are not that big and will not change often. Therefore, storing the home contact infor-
mation directly in the User object makes sense.

14 CHAPTER 1: Introducing NoSQL and MongoDB

The work property takes a bit more thinking. How many people are you really going to get who
have the same work contact information? If the answer is not many, the work object should be
embedded with the User object. How often are you querying the User and need the work con-
tact information? If you will do so rarely, you might want to normalize work into its own collec-
tion. However, if you will do so frequently or always, you will likely want to embed work with
the User object.

Figure 1.2 illustrates the structure of Users with the home and work contact information embed-
ded, as described previously.

Browser
AngularJS
JavaScript HTML Server
Client Side .
ﬁ ! CSS\ Node.js
JSON/XML/ !
etc ! HTTP\QET/PUT/AJAX I Express MongoDB
(: €+ \ ' Webserver
N 1
\)ﬁ/"’ HTMU/ o !
CSs/ JPG /
User Images ’ ng\éer—
__,s ide
User Scripts
Interactions t
Other
Services
Files

FIGURE 1.2
Defining denormalized MongoDB documents by implementing embedded objects inside a document.

Using Capped Collections

A great feature of MongoDB is the capability to create a capped collection. A capped collection is
a collection that has a fixed size. When a new document needs to be written to a collection that
exceeds the size of the collection, the oldest document in the collection is deleted and the new
document is inserted. Capped collections work great for objects that have a high rate of inser-
tion, retrieval, and deletion.

The following list highlights the benefits of using capped collections:

» Capped collections guarantee that the insert order is preserved. Queries do not need to
use an index to return documents in the order they were stored, eliminating the indexing

overhead.

Planning Your Data Model 15

» Capped collections guarantee that the insertion order is identical to the order on disk by
prohibiting updates that increase the document size. This eliminates the overhead of relo-
cating and managing the new location of documents.

» Capped collections automatically remove the oldest documents in the collection. Therefore,
you do not need to implement deletion in your application code.

Capped collections do impose the following restrictions:

» You cannot update documents to a larger size after they have been inserted into the
capped collection. You can update them, but the data must be the same size or smaller.

» You cannot delete documents from a capped collection. The data will take up space on
disk even if it is not being used. You can explicitly drop the capped collection, which effec-
tively deletes all entries, but you also need to re-create it to use it again.

A great use of capped collections is as a rolling log of transactions in your system. You can
always access the last X number of log entries without needing to explicitly clean up the oldest.

Understanding Atomic Write Operations

Write operations are atomic at the document level in MongoDB. Thus, only one process can be
updating a single document or a single collection at the same time. This means that writing to
documents that are denormalized is atomic. However, writing to documents that are normalized
requires separate write operations to subobjects in other collections; therefore, the write of the
normalized object might not be atomic as a whole.

You need to keep atomic writes in mind when designing your documents and collections to
ensure that the design fits the needs of the application. In other words, if you absolutely must
write all parts of an object as a whole in an atomic manner, you need to design the object in a
denormalized way.

Considering Document Growth

When you update a document, you must consider what effect the new data will have on docu-
ment growth. MongoDB provides some padding in documents to allow for typical growth during
an update operation. However, if the update causes the document to grow to a size that exceeds
the allocated space on disk, MongoDB must relocate that document to a new location on the
disk, incurring a performance hit on the system. Frequent document relocation also can lead to
disk fragmentation issues. For example, if a document contains an array and you add enough
elements to the array to exceed the space allocated, the object needs to be moved to a new loca-
tion on disk.

16 Introducing NoSQL and MongoDB

One way to mitigate document growth is to use normalized objects for properties that can grow
frequently. For example instead of using an array to store items in a Cart object, you could cre-
ate a collection for CartItems; then you could store new items that get placed in the cart as new
documents in the CartItems collection and reference the user’s cart item within them.

Identifying Indexing, Sharding, and Replication
Opportunities

MongoDB provides several mechanisms to optimize performance, scale, and reliability. As you
are contemplating your database design, consider the following options:

» Indexing: Indexes improve performance for frequent queries by building a lookup index
that can be easily sorted. The id property of a collection is automatically indexed on
because looking up items by ID is common practice. However, you also need to consider
other ways users access data and implement indexes that enhance those lookup methods
as well.

» Sharding: Sharding is the process of slicing up large collections of data among multiple
MongoDB servers in a cluster. Each MongoDB server is considered a shard. This provides
the benefit of utilizing multiple servers to support a high number of requests to a large sys-
tem. This approach provides horizontal scaling to your database. You should look at the
size of your data and the amount of request that will be accessing it to determine whether
to shard your collections and how much to do so.

» Replication: Replication is the process of duplicating data on multiple MongoDB instances
in a cluster. When considering the reliability aspect of your database, you should imple-
ment replication to ensure that a backup copy of critical data is always readily available.

Large Collections vs. Large Numbers of Collections

Another important consideration when designing your MongoDB documents and collections is
the number of collections the design will result in. Having a large number of collections doesn’t
result in a significant performance hit, but having many items in the same collection does.
Consider ways to break up your larger collections into more consumable chunks.

An example of this is storing a history of user transactions in the database for past purchases.
You recognize that, for these completed purchases, you will never need to look them up together
for multiple users. You need them available only for users to look at their own history. If you
have thousands of users who have a lot of transactions, storing those histories in a separate col-
lection for each user makes sense.

Summary 17

Deciding on Data Life Cycles

One of the most commonly overlooked aspects of database design is the data life cycle. How long
should documents exist in a specific collection? Some collections have documents that should be
kept indefinitely (for example, active user accounts). However, keep in mind that each document
in the system incurs a performance hit when querying a collection. You should define a Time To
Live (TTL) value for documents in each of your collections.

You can implement a TTL mechanism in MongoDB in several ways. One method is to imple-
ment code in your application to monitor and clean up old data. Another method is to utilize
the MongoDB TTL setting on a collection, to define a profile in which documents are automati-
cally deleted after a certain number of seconds or at a specific clock time.

Another method for keeping collections small when you need only the most recent documents is
to implement a capped collection that automatically keeps the size of the collection small.

Considering Data Usability and Performance

The final point to consider—and even reconsider—is data usability and performance. Ultimately,
these are the two most important aspects of any web solution and, consequently, the storage
behind it.

