
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134655536
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134655536
https://plusone.google.com/share?url=http://www.informit.com/title/9780134655536
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134655536
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134655536/Free-Sample-Chapter

The Colosseum in Rome was the largest amphitheater
of the Roman Empire, and is now considered one of the
greatest works of Roman architecture and engineering.

Known originally as the Flavian Amphitheater, the
Colosseum was built and expanded by the three Flavian
emperors, Vespasian (69-79 AD), Titus (79-81), and
Domitian (81–96). The structure was given its current
name from an enormous statue of the Emperor Nero
that at one time stood next to the amphitheater.

It is estimated that the Colosseum could hold between
50,000 and 80,000 spectators for gladiatorial contests,
animal hunts, executions, reenactments of land
and sea battles, and dramas based on Roman and
Greek mythology.

After the fall of Rome, the Colosseum began to fall
into a state of disrepair. An earthquake caused the
south side of the amphitheater to collapse, and
for hundreds of years, looters and even the Church
removed marble, stone, and bronze for use in other
buildings.

It was the Church, however, that saved the Colosseum
from complete destruction. To memorialize the early
Christians believed to have died as martyrs in the
Colosseum, the structure was consecrated by the Pope
in 1749, putting a stop to the removal of the
amphitheater’s marble and ultimately leading to
renovations in the 1800s.

Node.js, MongoDB
and Angular Web

Development

Second Edition

Node.js, MongoDB
and Angular Web

Development

Second Edition

Brad Dayley
Brendan Dayley
Caleb Dayley

Editor

Mark Taber

Senior Project
Editor

Tonya Simpson

Copy Editor

Geneil Breeze

Indexer

Erika Millen

Compositor

codeMantra

Proofreader

Abigail Manheim

Technical Editor

Jesse Smith

Cover Designer

Chuti Prasertsith

Node.js, MongoDB and Angular Web Development, Second Edition

Copyright © 2018 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-465553-6

ISBN-10: 0-13-465553-2

Library of Congress Control Number: 2017954802

Printed in the United States of America

1 17

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular
to your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a Glance

Introduction 1

I: Getting Started

 1 Introducing the Node.js-to-Angular Stack 7

 2 JavaScript Primer 15

II: Learning Node.js

 3 Getting Started with Node.js 39

 4 Using Events, Listeners, Timers, and Callbacks in Node.js 55

 5 Handling Data I/O in Node.js 73

 6 Accessing the File System from Node.js 95

 7 Implementing HTTP Services in Node.js 115

 8 Implementing Socket Services in Node.js 139

 9 Scaling Applications Using Multiple Processors in Node.js 159

 10 Using Additional Node.js Modules 181

III: Learning MongoDB

 11 Understanding NoSQL and MongoDB 191

 12 Getting Started with MongoDB 201

 13 Getting Started with MongoDB and Node.js 221

 14 Manipulating MongoDB Documents from Node.js 241

 15 Accessing MongoDB from Node.js 261

 16 Using Mongoose for Structured Schema and Validation 291

 17 Advanced MongoDB Concepts 327

IV: Using Express to Make Life Easier

 18 Implementing Express in Node.js 343

 19 Implementing Express Middleware 367

V: Learning Angular

 20 Jumping into TypeScript 383

 21 Getting Started with Angular 391

 22 Angular Components 403

 23 Expressions 415

 24 Data Binding 429

 25 Built-in Directives 441

VI: Advanced Angular

 26 Custom Directives 449

 27 Events and Change Detection 457

 28 Implementing Angular Services in Web Applications 469

 29 Creating Your Own Custom Angular Services 503

 30 Having Fun with Angular 525

 Index 549

vi Contents at a Glance

Contents

 Introduction 1

I: Getting Started

 1 Introducing the Node.js-to-Angular Stack 7

Understanding the Basic Web Development Framework 7

User 8

Browser 8

Webserver 10

Backend Services 10

Understanding the Node.js-to-Angular Stack Components 11

Node.js 11

MongoDB 12

Express 13

Angular 13

Summary 14

Next 14

 2 JavaScript Primer 15

Defining Variables 15

Understanding JavaScript Data Types 16

Using Operators 17

Arithmetic Operators 17

Assignment Operators 18

Applying Comparison and Conditional Operators 18

Implementing Looping 21

while Loops 21

do/while Loops 22

for Loops 22

for/in Loops 23

Interrupting Loops 23

Creating Functions 24

Defining Functions 24

Passing Variables to Functions 24

Returning Values from Functions 25

Using Anonymous Functions 25

Understanding Variable Scope 26

Using JavaScript Objects 27

Using Object Syntax 27

Creating Custom-Defined Objects 28

Using a Prototyping Object Pattern 29

Manipulating Strings 29

Combining Strings 31

Searching a String for a Substring 31

Replacing a Word in a String 31

Splitting a String into an Array 32

Working with Arrays 32

Combining Arrays 33

Iterating Through Arrays 34

Converting an Array into a String 34

Checking Whether an Array Contains an Item 34

Adding and Removing Items to Arrays 34

Adding Error Handling 35

try/catch Blocks 35

Throw Your Own Errors 36

Using finally 36

Summary 37

Next 37

II: Learning Node.js

 3 Getting Started with Node.js 39

Understanding Node.js 39

Who Uses Node.js? 40

What Is Node.js Used For? 40

What Does Node.js Come With? 40

Installing Node.js 42

Looking at the Node.js Install Location 42

Verify Node.js Executables 42

Selecting a Node.js IDE 43

Working with Node Packages 43

What Are Node Packaged Modules? 43

Understanding the Node Package Registry 43

viii Contents

Contents ix

Using the Node Package Manager 44

Searching for Node Package Modules 45

Installing Node Packaged Modules 46

Using package.json 47

Creating a Node.js Application 48

Creating a Node.js Packaged Module 49

Publishing a Node.js Packaged Module to the NPM Registry 50

Using a Node.js Packaged Module in a Node.js Application 52

Writing Data to the Console 53

Summary 54

Next 54

 4 Using Events, Listeners, Timers, and Callbacks in Node.js 55

Understanding the Node.js Event Model 55

Comparing Event Callbacks and Threaded Models 55

Blocking I/O in Node.js 57

The Conversation Example 57

Adding Work to the Event Queue 59

Implementing Timers 60

Using nextTick to Schedule Work 63

Implementing Event Emitters and Listeners 64

Implementing Callbacks 67

Passing Additional Parameters to Callbacks 67

Implementing Closure in Callbacks 68

Chaining Callbacks 70

Summary 71

Next 71

 5 Handling Data I/O in Node.js 73

Working with JSON 73

Converting JSON to JavaScript Objects 74

Converting JavaScript Objects to JSON 74

Using the Buffer Module to Buffer Data 74

Understanding Buffered Data 75

Creating Buffers 75

Writing to Buffers 76

Reading from Buffers 77

Determining Buffer Length 78

Copying Buffers 79

Slicing Buffers 80

Concatenating Buffers 81

Using the Stream Module to Stream Data 81

Readable Streams 82

Writable Streams 84

Duplex Streams 86

Transform Streams 88

Piping Readable Streams to Writable Streams 89

Compressing and Decompressing Data with Zlib 91

Compressing and Decompressing Buffers 91

Compressing/Decompressing Streams 92

Summary 93

Next 93

 6 Accessing the File System from Node.js 95

Synchronous Versus Asynchronous File System Calls 95

Opening and Closing Files 96

Writing Files 97

Simple File Write 98

Synchronous File Writing 98

Asynchronous File Writing 99

Streaming File Writing 101

Reading Files 102

Simple File Read 102

Synchronous File Reading 103

Asynchronous File Reading 104

Streaming File Reading 105

Other File System Tasks 106

Verifying Path Existence 106

Getting File Info 107

Listing Files 108

Deleting Files 110

Truncating Files 110

Making and Removing Directories 111

Renaming Files and Directories 112

Watching for File Changes 112

Summary 113

Next 113

x Contents

 7 Implementing HTTP Services in Node.js 115

Processing URLs 115

Understanding the URL Object 116

Resolving the URL Components 117

Processing Query Strings and Form Parameters 117

Understanding Request, Response, and Server Objects 118

The http.ClientRequest Object 118

The http.ServerResponse Object 121

The http.IncomingMessage Object 122

The http.Server Object 123

Implementing HTTP Clients and Servers in Node.js 125

Serving Static Files 125

Implementing Dynamic GET Servers 127

Implementing POST Servers 130

Interacting with External Sources 132

Implementing HTTPS Servers and Clients 134

Creating an HTTPS Client 135

Creating an HTTPS Server 137

Summary 137

Next 137

 8 Implementing Socket Services in Node.js 139

Understanding Network Sockets 139

Understanding TPC Server and Socket Objects 140

The net.Socket Object 140

The net.Server Object 144

Implementing TCP Socket Servers and Clients 147

Implementing a TCP Socket Client 147

Implementing a TCP Socket Server 150

Implementing TLS Servers and Clients 152

Creating a TLS Socket Client 153

Creating a TLS Socket Server 154

Summary 157

Next 157

 9 Scaling Applications Using Multiple Processors in Node.js 159

Understanding the Process Module 159

Understanding Process I/O Pipes 159

Understanding Process Signals 160

Contents xi

Controlling Process Execution with the process Module 161

Getting Information from the process Module 161

Implementing Child Processes 164

Understanding the ChildProcess Object 164

Executing a System Command on Another Process Using
exec() 166

Executing an Executable File on Another Process Using
execFile() 168

Spawning a Process in Another Node.js Instance Using spawn() 169

Implementing Child Forks 171

Implementing Process Clusters 174

Using the Cluster Module 174

Understanding the Worker Object 175

Implementing an HTTP Cluster 176

Summary 179

Next 179

 10 Using Additional Node.js Modules 181

Using the os Module 181

Using the util Module 183

Formatting Strings 183

Checking Object Types 184

Converting JavaScript Objects to Strings 184

Inheriting Functionality from Other Objects 185

Using the dns Module 186

Using the crypto Module 188

Other Node Modules and Objects 190

Summary 190

Next 190

III: Learning MongoDB

 11 Understanding NoSQL and MongoDB 191

Why NoSQL? 191

Understanding MongoDB 192

Understanding Collections 192

Understanding Documents 192

MongoDB Data Types 193

xii Contents

Planning Your Data Model 194

Normalizing Data with Document References 195

Denormalizing Data with Embedded Documents 196

Using Capped Collections 197

Understanding Atomic Write Operations 198

Considering Document Growth 198

Identifying Indexing, Sharding, and Replication Opportunities 198

Large Collections Versus Large Numbers of Collections 199

Deciding on Data Life Cycles 199

Considering Data Usability and Performance 200

Summary 200

Next 200

 12 Getting Started with MongoDB 201

Building the MongoDB Environment 201

Installing MongoDB 201

Starting MongoDB 202

Stopping MongoDB 203

Accessing MongoDB from the Shell Client 203

Administering User Accounts 206

Listing Users 206

Creating User Accounts 207

Removing Users 209

Configuring Access Control 209

Creating a User Administrator Account 209

Turning on Authentication 210

Creating a Database Administrator Account 211

Administering Databases 211

Displaying a List of Databases 211

Changing the Current Database 212

Creating Databases 212

Deleting Databases 212

Copying Databases 213

Managing Collections 214

Displaying a List of Collections in a Database 214

Creating Collections 214

Deleting Collections 215

Finding Documents in a Collection 216

Contents xiii

Adding Documents to a Collection 217