Data usability describes the capability of the database to satisfy the functionality of the website.
You need to make certain first that the data can be accessed so that the website functions cor-
rectly. Users will not tolerate a website that does not do what they want it to. This also includes
the accuracy of the data.

Then you can consider performance. Your database must deliver the data at a reasonable rate.
You can consult the previous sections when evaluating and designing the performance factors
for your database.

In some more complex circumstances, you might find it necessary to evaluate data usability,
then consider performance, and then look back to usability in a few cycles until you get the bal-
ance correct. Also keep in mind that, in today’s world, usability requirements can change at any
time. Be sure to design your documents and collections so that they can become more scalable in
the future, if necessary.

Summary

At the core of most large-scale web applications and services is a high-performance data stor-
age solution. The back-end data store is responsible for storing everything from user account
information, to shopping cart items, to blog and comment data. Good web applications require
the capability to store and retrieve data with accuracy, speed, and reliability. Therefore, the data
storage mechanism you choose must perform at a level to satisfy user demand.

18 Introducing NoSQL and MongoDB

Several data storage solutions are available to store and retrieve data your web applications
need. The three most common are direct file system storage in files, relational databases, and
NoSQL databases. The data store chosen for this book is MongoDB, which is a NoSQL database.

In this hour, you learned about the design considerations to review before deciding how to
implement the structure of data and configuration of a MongoDB database. You also learned
which design questions to ask and then how to explore the mechanisms built into MongoDB to
answer those questions.

Q&A

Q. What types of distributions are available for MongoDB?

A. General distributions for MongoDB support Windows, Linux, Mac OS X, and Solaris.
Enterprise subscriptions also are available for professional and commercial applications
that require enterprise-level capabilities, uptime, and support. If the MongoDB data is
critical to your application and you have a high amount of DB traffic, you might want to
consider the paid subscription route. For information on the subscription, go to
https://www.mongodb.com/products/mongodb-subscriptions.

Q. Does MongoDB have a schema?

A. Sort of. MongoDB implements dynamic schemas, enabling you to create collections without
having to define the structure of the documents. This means you can store documents that
do not have identical fields.

Workshop

The workshop consists of a set of questions and answers designed to solidify your understanding
of the material covered in this hour. Try answering the questions before looking at the answers.

Quiz
1. What is the difference between normalized and denormalized documents?
2. True or false: JavaScript is a supported data type in a MongoDB document.

3. What is the purpose of a capped collection?

Quiz Answers

1. Denormalized documents have subdocuments within them, whereas subdocuments of nor-
malized documents are stored in a separate collection.

2. True.

https://www.mongodb.com/products/mongodb-subscriptions

Workshop 19

3. A capped collection enables you to limit the total size or number of documents that can be
stored in a collection, keeping only the most recent.

Exercises
1. Go to the MongoDB documentation website and browse the FAQ page. This page answers
several questions on a variety of topics that can give you a good jump-start. You can find
the FAQ page at http://docs.mongodb.org/manual/faq/.

http://docs.mongodb.org/manual/faq/

This page intentionally left blank

This page intentionally left blank

SYMBOLS

== (both value and type are not

equal) operator, 42
!= (is not equal) operator, 42
! (not) operator, 42
$add operator, 175

$addToSet operator, 147, 173

$all operator, 110

$and operator, 110

$avg operator, 173

$bit operator, 147
$concat operator, 175
$divide operator, 175
$each operator, 147
$elemMatch operator, 110
$exists operator, 110
$first operator, 173
$group operator, 172, 287
$gte operator, 110

$gt operator, 110

$inc operator, 147

$in operator, 110

$last operator, 173

$limit operator, 172, 287

$lte operator, 110

$It operator, 110

$match operator, 172
$max operator, 173
$min operator, 173
$mod operator, 110, 175
$multiply operator, 175
$ne operator, 110

$nin operator, 110

$nor operator, 110

$not operator, 110

$ operator, 147

$or operator, 110

$pop operator, 147
$project operator, 172
$pullAll operator, 147
$pull operator, 147
$push operator, 147, 173
$regex operator, 110
$rename operator, 147
$setOnlinsert operator, 147
$set operator, 147

$size operator, 110
$skip operator, 172

$slice operator, 147

Index

$sort operator, 147, 172

$strcasecmp operator, 175

$substr operator, 175

$subtract operator, 175

$sum operator, 173

$toLower operator, 175

$toUpper operator, 175

$type operator, 110

$unset operator, 147

$unwind operator, 172

% (modulous) operator, 40

&& (and) operator, 42

* (multiplication) operator, 40

+ (addition) operator, 40

++ (increment) operator, 40

- (decrement) operator, 40

- (subtraction) operator, 40

/ (brackets), 45, 49

/ (division) operator, 40

() (parentheses), 50

< (is less than) operator, 42

<= (is less than or equal to)
operator, 42

=== (both value and type are
equal) operator, 42

506 == (is equal to) operator

== (is equal to) operator, 42
> (is greater than) operator, 42

>= (is greater than or equal to)
operator, 42

|| (or) operator, 42

A

accessing

access control, configuring,
78-82

documents, counting,
125-127

GridFS Stores, 484
files, 492-493

Node.js applications, 498,
500-501

Python, 494, 496-497
HTTP interfaces, 26
Java applications, 209
applying aggregation,
225-228

finding distinct field
values, 218221

grouping results, 221-225

limiting result sets,
209-218

MongoDB shell clients, 27-31

MongoGridFS objects in
PHP, 490
Node.js applications, 391
applying aggregation,
406-409

limiting result sets,
391-399

objects, 12
PHP applications, 273
applying aggregation,
287-290
grouping results, 283-287

limiting result sets,
273281

searching distinct field
values, 281-283

Python application, 331
applying aggregation,
344-347
grouping results, 341

limiting result sets,
331-338

accounts
authentication, starting, 79

database administrator,
formatting, 79

users

administrator, formatting,
78

formatting, 72
managing, 70-78
accuracy, 7, 17

ACID (Atomic, Consistency,
Isolation, Durability), 7

adding
documents
collections, 149-151, 232
Java applications, 231-235

Node.js applications,
411-416

PHP applications, 293-297

Python application,
349-353

error handling, 65-67

files, GridFS Stores, 485,
491, 494, 498

indexes, 438-440
items to arrays, 63
objects, 12
shards to clusters, 473
addition (+) operator, 40
addUser() method, 70, 87,
187, 370

add_user() method, 313
admin database

access control, configuring,
78-82

overview of, 69

user accounts, managing,
70-78

aggregate() method, 89, 172,
188, 225, 254, 314, 345, 371

aggregation
applying, 171-178
Java, 225-228
Node.js applications, 406-409
operators
expression, 173-175
framework, 174-172
PHP applications, 287-290
pipelines, 176
Python application, 344-347
analyzing queries, 449-451
and (&&) operator, 42
anonymous functions, 51
append() method, 192
applications
Java. See Java applications