Deleting Documents in a Collection 217

Updating Documents in a Collection 218

Summary 219

Next 219

 13 Getting Started with MongoDB and Node.js 221

Adding the MongoDB Driver to Node.js 221

Connecting to MongoDB from Node.js 222

Understanding the Write Concern 222

Connecting to MongoDB from Node.js Using the
MongoClient Object 223

Understanding the Objects Used in the MongoDB Node.js Driver 226

Understanding the Db Object 227

Understanding the Admin Object 229

Understanding the Collection Object 229

Understanding the Cursor Object 232

Accessing and Manipulating Databases 233

Listing Databases 233

Creating a Database 234

Deleting a Database 234

Creating, Listing, and Deleting Databases Example 234

Getting the Status of the MongoDB Server 236

Accessing and Manipulating Collections 237

Listing Collections 237

Creating Collections 237

Deleting Collections 238

Collection Creation, Listing, and Deleting Example 238

Getting Collection Information 239

Summary 240

Next 240

 14 Manipulating MongoDB Documents from Node.js 241

Understanding Database Change Options 241

Understanding Database Update Operators 242

Adding Documents to a Collection 244

Getting Documents from a Collection 246

Updating Documents in a Collection 248

xiv Contents

Atomically Modifying Documents in a Collection 250

Saving Documents in a Collection 252

Upserting Documents in Collection 253

Deleting Documents from a Collection 255

Removing a Single Document from a Collection 257

Summary 259

Next 259

 15 Accessing MongoDB from Node.js 261

Introducing the Data Set 261

Understanding Query Objects 262

Understanding Query Options Objects 264

Finding Specific Sets of Documents 265

Counting Documents 268

Limiting Result Sets 270

Limiting Results by Size 270

Limiting Fields Returned in Objects 271

Paging Results 273

Sorting Result Sets 275

Finding Distinct Field Values 276

Grouping Results 277

Applying MapReduce by Aggregating Results 282

Understanding the aggregate() Method 283

Using Aggregation Framework Operators 283

Implementing Aggregation Expression Operators 285

Aggregation Examples 287

Summary 289

Next 289

 16 Using Mongoose for Structured Schema and Validation 291

Understanding Mongoose 291

Additional Objects 292

Connecting to a MongoDB Database Using Mongoose 292

Defining a Schema 294

Understanding Paths 294

Creating a Schema Definition 294

Adding Indexes to a Schema 295

Implementing Unique Fields 296

Contents xv

Forcing Required Fields 296

Adding Methods to the Schema Model 296

Implementing the Schema on the Words Database 297

Compiling a Model 298

Understanding the Query Object 298

Setting the Query Database Operation 299

Setting the Query Database Operation Options 301

Setting the Query Operators 302

Understanding the Document Object 304

Finding Documents Using Mongoose 305

Adding Documents Using Mongoose 307

Updating Documents Using Mongoose 309

Saving Document Changes 310

Updating a Single Document 311

Updating Multiple Documents 313

Removing Documents Using Mongoose 314

Removing a Single Document 314

Removing Multiple Documents 315

Aggregating Documents Using Mongoose 317

Using the Validation Framework 320

Implementing Middleware Functions 322

Summary 325

Next 325

 17 Advanced MongoDB Concepts 327

Adding Indexes 327

Using Capped Collections 330

Applying Replication 330

Replication Strategy 332

Deploying a Replica Set 333

Implementing Sharding 334

Sharding Server Types 335

Choosing a Shard Key 336

Selecting a Partitioning Method 337

Deploying a Sharded MongoDB Cluster 338

Repairing a MongoDB Database 341

xvi Contents

Backing Up MongoDB 341

Summary 342

Next 342

IV: Using Express to Make Life Easier

 18 Implementing Express in Node.js 343

Getting Started with Express 343

Configuring Express Settings 343

Starting the Express Server 345

Configuring Routes 345

Implementing Routes 346

Applying Parameters in Routes 347

Using Requests Objects 350

Using Response Objects 352

Setting Headers 352

Setting the Status 353

Sending Response 353

Sending JSON Responses 355

Sending Files 356

Sending a Download Response 359

Redirecting the Response 359

Implementing a Template Engine 360

Defining the Engine 360

Adding Locals 361

Creating Templates 361

Rendering Templates in a Response 363

Summary 365

Next 365

 19 Implementing Express Middleware 367

Understanding Middleware 367

Assigning Middleware Globally to a Path 368

Assigning Middleware to a Single Route 368

Adding Multiple Middleware Functions 369

Using the query Middleware 369

Serving Static Files 369

Handling POST Body Data 371

Contents xvii

Sending and Receiving Cookies 373

Implementing Sessions 374

Applying Basic HTTP Authentication 375

Implementing Session Authentication 377

Creating Custom Middleware 380

Summary 381

Next 382

V: Learning Angular

 20 Jumping into TypeScript 383

Learning the Different Types 383

Understanding Interfaces 385

Implementing Classes 386

Class Inheritance 387

Implementing Modules 387

Understanding Functions 388

Summary 389

Next 389

 21 Getting Started with Angular 391

Why Angular? 391

Understanding Angular 391

Modules 392

Directives 392

Data Binding 392

Dependency Injection 392

Services 393

Separation of Responsibilities 393

Adding Angular to Your Environment 393

Using the Angular CLI 394

Generating Content with the CLI 394

Creating a Basic Angular Application 395

Creating Your First Angular App 396

Understanding and Using NgModule 397

Creating the Angular Bootstrapper 398

Summary 402

Next 402

xviii Contents

xixContents

 22 Angular Components 403

Component Configuration 403

Defining a Selector 404

Building a Template 404

Using Inline CSS and HTML in Angular Applications 405

Using Constructors 407

Using External Templates 408

Injecting Directives 410

Building a Nested Component with Dependency Injection 410

Passing in Data with Dependency Injection 412

Creating an Angular Application that Uses Inputs 413

Summary 414

Next 414

 23 Expressions 415

Using Expressions 415

Using Basic Expressions 416

Interacting with the Component Class in Expressions 418

Using TypeScript in Angular Expressions 419

Using Pipes 422

Using Built-in Pipes 424

Building a Custom Pipe 426

Creating a Custom Pipe 427

Summary 428

Next 428

 24 Data Binding 429

Understanding Data Binding 429

Interpolation 430

Property Binding 431

Attribute Binding 433

Class Binding 433

Style Binding 435

Event Binding 436

Two-Way Binding 439

Summary 440

Next 440

 25 Built-in Directives 441

Understanding Directives 441

Using Built-in Directives 441

Components Directives 442

Structural Directives 442

Attribute Directives 445

Summary 448

Next 448

VI: Advanced Angular

 26 Custom Directives 449

Creating a Custom Attribute Directive 449

Creating a Custom Directive with a Component 452

Summary 456

Next 456

 27 Events and Change Detection 457

Using Browser Events 457

Emitting Custom Events 458

Emitting a Custom Event to the Parent Component Hierarchy 458

Handling Custom Events with a Listener 458

Implementing Custom Events in Nested Components 458

Deleting Data in a Parent Component from a Child Component 461

Using Observables 464

Creating an Observable Object 464

Watching for Data Changes with Observables 465

Summary 468

Next 468

 28 Implementing Angular Services in Web Applications 469

Understanding Angular Services 469

Using the Built-in Services 469

Sending HTTP GET and PUT Requests with the http Service 470

Configuring the HTTP Request 471

Implementing the HTTP Response Callback Functions 471

Implementing a Simple JSON File and Using the http Service
to Access It 472

xx Contents

xxiContents

Implementing a Simple Mock Server Using the http Service 475

Implementing a Simple Mock Server and Using the http Service to
Update Items on the Server 481

Changing Views with the router Service 486

Using routes in Angular 488

Implementing a Simple Router 488

Implementing a Router with a Navigation Bar 492

Implementing a Router with Parameters 497

Summary 501

Next 501

 29 Creating Your Own Custom Angular Services 503

Integrating Custom Services into Angular Applications 503

Adding an Angular Service to an Application 504

Implementing a Simple Application that Uses a Constant Data
Service 505

Implementing a Data Transform Service 506

Implementing a Variable Data Service 510

Implementing a Service that Returns a Promise 515

Implementing a Shared Service 516

Summary 523

Next 523

 30 Having Fun with Angular 525

Implementing an Angular Application that Uses the Animation Service 525

Implementing an Angular Application that Zooms in on Images 530

Implementing an Angular Application that Enables Drag and Drop 533

Implementing a Star Rating Angular Component 539

Summary 547

 Index 549

About the Authors

Brad Dayley is a senior software engineer with more than 20 years of experience developing
enterprise applications and web interfaces. He has used JavaScript and jQuery for years and
is the author of Learning Angular, jQuery and JavaScript Phrasebook and Sams Teach Yourself
AngularJS, JavaScript, and jQuery All in One. He has designed and implemented a wide array of
applications and services, from application servers to complex web applications.