Node.js. See Node.js
applications

PHP. See PHP applications
Python. See Python
applications
applying
aggregation, 171-178
Java, 225-228

Node.js applications,
406-409

PHP applications, 287-290
pipelines, 176

Python application,
344-347

anonymous functions, 51
arrays, 60-65

if statements, 43-44
indexes, 438-443
replication, 459-467

results, mapReduce() method,
178-183

arbiter servers, 460
arithmetic operators, 40-41

Array objects, PHP applications,
257

arrays, 39
applying, 60-65
combining, 62
fields
contents, 118

searching documents
based on, 118

items
adding/deleting, 63
searching, 63
iterating through, 62
manipulating, 61

strings
converting, 62
splitting, 58
values, searching documents
based on, 117

assigning

roles, 71

values to variables, 38
assignment operators, 41

Atomic, Consistency, Isolation,
Durability. See ACID

atomic write operations, 15

authenticate() method, 187, 253,
313, 370

authentication, starting, 79
auth() method, 87
auth setting, 24

background property, 440
backing up
databases, 454-455
MongoDB, 454-455

BasicDBObject object, Java
applications, 191-194

batchinsert() method, 254, 294

batchSize() method, 108, 188,
256, 373

batch_size() method, 316
binary JSON. See BSON
bind_ip setting, 24
blocks

finally, 66

try/catch, 65

Collection object 507

Booleans, 39

both value and type are equal
(===) operator, 42

both value and type are not equal
(!==) operator, 42

brackets (/), 45, 49

BSON (binary JSON), 9

C

callback functions, 368

capped collections, formatting,
14-15, 436-437

changeUserPassword()
method, 87

characters, null, 9
clients, shells

accessing MongoDB from,
27-31

scripting, 33-34
cloneCollection() method, 87
cloneDatabase() method, 87

close() method, 186, 191, 252,
312, 368

clusterAdmin role, 71
privileges, 91
clusters, sharding
adding, 473
deploying, 472
formatting, 475-479
code property, 145
collection_names() method, 313
Collection object, 89
Node.js applications, 370-371
Python application, 313

How can we make this index more useful? Email us at indexes@samspublishing.com

508 collections

collections, 9

capped, formatting, 14-15,
436-437

databases, managing,
433-437

deleting, 98-100

design, 16

documents. See also
documents

adding, 149-151, 232

configuring write concerns,
143-144

database update
operators, 146-147

deleting, 161-163, 236
error handling, 144
manipulating, 143
paging, 136

PHP applications, 294
retrieving, 112-116
saving, 155-158, 239

status of database write
requests, 145

updating, 151-155, 243
upserting, 158-160, 246
formatting, 96-98
lists, viewing, 96
managing, 96
reindexing, 441-443
renaming, 435-436
sharding, enabling, 474
statistics, viewing, 443-444

users, counting documents,
126

collections() method, 370

column store databases, 7

combining
arrays, 62
strings, 58
command-line parameters, 22-23
commands
<database>, 87
getlLastError, 144-145
mongofiles, 482-483
parameters, 30-31
shells, 28, 32-33
top, 451-453

use <new_database_name>,
92

comparison operators, 42
compound indexes, 439
cond parameter, 168
config servers, 470, 472
configuring
access control, 78-82
databases, 22
error handling, 144
MongoDB, 23-26

PHP application write
concerns, 257

servers, 461

sharding tag ranges, 475

write concerns, 143-144
connect() method, 186, 252, 368

Connection objects, overview
of, 86

connectionld property, 145
connections
databases, configuring error
handling, 144
write concerns, configuring,
143-144

consoles, starting shells, 28
constructors, shells, 29
contents, searching, 118
converting
arrays into strings, 62
records, 9
copy() method, 191
copyDatabase() method, 87
copying databases, 434-435
copyTo() method, 89

count() method, 89, 108, 126,
188, 202, 254, 256, 265, 314,
316, 324, 371, 373, 383

counting documents, 125-127
Java applications, 201-203
Node.js applications, 383-385
PHP applications, 265-267
Python application, 324-326

countWords() method, 202

create_collection() method, 313

createCollection() method, 87, 97,
187, 253, 370

createlndex() method, 89

current() method, 256

Cursor objects, 107-108
documents, counting, 126
Node.js applications, 373

Python applications, 315,
324, 327, 332

results
limiting, 130-138
sorting, 128-130

customizing objects, defining,
54-55

data life cycles, 17
data types
JavaScript, 38-39
MongoDB, 10-11
<database> command, 87
Database object, 86-87
Node.js applications, 369-370
Python applications, 313
database_names() method, 312
databases

access control, implementing,
80

admin, overview of, 69

administrator accounts,
formatting, 79

backing up, 454-455
Collection object, 89

collections, managing,
433-437

column store, 7
configuring, 22

Connection objects, overview
of, 86

connections, configuring error
handling, 144

copying, 434-435
deleting, 93-94
document store, 6
formatting, 92-93
graph store, 7
indexes, 438-443
key-value, 6

lists, viewing, 91

diagnostics, managing databases 509

managing, 91
optimizing, 443-453
repairing, 453-454

modifying, 92

profiling, 446-448

queries, evaluating, 449-451

results
grouping, 167-171
limiting, 130-138
sorting, 128-130

roles, assigning, 71

selecting, 7-8

sharding, enabling, 474

shells, managing, 433

statistics, viewing, 94-96,
443-444

testing, 31

top command, 451-453
update operators, 146-147
users, listing, 74
validating, 444-446

write concerns, configuring,
143-144

dataset examples, implementing,
100-103

dataSize() method, 89
DB object
Java applications, 187
PHP applications, 253
db() method, 368
dbAdminAnyDatabase role, 71
dbAdmin role, 71
DBCollection object
Java applications, 188
PHP applications, 279