Brendan Dayley is a web application developer who loves learning and implementing the
latest and greatest technologies. He is the co-author of Learning Angular and Sams Teach Yourself
AngularJS, JavaScript, and jQuery All in One. He has written a number of web applications using
JavaScript, TypeScript, and Angular, and he is exploring the capabilities of new web and mobile
technologies such as augmented reality and how to use them for innovative solutions.

Caleb Dayley is a university student studying computer science. He tries to learn all that
he can and has taught himself much of what he knows about programming. He has taught
himself several languages, including JavaScript, C#, and, using the first edition of this book,
NodeJS, MongoDB and Angular. He is excited for what the future holds, and the opportunities
to help design and create the next generation of innovative software that will continue to
improve the way we live, work, and play.

Acknowledgments

I’d like to take this page to thank all those who made this title possible. First, I thank my
wonderful wife for the inspiration, love, and support she gives me. I’d never make it far
without you. I also want to thank my boys for the help they are when I am writing. Thanks to
Mark Taber for getting this title rolling in the right direction.

—Brad Dayley

I’d like to thank all those who helped make this book possible for me. First and foremost,
my wife, who pushes me to become greater and gives me all her love. Also my father,
who mentored me not just in writing and programming but in life. My mother, who has always
been there for me when I need her. And finally, Mark Taber, who gave me the chance to be
a part of this.

—Caleb Dayley

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding Web Edition,
which provides several special online-only features:

 ■ The complete text of the book

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any modern
web browser that supports HTML5.

To get access to the Web Edition of Node.js, MongoDB and Angular Web Development all you need
to do is register this book:

1. Go to www.informit.com/register.

2. Sign in or create a new account.

3. Enter the ISBN: 9780134655536.

4. Answer the questions as proof of purchase.

5. The Web Edition will appear under the Digital Purchases tab on your Account page. Click
the Launch link to access the product.

http://www.informit.com/register

This page intentionally left blank

Introduction

Welcome to Node.js, MongoDB and Angular Web Development. This book is designed to
 catapult you into the world of using JavaScript—from the server and services to the browser
client—in your web development projects. The book covers the implementation and
 integration of Node.js, MongoDB, and Angular—some of the most exciting and innovative
technologies emerging in the world of web development.

This introduction covers

 ■ Who should read this book

 ■ Why you should read this book

 ■ What you will be able to achieve using this book

 ■ What Node.js, MongoDB, and Angular are and why they are great technologies

 ■ How this book is organized

 ■ Where to find the code examples

Let’s get started.

Who Should Read This Book

This book is aimed at readers who already have an understanding of the basics of HTML and
have done some programming in a modern programming language. Having an understanding
of JavaScript will make this book easier to digest but is not required because the book does
cover the basics of JavaScript.

Why You Should Read This Book

This book will teach you how to create powerful, interactive websites and web applications—
from the webserver and services on the server to the browser-based interactive web
 applications. The technologies covered here are all open source, and you will be able to use
JavaScript for both the server-side and browser-side components.

Typical readers of this book want to master Node.js and MongoDB for the purpose of building
highly scalable and high-performing websites. Typical readers also want to leverage the MVC/
MVVM (Model-View-Controller/Model-View-View-Model) approach of Angular to implement

2 Introduction

well-designed and structured webpages and web applications. Overall, Node.js, MongoDB, and
Angular provide an easy-to-implement, fully integrated web development stack that allows you
to implement amazing web applications.

What You Will Learn from This Book

Reading this book will enable you to build real-world, dynamic websites and web applications.
Websites no longer consist of simple static content in HTML pages with integrated images
and formatted text. Instead, websites have become much more dynamic, with a single
page often serving as an entire site or application.

Using Angular technology allows you to build into your webpage logic that can communicate
back to the Node.js server and obtain necessary data from the MongoDB database. The
 combination of Node.js, MongoDB, and Angular allows you to implement interactive, dynamic
webpages. The following are just a few of the things that you will learn while reading this book:

 ■ How to implement a highly scalable and dynamic webserver, using Node.js and Express

 ■ How to build server-side web services in JavaScript

 ■ How to implement a MongoDB data store for you web applications

 ■ How to access and interact with MongoDB from Node.js JavaScript code

 ■ How to define static and dynamic web routes and implement server-side scripts to
support them

 ■ How to define your own custom Angular components that extend the HTML language

 ■ How to implement client-side services that can interact with the Node.js webserver

 ■ How to build dynamic browser views that provide rich user interaction

 ■ How to add nested components to your webpages

 ■ How to implement Angular routing to manage navigation between client
application views

What Is Node.js?

Node.js, sometimes referred to as just Node, is a development framework that is based on
Google’s V8 JavaScript engine. You write Node.js code in JavaScript, and then V8 compiles it
into machine code to be executed. You can write most—or maybe even all—of your server-side
code in Node.js, including the webserver and the server-side scripts and any supporting web
application functionality. The fact that the webserver and the supporting web application
scripts are running together in the same server-side application allows for much tighter
 integration between the webserver and the scripts.

3What Is MongoDB?

The following are just a few reasons Node.js is a great framework:

 ■ JavaScript end-to-end: One of the biggest advantages of Node.js is that it allows you to
write both server- and client-side scripts in JavaScript. There have always been difficulties
in deciding whether to put logic in client-side scripts or server-side scripts. With Node.js
you can take JavaScript written on the client and easily adapt it for the server, and vice
versa. An added plus is that client developers and server developers are speaking the same
language.

 ■ Event-driven scalability: Node.js applies a unique logic to handling web requests. Rather
than having multiple threads waiting to process web requests, with Node.js they are
processed on the same thread, using a basic event model. This allows Node.js webservers
to scale in ways that traditional webservers can’t.

 ■ Extensibility: Node.js has a great following and an active development community.
People are providing new modules to extend Node.js functionality all the time. Also, it is
simple to install and include new modules in Node.js; you can extend a Node.js project
to include new functionality in minutes.

 ■ Fast implementation: Setting up Node.js and developing in it are super easy. In only a
few minutes you can install Node.js and have a working webserver.

What Is MongoDB?

MongoDB is an agile and scalable NoSQL database. The name Mongo comes from
the word “humongous,” emphasizing the scalability and performance MongoDB provides.
MongoDB provides great website backend storage for high-traffic websites that need to store
data such as user comments, blogs, or other items because it is quickly scalable and easy to
implement.

The following are some of the reasons that MongoDB really fits well in the Node.js stack:

 ■ Document orientation: Because MongoDB is document-oriented, data is stored in the
database in a format that is very close to what you deal with in both server-side and
client-side scripts. This eliminates the need to transfer data from rows to objects and back.

 ■ High performance: MongoDB is one of the highest-performing databases available.
Especially today, with more and more people interacting with websites, it is important to
have a backend that can support heavy traffic.

 ■ High availability: MongoDB’s replication model makes it easy to maintain scalability
while keeping high performance.

 ■ High scalability: MongoDB’s structure makes it easy to scale horizontally by sharing the
data across multiple servers.

 ■ No SQL injection: MongoDB is not susceptible to SQL injection (that is, putting
SQL statements in web forms or other input from the browser and thereby compromising
database security). This is the case because objects are stored as objects, not using
SQL strings.

4 Introduction

What Is Angular?

Angular is a client-side JavaScript framework developed by Google. The theory behind Angular
is to provide a framework that makes it easy to implement well-designed and structured
webpages and applications, using an MVC/MVVM framework.

Angular provides functionality to handle user input in the browser, manipulate data on the
client side, and control how elements are displayed in the browser view. Here are some of the
benefits Angular provides:

 ■ Data binding: Angular has a clean method for binding data to HTML elements, using
its powerful scope mechanism.

 ■ Extensibility: The Angular architecture allows you to easily extend almost every aspect
of the language to provide your own custom implementations.

 ■ Clean: Angular forces you to write clean, logical code.

 ■ Reusable code: The combination of extensibility and clean code makes it easy to write
reusable code in Angular. In fact, the language often forces you to do so when creating
custom services.

 ■ Support: Google is investing a lot into this project, which gives it an advantage over
similar initiatives that have failed.

 ■ Compatibility: Angular is based on JavaScript and has a close relationship with
the JavaScript standard. This makes it easier to begin integrating Angular into your
environment and reuse pieces of your existing code within the structure of the Angular
framework.

How This Book Is Organized

This book is divided into six main parts:

 ■ Part I, “Getting Started,” provides an overview of the interaction between Node.js,
MongoDB, and Angular and how these three products form a complete web development
stack. Chapter 2 is a JavaScript primer that provides the basics of the JavaScript language
that you need when implementing Node.js and Angular code.

 ■ Part II, “Learning Node.js,” covers the Node.js language platform, from installation
to implementation of Node.js modules. This part gives you the basic framework
you need to implement your own custom Node.js modules as well as the webserver
and server-side scripts.

 ■ Part III, “Learning MongoDB,” covers the MongoDB database, from installation to
integration with Node.js applications. This part discusses how to plan your data model
to fit your application needs and how to access and interact with MongoDB from your
Node.js applications.

5A Final Word

 ■ Part IV, “Using Express to Make Life Easier,” discusses the Express module for
Node.js and how to leverage it as the webserver for your application. You learn how to
set up dynamic and static routes to data as well as how to implement security, caching,
and other webserver basics.

 ■ Part V, “Learning Angular,” covers the Angular framework architecture and how to
integrate it into your Node.js stack. This part covers creating custom HTML components
and client-side services that can be leveraged in the browser.

 ■ Part VI, “Advanced Angular,” covers more advanced Angular development, such as
building custom directives and custom services. You also learn about using Angular’s
built-in HTTP and routing services. This section finishes with some additional rich UI
examples, such as building drag-and-drop components and implementing animations.

Getting the Code Examples

Throughout this book, you will find code examples in listings. The title for each listing includes
a filename for the source code. The source code is available for download at the book’s website.

A Final Word

We hope you enjoy learning about Node.js, MongoDB, and Angular as much as we have. They
are great, innovative technologies that are fun to use. Soon, you’ll be able to join the many
other web developers who use the Node.js-to-Angular web stack to build interactive websites
and web applications. Enjoy the book!

This page intentionally left blank

3
Getting Started with Node.js

This chapter introduces you to the Node.js environment. Node.js is a website/application
framework designed with high scalability in mind. It was designed to take advantage of the
existing JavaScript technology in the browser and flow those same concepts all the way down
through the webserver into the backend services. Node.js is a great technology that is easy to
implement and yet extremely scalable.

Node.js is a modular platform, meaning that much of the functionality is provided by external
modules rather than being built in to the platform. The Node.js culture is active in creating and
publishing modules for almost every imaginable need. Therefore, much of this chapter focuses
on understanding and using the Node.js tools to build, publish, and use your own Node.js
modules in applications.

Understanding Node.js

Node.js was developed in 2009 by Ryan Dahl as an answer to the frustration caused by
 concurrency issues, especially when dealing with web services. Google had just come out with
the V8 JavaScript engine for the Chrome web browser, which was highly optimized for web
traffic. Dahl created Node.js on top of V8 as a server-side environment that matched the
 client-side environment in the browser.

The result is an extremely scalable server-side environment that allows developers to more
easily bridge the gap between client and server. The fact that Node.js is written in JavaScript
allows developers to easily navigate back and forth between client and server code and even
reuse code between the two environments.

Node.js has a great ecosystem with new extensions being written all the time. The Node.js
 environment is clean and easy to install, configure, and deploy. Literally in only an hour or
two you can have a Node.js webserver up and running.

Chapter 3 Getting Started with Node.js40

Who Uses Node.js?

Node.js quickly gained popularity among a wide variety of companies. These companies
use Node.js first and foremost for scalability but also for ease of maintenance and faster
 development. The following are just a few of the companies using the Node.js technology:

 ■ Yahoo!

 ■ LinkedIn

 ■ eBay

 ■ New York Times

 ■ Dow Jones

 ■ Microsoft

What Is Node.js Used For?