DBCursor object, Java
applications, 189-191, 202,
204, 210, 213

DBObject objects, 191-194
declaring variables, 38
decrement (-) operator, 40
default_id indexes, 439
defining
documents, 13
functions, 49
objects, customizing, 54-55
variables, 37-38
deleting
collections, 98-100
databases, 93-94
documents
collections, 236
Java applications, 236-238

Node.js applications,
416-419

PHP applications, 297-299

Python application,
353-355

files, GridFS Stores, 486,
491, 495, 499

indexes, 441

items from arrays, 63

objects, 12

users, 77
denormalizing data, 13-14
deploying

replica sets, 462-463

sharding clusters, 472
design, 6, 16

diagnostics, managing databases,
443-453

How can we make this index more useful? Email us at indexes@samspublishing.com

510 Dictionary objects, PHP applications

Dictionary objects, PHP
applications, 317
displayGroup() method, 284
displayWords() method, 131
distinct field values
Node.js applications, 400-402
PHP applications, 281-283
Python applications, 339-341
searching, 138-140, 218-221

distinct() method, 138, 188, 254,
314, 316, 339, 371

distinctField() method, 89
division (/) operator, 40
document store databases, 6
documents

collections, 9. See also
collections

adding, 149-151, 232

configuring write concerns,
143-144

database update
operators, 146-147

deleting, 161-163, 236
error handling, 144
retrieving, 112-116
saving, 155-158, 239

status of database write
requests, 145

updating, 151-155, 243
upserting, 158-160, 246
counting, 125-127
Cursor objects, 107-108
distinct field values,
retrieving, 139
embedding, denormalizing
data, 13-14

Java applications
adding, 231-235
counting, 201-203
deleting, 236-238
saving, 239-241
searching, 194-201
sorting results, 203-206
updating, 241-245
upserting, 245-249

manipulating, 143

Node.js applications, 411
adding, 411-416
counting, 383-385
deleting, 416-419
grouping results, 402-406
objects used as, 374
paging, 397
retrieving, 377-383
saving, 419-423

searching distinct field
values, 400-402

sorting results, 385-388

updating, 423-427

upserting, 427-431
overview of, 9-10

parameters, PHP Arrays
objects as, 257

PHP applications, 293
adding, 293-297
counting, 265-267
deleting, 297-299
reviewing, 260-262
saving, 299-302
searching, 259-265
sorting results, 267-270

updating, 302-305
upserting, 305-308
Python application, 349
adding, 349-353
counting, 324-326
deleting, 353-355
saving, 355-357
searching, 318-324
sorting results, 326-328
updating, 358-361
upserting, 361-364

references, normalizing data,
12-13
results
limiting, 130-138
sorting, 128-130
shells, searching in, 112-116
sizing, 10
specific, retrieving (using
PHP), 262-265

specific sets of, searching,
117-122

updating, 15
values, searching, 118
do/while loops, 45
drivers
Java applications, 185-194
Node.js applications, 367-377
PHP applications, 251-259

drop() method, 89, 188, 254,
314, 371

drop_collection() method, 313
drop_database() method, 312
drop_index() method, 314

dropCollection() method, 370

dropDatabase() method, 87, 93,
186-187

dropDups property, 440
dropindex() method, 89, 188, 254

embedding documents,
denormalizing data, 13-14

enabling sharding
collections, 474
databases, 474
engines, starting/stopping, 22
ensurelndex() method, 89, 188,
254, 314

err property, 145
errors
handling
adding, 65-67
document collections, 144
throwing, 66
escape codes, string objects, 56
—eval command-line option, 31-32
eval() method, 87
evaluating
queries, 449-451
shells, expressions, 31-32

example datasets, implementing,
100-103

executing
shell scripting, 32
variables, 38

exit command, 28

expression operators, aggregation,
173-175

expressions, evaluating shells,
31-32

F

fault tolerance, 462
fields
addUser() method, 70
arrays
contents, 118

searching documents
based on, 118

limiting, 132, 212
naming, 9

Node.js applications, 394
parameters, 213

PHP applications, limiting,
276

Python applications, limiting,
334

values

searching, 117, 138-140,
218221

fields:value operator, 110
files
configuration settings, 24
GridFS Stores

adding, 485, 491, 494,
498

deleting, 486, 491, 495,
499

listing, 485
manipulating, 492-493

retrieving, 486, 491, 495,
499

JavaScript, specifying, 32-33
finalize option, 179
finalize parameter, 168

finally blocks, 66

fromdb parameter 511

find operations
PHP applications, 283-287

find() method, 89, 107, 112, 126,
188, 254, 259, 314, 371, 377

fields, limiting, 132
find_and_modify() method, 314
find_one() method, 314

findAndModify() method, 89, 188,
254, 371

finding. See searching

findOne() method, 89, 188, 194,
254, 259, 371

findone() method, 112

results, grouping, 167-171,
221-225

for loops, 45-46

for/in loops, 46-47
forEach() method, 108
formatting. See also design

capped collections, 14-15,
436-437

collections, 96-98
config servers, instances, 472

database administrator
accounts, 79

databases, 92-93
example datasets, 101
functions, 49-52
replica sets, 463-467
sharding clusters, 475-479
users
accounts, 72
administrator accounts, 78

frameworks, aggregation
operators, 174-172

fromdb parameter, 434

How can we make this index more useful? Email us at indexes@samspublishing.com

512 fromhost parameter

fromhost parameter, 434
functions
anonymous, applying, 51
callback, 368
defining, 49
formatting, 49-52
greeting(), 50
print(), 32
values, returning, 50

variables, passing, 50

G

generating new data results,
178-183

geospatial indexes, 439
getCollection() method, 87, 187
getCollectionNames() method, 96
getConnections() method, 252

getDatabaseNames() method,
186

getDB() method, 86, 186
getindexes() method, 89
getLastError command, 144-145
getLastError() method, 187
getMongo() method, 87
getName() method, 87

getNext() method, 256
getReadPrefMode() method, 86
getReadPrefTagSet() method, 86
getSiblingDB() method, 87
getStats() method, 188

graph store databases, 7

greeting() function, 50

GridFS Stores
files
adding, 485, 491, 494,
498
deleting, 486, 491, 495,
499

manipulating, 492-493

retrieving, 486, 491, 495,
499

implementing, 481

Java, 484-489

Node.js applications
accessing, 498, 500-501
implementing, 497-501

overview of, 481-482

PHP, 489-493

Python
accessing, 496-497
implementing, 494-497

shells, implementing,
482-484

group() method, 89, 168, 188,
254, 314, 371
grouping
objects, 169, 284
results, 167-171, 221-225

Node.js applications,
402-406

PHP applications, 283-287
Python applications, 341

growth, documents, 15. See also
updating

handling errors, 65-67

hashed indexes, 439

hasNext() method, 108, 191, 256
Hello World, 49

help <option> command, 28
help() method, 87

high availability, replication, 460
hint() method, 108

horizontal scaling, 6

hostinfo() method, 87

HTTP interfaces, accessing, 26

if statements, applying, 43-44
implementing, 6
access control, 80
example datasets, 100-103
GridFS Stores, 481
Java, 484-489

Node.js applications,
497-501

PHP, 489-493
Python, 494-497
shells, 482-484

in Java applications, 185.
See also Java applications

looping, 44-49
replication, 459
sharding, 459, 468-479

strategies, 7

switch statements, 44
upsert, 158
increment (++) operator, 40
indexes, 16
adding, 438-440

collections, reindexing,
441-443

deleting, 441
indexOf() method, 58
initial parameter, 168

insert() method, 89, 158, 188,
231, 254, 314, 371

inserting, 149. See also adding
installing MongoDB, 22

instances, formatting config
servers, 472

interfaces
HTTP, 26
REST, 26
interrupting loops, 47
is equal to (==) operator, 42
is greater than (>) operator, 42

is greater than or equal to (>=)
operator, 42

is less than (<) operator, 42

is less than or equal to (<=)
operator, 42

is not equal (=) operator, 42
isAuthenticated() method, 187
isCapped() method, 89
items, arrays
adding/deleting, 63
searching, 63
iterating through arrays, 62
iterator() method, 191

J

Java applications, 185

BasicDBObject object,
191-194

data access, 209
applying aggregation,
225-228

finding distinct field
values, 218-221

grouping results, 221-225

limiting result sets,
209-218

DB object, 187
DBCollection object, 188

DBCursor object, 202, 204,
210

DBObject objects, 191-194

documents
adding, 231-235
counting, 201-203
deleting, 236-238
saving, 239-241
searching, 194-201
sorting results, 203-206
updating, 241-245
upserting, 245-249

driver objects, 185-194

GridFS Stores, implementing,
484-489

MongoClient object, 186

results, paging, 215
JavaScript

arrays, applying, 60-65

data types, 38-39

error handling, adding, 65-67

life cycles, data 513

files, specifying, 32-33
functions, formatting, 49-52
looping, implementing, 44-49
objects, 53-56
operators, 40-44. See also
operators

shells, 30, 40
strings, manipulating, 56-60
variables

defining, 37-38

scope, 52-53

journal setting, 24

jsMode option, 179

K

key-value databases, 6

keyf parameter, 168

keys
parameters, 168, 434
sharding, selecting, 470-471
values

grouping objects, 169,
284
keywords
function, 49
return, 50
var, 38

L

lastOp property, 145
life cycles, data, 17

How can we make this index more useful? Email us at indexes@samspublishing.com

514 limiting

limiting
fields, 132, 212
Node.js applications, 394
PHP applications, 276
Python applications, 334

result sets, 130-138,
209-218

results

Node.js applications,
391-399

PHP applications, 273-281

Python application,
331-338

limit option, 179
limit() method, 108, 130, 136,

191, 210, 216, 256, 274, 316,
332, 373

limitResults() method, 210
listCollections() method, 253
listDBs() method, 252
listing files, GridFS Stores
Java, 485
Node.js applications, 498
PHP, 490-491
Python, 494
lists
collections, viewing, 96
databases, viewing, 91
users, 74
literals, objects, 39
load() method, 32
log [name] : command, 28
logappend setting, 24
logout() method, 87
logpath setting, 24

lookups, denormalized
documents, 13

looping
do/while loops, 45
for loops, 45-46
for/in loops, 46-47
implementing, 44-49
interrupting, 47
variables, 38

while loops, 45

main() method, 202
managing
access control, configuring,
7882
collections, 96
configuration settings, 23
databases, 91
collections, 433-437
indexes, 438-443
optimizing, 443-453
repairing, 453-454
shells, 433

user accounts, 70-78

manipulating. See also modifying

arrays, 61

documents, 143

GridFS Stores
files, 492-493

Node.js applications,
500-501

Python, 496-497

requests, applying
aggregation, 171-178
results, 181
strings, 56-60
map() method, 108, 131
mapReduce() method, 89, 188
results, applying, 178-183
max() method, 108
maxConns setting, 24
methods
add_user(), 313
addUser(), 70, 87, 187, 370
aggregate(), 89, 172, 188,
225, 254, 314, 345, 371
append(), 192
auth(), 87

authenticate(), 187, 253,
313, 370

batch_size(), 316
batchinsert(), 254, 294

batchSize(), 108, 188, 256,
373

changeUserPassword(), 87
cloneCollection(), 87
cloneDatabase(), 87

close(), 186, 191, 252, 312,
368

Collection objects, 89
collection_names(), 313
collections(), 370
connect(), 186, 252, 368
Connection objects, 86
copy(), 191
copyDatabase(), 87
copyTo(), 89

count(), 89, 108, 126, 188,
202, 254, 256, 265, 314,
316, 324, 371, 373, 383

countWords(), 202
create_collection(), 313

createCollection(), 87, 97,
187, 253, 370

createlndex(), 89
current(), 256

Cursor object, 108
Database objects, 87
database_names(), 312
dataSize(), 89

DB objects, 187

db(), 368

DBCollection objects, 188
DBCurosor objects, 191
displayGroup(), 284
displayWords(), 131