Node.js can be used for a wide variety of purposes. Because it is based on V8 and has highly
optimized code to handle HTTP traffic, the most common use is as a webserver. However,
Node.js can also be used for a variety of other web services such as:

 ■ Web services APIs such as REST

 ■ Real-time multiplayer games

 ■ Backend web services such as cross-domain, server-side requests

 ■ Web-based applications

 ■ Multiclient communication such as IM

What Does Node.js Come With?

Node.js comes with many built-in modules available right out of the box. This book covers
many but not all of these modules:

 ■ Assertion testing: Allows you to test functionality within your code.

 ■ Buffer: Enables interaction with TCP streams and file system operations. (See Chapter 5,
“Handling Data I/O in Node.js.”)

 ■ C/C++ add-ons: Allows for C or C++ code to be used just like any other Node.js module.

 ■ Child processes: Allows you to create child processes. (See Chapter 9, “Scaling
Applications Using Multiple Processors in Node.js.”)

 ■ Cluster: Enables the use of multicore systems. (See Chapter 9.)

 ■ Command line options: Gives you Node.js commands to use from a terminal.

 ■ Console: Gives the user a debugging console.

Understanding Node.js 41

 ■ Crypto: Allows for the creation of custom encryption. (See Chapter 10, “Using Additional
Node.js Modules.”)

 ■ Debugger: Allows debugging of a Node.js file.

 ■ DNS: Allows connections to DNS servers. (See Chapter 10.)

 ■ Errors: Allows for the handling of errors.

 ■ Events: Enables the handling of asynchronous events. (See Chapter 4, “Using Events,
Listeners, Timers, and Callbacks in Node.js.”)

 ■ File system: Allows for file I/O with both synchronous and asynchronous methods.
(See Chapter 6, “Accessing the File System from Node.js.”)

 ■ Globals: Makes frequently used modules available without having to include them first.
(See Chapter 10.)

 ■ HTTP: Enables support for many HTTP features. (See Chapter 7, “Implementing HTTP
Services in Node.js.”)

 ■ HTTPS: Enables HTTP over the TLS/SSL. (See Chapter 7.)

 ■ Modules: Provides the module loading system for Node.js. (See Chapter 3.)

 ■ Net: Allows the creation of servers and clients. (See Chapter 8, “Implementing Socket
Services in Node.js.”)

 ■ OS: Allows access to the operating system that Node.js is running on. (See Chapter 10.)

 ■ Path: Enables access to file and directory paths. (See Chapter 6.)

 ■ Process: Provides information and allows control over the current Node.js process.
(See Chapter 9.)

 ■ Query strings: Allows for parsing and formatting URL queries. (See Chapter 7.)

 ■ Readline: Enables an interface to read from a data stream. (See Chapter 5.)

 ■ REPL: Allows developers to create a command shell.

 ■ Stream: Provides an API to build objects with the stream interface. (See Chapter 5.)

 ■ String decoder: Provides an API to decode buffer objects into strings. (See Chapter 5.)

 ■ Timers: Allows for scheduling functions to be called in the future. (See Chapter 4.)

 ■ TLS/SSL: Implements TLS and SSL protocols. (See Chapter 8.)

 ■ URL: Enables URL resolution and parsing. (See Chapter 7.)

 ■ Utilities: Provides support for various apps and modules.

 ■ V8: Exposes APIs for the Node.js version of V8. (See Chapter 10.)

 ■ VM: Allows for a V8 virtual machine to run and compile code.

 ■ ZLIB: Enables compression using Gzip and Deflate/Inflate. (See Chapter 5.)

Chapter 3 Getting Started with Node.js42

Installing Node.js

To easily install Node.js, download an installer from the Node.js website at http://nodejs.org.
The Node.js installer installs the necessary files on your PC to get Node.js up and running. No
additional configuration is necessary to start creating Node.js applications.

Looking at the Node.js Install Location

If you look at the install location, you will see a couple of executable files and a node_modules
folder. The node executable file starts the Node.js JavaScript VM. The following list describes
the executables in the Node.js install location that you need to get started:

 ■ node: This file starts a Node.js JavaScript VM. If you pass in a JavaScript file location,
Node.js executes that script. If no target JavaScript file is specified, then a script prompt is
shown that allows you to execute JavaScript code directly from the console.

 ■ npm: This command is used to manage the Node.js packages discussed in the next
section.

 ■ node_modules: This folder contains the installed Node.js packages. These packages act as
libraries that extend the capabilities of Node.js.

Verify Node.js Executables

Take a minute and verify that Node.js is installed and working before moving on. To do so,
open a console prompt and execute the following command to bring up a Node.js VM:

node

Next, at the Node.js prompt execute the following to write "Hello World" to the screen.

>console.log("Hello World");

You should see "Hello World" output to the console screen. Now exit the console using
Ctrl+C in Windows or Cmd+C on a Mac.

Next, verify that the npm command is working by executing the following command in the
OS console prompt:

npm version

You should see output similar to the following:

{ npm: '3.10.5',
 ares: '1.10.1-DEV',
 http_parser: '2.7.0',
 icu: '57.1',
 modules: '48',
 node: '6.5.0',
 openssl: '1.0.2h',

http://nodejs.org

Working with Node Packages 43

 uv: '1.9.1',
 v8: '5.1.281.81',
 zlib: '1.2.8'}

Selecting a Node.js IDE

If you are planning on using an Integrated Development Environment (IDE) for your Node.
js projects, you should take a minute and configure that now as well. Most developers are
particular about the IDE that they like to use, and there will likely be a way to configure at least
for JavaScript if not Node.js directly. For example, Eclipse has some great Node.js plugins, and
the WebStorm IDE by IntelliJ has some good features for Node.js built in. If you are unsure of
where to start, we use Visual Studio Code for the built-in TypeScript functionality required later
in this book.

That said, you can use any editor you want to generate your Node.js web applications. In
reality, all you need is a decent text editor. Almost all the code you will generate will be .js,
.json, .html, and .css. So pick the editor in which you feel the most comfortable writing those
types of files.

Working with Node Packages

One of the most powerful features of the Node.js framework is the ability to easily extend
it with additional Node Packaged Modules (NPMs) using the Node Package Manager (NPM).
That’s right, in the Node.js world, NPM stands for two things. This book refers to the Node
Packaged Modules as modules to make it easier to follow.

What Are Node Packaged Modules?

A Node Packaged Module is a packaged library that can easily be shared, reused, and installed
in different projects. Many different modules are available for a variety of purposes. For
example, the Mongoose module provides an ODM (Operational Data Model) for MongoDB,
Express extends Node’s HTTP capabilities, and so on.

Node.js modules are created by various third-party organizations to provide the needed features
that Node.js lacks out of the box. This community of contributors is active in adding and
updating modules.

Node Packaged Modules include a package.json file that defines the packages. The package.
json file includes informational metadata, such as the name, version author, and contribu-
tors, as well as control metadata, such as dependencies and other requirements that the Node
Package Manager uses when performing actions such as installation and publishing.

Understanding the Node Package Registry

The Node modules have a managed location called the Node Package Registry where packages
are registered. This allows you to publish your own packages in a location where others can use
them as well as download packages that others have created.

http://be.js,.json,.html
http://be.js,.json,.html
http://be.js,.json,.html
http://be.js,.json,.html

Chapter 3 Getting Started with Node.js44

The Node Package Registry is located at https://npmjs.com. From this location you can view
the newest and most popular modules as well as search for specific packages, as shown in
Figure 3.1.

Figure 3.1 The official Node Package Modules website

Using the Node Package Manager

The Node Package Manager you have already seen is a command-line utility. It allows you
to find, install, remove, publish, and do everything else related to Node Package Modules.
The Node Package Manager provides the link between the Node Package Registry and
your development environment.

The simplest way to really explain the Node Package Manager is to list some of the command-
line options and what they do. You use many of these options in the rest of this chapter and
throughout the book. Table 3.1 lists the Node Package Manager commands.

Table 3.1 npm command-line options (with express as the package, where appropriate)

Option Description Example

search Finds module packages in the repository npm search express

install Installs a package either using a
package.json file, from the
repository, or a local location

npm install

npm install express

npm install express@0.1.1

npm install ../tModule.tgz

install –g Installs a package globally npm install express -g

https://npmjs.com

Working with Node Packages 45

Option Description Example

remove Removes a module npm remove express

pack Packages the module defined by the
package.json file into a .tgz file

npm pack

view Displays module details npm view express

publish Publishes the module defined by a
package.json file to the registry

npm publish

unpublish Unpublishes a module you have
 published

npm unpublish myModule

owner Allows you to add, remove, and list
owners of a package in the repository

npm add bdayley myModule

npm rm bdayley myModule

npm ls myModule

Searching for Node Package Modules

You can also search for modules in the Node Package Registry directly from the
command prompt using the npm search <search_string> command. For example,
the following command searches for modules related to openssl and displays the results as
shown in Figure 3.2:

npm search openssl

Figure 3.2 Searching for Node.js modules from the command prompt

Chapter 3 Getting Started with Node.js46

Installing Node Packaged Modules

To use a Node module in your applications, it must first be installed where Node can find it.
To install a Node module, use the npm install <module_name> command. This downloads
the Node module to your development environment and places it into the node_modules
folder where the install command is run. For example, the following command installs the
express module:

npm install express

The output of the npm install command displays the dependency hierarchy installed with
the module. For example, the following code block shows part of the output from installing the
express module.

C:\express\example
`-- express@4.14.0
 +-- accepts@1.3.3
 | +-- mime-types@2.1.11
 | | `-- mime-db@1.23.0
 | `-- negotiator@0.6.1
 +-- array-flatten@1.1.1
 +-- content-disposition@0.5.1
 +-- content-type@1.0.2
 +-- cookie@0.3.1
 +-- cookie-signature@1.0.6
 +-- debug@2.2.0
 | `-- ms@0.7.1 ...

The dependency hierarchy is listed; some of the methods Express requires are
 cookie-signature, range-parser, debug, fresh, cookie, and send modules. Each of
these was downloaded during the install. Notice that the version of each dependency module
is listed.

Node.js has to be able to handle dependency conflicts. For example, the express module
requires cookie 0.3.1, but another module may require cookie 0.3.0. To handle this situ-
ation, a separate copy for the cookie module is placed in each module’s folder under another
node_modules folder.

To illustrate how modules are stored in a hierarchy, consider the following example of how
express looks on disk. Notice that the cookie and send modules are located under the
express module hierarchy, and that since the send module requires mime it is located under
the send hierarchy:

./

./node_modules

./node_modules/express

./node_modules/express/node_modules/cookie

./node_modules/express/node_modules/send

./node_modules/express/node_modules/send/node_modules/mime

Working with Node Packages 47

Using package.json

All Node modules must include a package.json file in their root directory. The package.json
file is a simple JSON text file that defines the module including dependencies. The package.
json file can contain a number of different directives to tell the Node Package Manager how to
handle the module.

The following is an example of a package.json file with a name, version, description, and
dependencies:

{
 "name": "my_module",
 "version": "0.1.0",
 "description": "a simple node.js module",
 "dependencies" : {
 "express" : "latest"
 }
}

The only required directives in the package.json file are name and version. The rest depend
on what you want to include. Table 3.2 describes the most common directives:

Table 3.2 Directives used in the package.json file

Directive Description Example

name Unique name of package. "name": "camelot"

preferGlobal Indicates this module prefers
to be installed globally.

"preferGlobal": true

version Version of the module. "version": 0.0.1

author Author of the project. "author": "arthur@???.com"

description Textual description of module. "description": "a silly place"

contributors Additional contributors to
the module.

"contributors": [

 { "name": "gwen",

 "email": "gwen@???.com"}]

bin Binary to be installed
globally with project.

"bin: {

 "excalibur":
"./bin/excalibur"}

scripts Specifies parameters that
execute console apps when
launching node.

"scripts" {

 "start": "node ./bin/
excalibur",

 "test": "echo testing"}

main Specifies the main entry
point for the app. This can
be a binary or a .js file.

"main": "./bin/excalibur"

http://.com"
http://.com"}

Chapter 3 Getting Started with Node.js48

Directive Description Example

repository Specifies the repository type
and location of the package.

"repository": {

 "type": "git",

 "location":

 "http://???.com/c.git"}

keywords Specifies keywords that show
up in the npm search.

"keywords": [

 "swallow", "unladen"]

dependencies Modules and versions this
 module depends on. You can
use the * and x wildcards.

"dependencies": {

 "express": "latest",

 "connect": "2.x.x,

 "cookies": "*" }

engines Version of node this package
works with.

"engines": {

 "node": ">=6.5"}

A great way to use package.json files is to automatically download and install the dependen-
cies for your Node.js app. All you need to do is create a package.json file in the root of your
project code and add the necessary dependencies to it. For example, the following package.
json requires the express module as a dependency.

{
 "name": "my_module",
 "version": "0.1.0",
 "dependencies" : {
 "express" : "latest"
 }
}

Then you run the following command from root of your package, and the express module is
automatically installed.

npm install

Notice that no module is specified in the npm install. That is because npm looks for a
package.json file by default. Later, as you need additional modules, all you need to do is add
those to the dependencies directive and then run npm install again.