distinct(), 138, 188, 254,
314, 316, 339, 371

distinctField(), 89

drop(), 89, 188, 254, 314
371

drop_collection(), 313
drop_database(), 312
drop_index(), 314

dropCollection(), 370

dropDatabase(), 87, 93,
186-187

droplindex(), 89, 188, 254

ensurelndex(), 89, 188, 254,
314

eval(), 87

find(), 89, 107, 112, 126,
188, 254, 259, 314, 371,
377

find_and_modify(), 314
find_one(), 314

findAndModify(), 89, 188,
254, 371

findOne(), 89, 188, 194, 254,

259, 371
findone(), 112
forEach(), 108
getCollection(), 87, 187
getCollectionNames(), 96
getConnections(), 252
getDatabaseNames(), 186
getDB(), 86, 186
getindexes(), 89
getlLastError(), 187
getMongo(), 87
getName(), 87
getNext(), 256
getReadPrefMode(), 86
getReadPrefTagSet(), 86
getSiblingDB(), 87
getStats(), 188

group(), 89, 168, 188, 254,
314, 371

hasNext(), 108, 191, 256
help(), 87

hint(), 108

hostinfo(), 87

indexOf(), 58

insert(), 89, 158, 188, 231,
254, 314, 371

isAuthenticated(), 187

isCapped(), 89

iterator(), 191

limit(), 108, 130, 136, 191,
210, 216, 256, 274, 316,
332, 373

methods 515

limitResults(), 210
listCollections(), 253
listDBs(), 252
load(), 32

logout(), 87

main(), 202

map(), 108, 131

mapReduce(), 89, 178-183,
188

max(), 108

min(), 108

MongoClient object, 186, 252
native, shells, 29

new Mongo (), 86

next(), 108, 115, 256
objsLeftinBatch(), 108
open(), 368

partitions, selecting, 471-472
print(), 40

printjson(), 40

push(), 60

read_preference(), 312-314
readPref(), 108

relndex(), 89

remove(), 89, 161, 188, 236,
254, 297, 314, 371

remove_user(), 313
removeUser(), 87, 187, 370
rename(), 314, 371
renameCollection(), 89
repairDatabase(), 87
resetDoc(), 242
runCommand(), 87, 144

save(), 89, 155, 188, 239,
254, 299, 314, 371

How can we make this index more useful? Email us at indexes@samspublishing.com

516 methods

selectCollection(), 252-253
selectDB(), 252
serverStatus(), 87

setReadPreference(),
186-188, 252-254, 313

setReadPrefMode(), 86
setSlaveOk(), 86
setWriteConcern(), 186-188
showWord(), 300
shutdownServer(), 87
size(), 108, 191

skip(), 108, 136, 191, 216,
256, 316, 373

snapshot(), 108

sort(), 108, 128, 191, 204,
256, 267, 316, 326, 373,
386

split(), 58
stats(), 89, 95
storageSize(), 89

String object, manipulating,
56

toArray(), 108, 191, 373
totallndexSize(), 89
totalSize(), 89

update(), 89, 188, 242, 254,

302, 305, 314, 371
validate(), 92
version(), 87
write_concern(), 312-314
min() method, 108
models, planning, 11-17

modifying
databases, 92
objects, 12
modulous (%) operator, 40
MongoClient object
Java applications, 186
Node.js applications, 368
PHP applications, 252
Python applications, 312

MongoCollection object, PHP
applications, 253-254

MongoCursor object, PHP
applications, 256, 274-276

MongoDB. See also databases
backing up, 454-455
configuring, 23-26
data types, 10-11

HTTP interfaces,
accessing, 26

installing, 22

Java applications. See Java
applications

overview of, 810
shells
accessing clients, 27-31
scripting, 31-34
starting, 22
stopping, 25

MongoDB object, PHP
applications, 253

mongofiles command, 482-483

MongoGridFS objects in PHP,
accessing, 490

multikey indexes, 439

multiple documents, searching,
115. See also documents

multiplication (*) operator, 40

n property, 145
name property, 440
naming
fields, 9
variables, 38
native methods, shells, 29
new Mongo () method, 86
next() method, 108, 115, 256
noauth setting, 24
Node.js applications, 367
Collection object, 370-371
Cursor objects, 373
data access, 391

applying aggregation,
406-409

grouping results, 402-406

limiting result sets,
391-399

Database object, 369-370
documents, 411
adding, 411-416
counting, 383-385
deleting, 416-419
paging, 397
retrieving, 377-383
saving, 419-423

searching distinct field
values, 400-402

sorting results, 385-388

updating, 423-427

upserting, 427-431
driver objects, 367-377
GridFS Stores

accessing, 498, 500-501

implementing, 497-501
MongoClient object, 368

objects used as documents/
parameters, 374

specific documents, 380

nohttpinterface setting, 24
normalizing data, 12-13
NoSQL

overview of, 6

selecting, 7-8

not (!) operator, 42
null characters, 9
null variables, 39

number

of replica sets, 462

of servers, 462

numbers, 38

objects, 9. See also documents

arrays, manipulating, 61
BasicDBObject, 191-194
Collection, 89

Connection, overview of, 86

Cursor, 107-108
counting documents, 126
limiting results, 130-138
sorting results, 128-130

Database, 86-87

DB, 187

DBCollection, 188

DBCursor, 189-191, 202,
204, 210

DBObject, 191-194
defining, customizing, 54-55
drivers

Java applications, 185-194

Node.js applications,
367-377

PHP applications, 251-259
fields, limiting, 132, 212
grouping, 169
JavaScript, 53-56
key values, grouping, 284
literals, 39
MongoClient, 186

Node.js applications, used
as documents/parameters,
374

patterns, prototyping, 55
planning, 11
strings, escape codes, 56
syntax, 53-54
objsLeftinBatch() method, 108
ok property, 145
open() method, 368
operations, atomic write, 15

operator parameter, 287

operators

operators

$, 148

$add, 175
$addToSet, 148, 173
$all, 110

$and, 110
$avg, 173

$bit, 148
$concat, 175
$divide, 175
$each, 148
$elemMatch, 110
$exists, 110
$first, 173
$group, 172, 287
$gt, 110

$gte, 110

$in, 110

$inc, 147

$last, 173
$limit, 172, 287
$It, 110

$lte, 110
$match, 172
$max, 173
$min, 173
$mod, 110, 175
$multiply, 175
$ne, 110

$nin, 110

$nor, 110

$not, 110

$or, 110

$pop, 148
$project, 172
$pull, 148

How can we make this index more useful? Email us at indexes@samspublishing.com

517

518 operators

$pullAll, 148
$push, 148, 173
$regex, 110
$rename, 147
$set, 148
$setOninsert, 147
$size, 110
$skip, 172
$slice, 148
$sort, 148, 172
$strcasecmp, 175
$substr, 175
$subtract, 175
$sum, 173
$toLower, 175
$toUpper, 175
$type, 110
$unset, 148
$unwind, 172
addition (+), 40
aggregation
expression, 173-175
framework, 174-172
and (&&), 42
arithmetic, 40-41
assignment, 41
both value and type are equal
(===), 42
both value and type are not
equal (I==), 42
comparison, 42
decrement (=), 40
division (/), 40
fields:value, 110
increment (++), 40

is equal to (==), 42

is greater than (>), 42

is greater than or equal to
(>=), 42

is less than (<), 42

is less than or equal to (<=),
42

is not equal (I=), 42

JavaScript, 40-44

modulous (%), 40

multiplication (*), 40

not (1), 42

or (|)), 42

query, 109-110

subtraction (-), 40

update, 146-147
optimizing databases, 443-453

options, —eval command-line,
31-32

orders, sorting, 128-130

or (| |) operator, 42

out option, 179

outputting data in shells, 40

P

paging
documents, Node.js
applications, 397

requests, 128

results, 136
Java applications, 215
PHP applications, 278
Python applications, 336

parameters
command-line, 22, 23
commands, 30-31

documents, PHP Arrays
objects as, 257

fields, 213
group() method, 168

Node.js applications, objects
used as, 374

operator, 287

projection, 133

query, 109, 139, 161
parentheses (()), 50

partitions, selecting methods,
471-472

passing variables to functions, 50
patterns, prototyping objects, 55
performance, 17

databases, managing,
443-453

models, planning, 11-17
replication, 460. See also
replication
PHP applications, 251
Array objects, 257
data access, 273
applying aggregation,
287-290
grouping results, 283-287

limiting result sets,
273281

searching distinct field
values, 281-283

DB object, 253
DBCollection object, 279
Dictionary objects, 317

documents, 293

adding, 293-297
counting, 265-267
deleting, 297-299
reviewing, 260-262
saving, 299-302
searching, 259-265
sorting results, 267-270
updating, 302-305
upserting, 305-308
driver objects, 251-259
fields, limiting, 276

GridFS Stores, implementing,
489-493

MongoClient object, 252

MongoCollection object,
253-254

MongoCursor object, 256,
274-276

MongoDB object, 253
results, paging, 278

write concerns, configuring,
257

pipelines, applying aggregation,
176

planning models, 11-17

port setting, 24

primary servers, 460

print() function, 32

print() method, 40

printjson() method, 40

privileges, clusterAdmin role, 91

profiling databases, 446-448

projection parameter, 133

prototyping object patterns, 55

push() method, 60

Python applications, 311
Collection object, 313
Cursor objects, 315, 332
data access, 331

applying aggregation,
344-347
grouping results, 341

limiting result sets,
331-338

Database object, 313
distinct field values, 339-341
documents, 349
adding, 349-353
counting, 324-326
deleting, 353-355
saving, 355-357
searching, 318-324
sorting results, 326-328
updating, 358-361
upserting, 361-364
fields, limiting, 334
GridFS Stores
accessing, 496-497
implementing, 494-497
MongoClient object, 312
results, paging, 336

Q

queries
evaluating, 449-451
routers, 469
starting, 473

query operators, 109-110

repairDatabase() method 519

query options, 179
query parameters, 139, 161

RAM (random access memory),
10

random access memory. See RAM

RDBMSs (relational database
management systems), 6-8

read role, 71

read_preference() method,
312-314

readAnyDatabase role, 71
readPref() method, 108
readWrite role, 71
readWriteAnyDatabase role, 71
records, converting, 9

reduce parameter, 168

references, normalizing data,
12-13

relndex() method, 89
reindexing collections, 441-443

relational database management
systems. See RDBMSs

reliability, 7

remove() method, 89, 161, 188,
236, 254, 297, 314, 371

remove_user() method, 313

removeUser() method, 87, 187,
370

removing. See deleting
rename() method, 314, 371
renameCollection() method, 89
renaming collections, 435-436

repairDatabase() method, 87

How can we make this index more useful? Email us at indexes@samspublishing.com

520 repairing databases

repairing databases, 453-454
replacing words in strings, 58
replica sets. See also replication
deploying, 462-463
formatting, 463-467
types of, 460
replication, 16, 459
applying, 459-467
strategies, applying, 461
requests
manipulating, applying
aggregation, 171-178
Node.js applications, 374
paging, 128
PHP applications, applying
aggregation, 287-290
status of database write,
retrieving, 145
resetDoc() method, 242
REST interfaces, 26
rest setting, 24
results, 30-31
grouping, 167-171, 221-225
Java applications
paging, 215
sorting, 203-206
limiting
Java applications, 209-218
PHP applications, 273-281
manipulating, 181
mapReduce() method,
applying, 178-183
Node.js applications
grouping, 402-406
limiting, 391-399
sorting, 385-388

paging, 136

PHP applications
grouping, 283-287
paging, 278
sorting, 267-270

Python application
limiting, 331-338
sorting, 326-328

Python applications
grouping, 341
paging, 336

sets, limiting, 130-138

sorting, 128-130

retrieving

distinct field values, 139,
219, 282, 400

documents
from collections, 112-116

Node.js applications,
377-383

Python applications, 319
using Java, 195

files, GridFS Stores, 483,
486, 491, 495, 499

specific documents (using
PHP), 262-265

status of database write
requests, 145

return keyword, 50

returning
fields, limiting, 212
objects, 132
values from functions, 50

reviewing documents, PHP
applications, 260-262

roles

assigning, 71

clusterAdmin privileges, 91
routers

queries, 469

starting, 473
runCommand() method, 87, 144

S

save() method, 89, 155, 188,
239, 254, 299, 314, 371

saving
databases, 454-455
documents
collections, 155-158, 239
Java applications, 239-241

Node.js applications,
419-423

PHP applications, 299-302

Python application,
355-357

scalability, 6
scope
options, 179
variables, 52-53
scripting shells, 31-34
clients, 33-34
executing, 32
searching
array items, 63
contents, 118

distinct field values, 138-140,
218221

Node.js applications,
400-402

PHP applications, 281-283
documents

in shells, 112-116

Java applications, 194-201

Node.js applications,
377-383

PHP applications, 259-265

Python application,
318-324

multiple documents, 115
results, grouping, 167-171

specific documents, Node.js
applications, 380

specific sets of documents,
117-122

substrings in strings, 58
secondary servers, 460

selectCollection() method,
252-253

selectDB() method, 252
selecting
NoSQL, 7-8
partitioning methods, 471-472
RDBMS, 7-8
sharding keys, 470-471
servers

replication, 460. See also
replication

sharding, types of, 469
serverStatus() method, 87

setReadPreference() method,

186-188, 252,-254, 313

setReadPrefMode() method, 86

sets, results. See also results

Java applications, 203-206

limiting, 130-138

limiting access in Java
applications, 209-218

PHP applications, 273-281

setSlaveOk() method, 86
setup. See configuring

setWriteConcern() method,

186-188

shard servers, 469

sharding, 16, 459

clusters

adding, 473

deploying, 472

formatting, 475-479
collections, enabling, 474
databases, enabling, 474
implementing, 468-479
keys, selecting, 470-471
servers, types of, 469

tag ranges, configuring, 475

shells

aggregation, applying,
171-178

clients

accessing MongoDB from,
27-31

scripting, 33-34
commands, 28, 32-33
constructors, 29
databases, managing, 433
documents

adding to collections,
149-151

slaveOk parameter 521

counting, 125-127
deleting, 161-163

limiting result sets,
130-138

saving, 155-158
searching in, 112-116
sorting results, 128-130
updating, 151-155
upserting, 158-160

expressions, evaluating,
31-32

GridFS Stores, implementing,
482-484

JavaScript, 30, 40
native methods, 29
objects, grouping, 222
results

grouping, 167-171

mapReduce() method,
178-183

scripting, 31-34
starting, 28

user accounts, formatting, 72

show <option> command, 28
showWord() method, 300
shutdownServer() method, 87
single field indexes, 439
size() method, 108, 191

sizing

collection design, 16

documents, 10

Node.js application results,
limiting, 392-394

results, limiting by, 210

skip() method, 108, 136, 191,
216, 256, 316, 373

slaveOk parameter, 434

How can we make this index more useful? Email us at indexes@samspublishing.com

522 snapshot() method

snapshot() method, 108

sorting results, 128-130
Java applications, 203-206
Node.js applications, 385-388
PHP applications, 267-270
Python application, 326-328

sort option, 179

sort() method, 108, 128, 191,
204, 256, 267, 316, 326, 373,
386

sparse property, 440

specific documents
Node.js applications, 380
PHP, 262-265
Python applications, 321

specific sets of documents,
searching, 117-122

specifying JavaScript files, 32-33
speed, 7
split() method, 58
splitting strings into arrays, 58
starting
authentication, 79
MongoDB, 22
query routers, 473
shells, 28
statements
if, applying, 43-44
return, 50
switch, implementing, 44
statistics, viewing, 94-96,
443-444
stats() method, 89, 95

status of database write requests,
retrieving, 145

stopping MongoDB, 25

storage, GridFS Stores, 483
storageSize() method, 89
strategies, 7
strategies, applying replication,
461
strings
arrays
converting, 62
splitting, 58
combining, 58
manipulating, 56-60
objects, escape codes, 56
substrings, searching, 58
words, replacing, 58

subdocuments, 9, 118. See also
documents

subobjects, 13. See also objects
substrings, searching strings, 58
subtraction (-) operator, 40

switch statements,
implementing, 44

syntax, objects, 53-54

T

tag ranges, configuring
sharding, 475

testing databases, 31

text indexes, 439

throwing errors, 66

Time To Live. See TTL

toArray() method, 108, 191, 373

todb parameter, 434

top command, 451-453

totalindexSize() method, 89
totalSize() method, 89
troubleshooting
databases
managing, 443-453
repairing, 453-454
top command, 451-453
try/catch blocks, 65
TTL (Time To Live), 17
TTL property, 440
types
data
JavaScript, 38-39
MongoDB, 10-11
of indexes, 438-440
of loops, 44-49
of replica sets, 460

of sharding servers, 469

U

unique property, 440

update operators, databases,
146-147

update() method, 89, 188, 242,
254, 302, 305, 314, 371

updateExisting property, 145
updating documents, 15
collections, 151-155, 243
Java applications, 241-245
Node.js applications, 423-427
PHP applications, 302-305
Python applications, 358-361
upserted property, 145

upserting documents
collections, 158-160, 246
Java applications, 245-249
Node.js applications, 427-431
PHP applications, 305-308
Python application, 361-364

usability, 10

use <database> command, 28

use <new_database_name>
command, 92

user accounts
authentication, starting, 79
formatting, 72
managing, 70-78
user administrator accounts,
formatting, 78
userAdminAnyDatabase role, 71
userAdmin role, 71
username parameter, 434
users
deleting, 77
documents, counting, 126
lists, 74

'/

validate() method, 92
validating databases, 444-446
values

arrays, searching documents
based on, 117

documents, searching, 118

fields
searching based on, 117

searching distinct,
138-140, 218-221

functions, returning, 50
key, grouping objects, 169
null variables, 39

subdocuments, searching,
118

var keyword, 38
variables
defining, 37-38
functions, passing, 50
scope, 52-53
verbose option, 179
verbose setting, 24
version() method, 87
viewing
collections, 96
databases
lists, 91
stats, 94-96
statistics, 443-444

w

waited property, 145

while loops, 45

wnote property, 145

words, replacing strings, 58

write concerns
configuring, 143-144
Node.js applications, 374
PHP applications, 257
Python applications, 317

wtimeout property 523

write requests, retrieving status of
database, 145

write_concern() method, 312-314
wtime property, 145
wtimeout property, 145

How can we make this index more useful? Email us at indexes@samspublishing.com

	Table of Contents
	Introduction
	How This Book Is Organized
	Code Examples
	Special Elements
	Q&A, Quiz, and Exercises

	HOUR 1: Introducing NoSQL and MongoDB
	What Is NoSQL?
	Choosing RDBMS, NoSQL, or Both
	Understanding MongoDB
	MongoDB Data Types
	Planning Your Data Model
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