Creating a Node.js Application

Now you have enough information to jump into a Node.js project and get your feet wet. In this
section, you create your own Node Packaged Module and then use that module as a library in a
Node.js application.

http://???.com/c.git"}

Creating a Node.js Application 49

The code in this exercise is kept to a minimum so that you can see exactly how to create a
package, publish it, and then use it again.

Creating a Node.js Packaged Module

To create a Node.js Packaged Module you need to create the functionality in JavaScript, define
the package using a package.json file, and then either publish it to the registry or package it
for local use.

The following steps take you through the process of building a Node.js Packaged Module using
an example called censorify. The censorify module accepts text and then replaces certain
words with asterisks:

1. Create a project folder named .../censorify. This is the root of the package.

2. Inside that folder, create a file named censortext.js.

3. Add the code from Listing 3.1 to censortext.js. Most of the code is just basic
JavaScript; however, note that lines 18–20 export the functions censor(),
addCensoredWord(), and getCensoredWords(). The exports.censor is required for
Node.js applications using this module to have access to the censor() function as well
as the other two.

Listing 3.1 censortext.js: Implementing a simple censor function and exporting it for

other modules using the package

01 var censoredWords = ["sad", "bad", "mad"];
02 var customCensoredWords = [];
03 function censor(inStr) {
04 for (idx in censoredWords) {
05 inStr = inStr.replace(censoredWords[idx], "****");
06 }
07 for (idx in customCensoredWords) {
08 inStr = inStr.replace(customCensoredWords[idx], "****");
09 }
10 return inStr;
11 }
12 function addCensoredWord(word){
13 customCensoredWords.push(word);
14 }
15 function getCensoredWords(){
16 return censoredWords.concat(customCensoredWords);
17 }
18 exports.censor = censor;
19 exports.addCensoredWord = addCensoredWord;
20 exports.getCensoredWords = getCensoredWords;

4. Once the module code is completed, you need to create a package.json file that is
used to generate the Node.js Packaged Module. Create a package.json file in the

Chapter 3 Getting Started with Node.js50

.../censorify folder. Then add contents similar to Listing 3.2. Specifically, you need to
add the name, version, and main directives as a minimum. The main directive needs to
be the name of the main JavaScript module that will be loaded, in this case censortext.
Note that the .js is not required, Node.js automatically searches for the .js extension.

Listing 3.2 package.json: Defining the Node.js module

01 {
02 "author": "Brendan Dayley",
03 "name": "censorify",
04 "version": "0.1.1",
05 "description": "Censors words out of text",
06 "main": "censortext",
07 "dependencies": {},
08 "engines": {
09 "node": "*"
10 }
11 }

5. Create a file named README.md in the .../censorify folder. You can put whatever read
me instructions you want in this file.

6. Navigate to the .../censorify folder in a console window and run the npm pack
command to build a local package module.

7. The npm pack command creates a censorify-0.1.1.tgz file in the .../censorify
folder. This is your first Node.js Packaged Module.

Publishing a Node.js Packaged Module to the NPM Registry

In the previous section you created a local Node.js Packaged Module using the npm pack
command. You can also publish that same module to the NPM repository at http://npmjs.com/.

When modules are published to the NPM registry, they are accessible to everyone using the
NPM manager utility discussed earlier. This allows you to distribute your modules and applica-
tions to others more easily.

The following steps describe the process of publishing the module to the NPM registry. These
steps assume that you have completed steps 1 through 5 from the previous section:

1. Create a public repository to contain the code for the module. Then push the contents of
the .../censorify folder up to that location. The following is an example of a Github
repository URL:

https://github.com/username/projectname/directoryName/ch03/censorify

2. Create an account at https://npmjs.org/signup.

3. Use the npm adduser command from a console prompt to add the user you created to
the environment.

http://npmjs.com/
https://github.com/username/projectname/directoryName/ch03/censorify
https://npmjs.org/signup

Creating a Node.js Application 51

4. Type in the username, password, and email that you used to create the account in step 2.

5. Modify the package.json file to include the new repository information and any
keywords that you want made available in the registry search as shown in lines 7–14 in
Listing 3.3.

Listing 3.3 package.json: Defining the Node.js module that includes the repository and

keywords information

01 {
02 "author": "Brad Dayley",
03 "name": "censorify",
04 "version": "0.1.1",
05 "description": "Censors words out of text",
06 "main": "censortext",
07 "repository": {
08 "type": "git",
09 //"url": "Enter your github url"
10 },
11 "keywords": [
12 "censor",
13 "words"
14],
15 "dependencies": {},
16 "engines": {
17 "node": "*"
18 }
19 }

6. Publish the module using the following command from the .../censor folder in the
console:

npm publish

Once the package has been published you can search for it on the NPM registry and use the
npm install command to install it into your environment.

To remove a package from the registry make sure that you have added a user with rights to the
module to the environment using npm adduser and then execute the following command:

npm unpublish <project name>

For example, the following command unpublishes the censorify module:

npm unpublish censorify

In some instances you cannot unpublish the module without using the --force option. This
option forces the removal and deletion of the module from the registry. For example:

npm unpublish censorify --force

Chapter 3 Getting Started with Node.js52

Using a Node.js Packaged Module in a Node.js Application

In the previous sections you learned how to create and publish a Node.js module. This section
provides an example of actually using a Node.js module inside your Node.js applications.
Node.js makes this simple: All you need to do is install the NPM into your application structure
and then use the require() method to load the module.

The require() method accepts either an installed module name or a path to a .js file located
on the file system. For example:

require("censorify")
require("./lib/utils.js")

The .js filename extension is optional. If it is omitted, Node.js searches for it.

The following steps take you through that process so you can see how easy it is:

1. Create a project folder named .../readwords.

2. From a console prompt inside the .../readwords folder, use the following command
to install the censorify module from the censorify-0.1.1.tgz package you created
earlier:

npm install .../censorify/censorify-0.1.1.tgz

3. Or if you have published the censorify module, you can use the standard command to
download and install it from the NPM registry:

npm install censorify

4. Verify that a folder named node_modules is created along with a subfolder named
censorify.

5. Create a file named .../readwords/readwords.js.

6. Add the contents shown in Listing 3.4 to the readwords.js file. Notice that a
require() call loads the censorify module and assigns it to the variable censor.
Then the censor variable can be used to invoke the getCensoredWords(),
addCensoredWords(), and censor() functions from the censorify module.

Listing 3.4 readwords.js: Loading the censorify module when displaying text

1 var censor = require("censorify");
2 console.log(censor.getCensoredWords());
3 console.log(censor.censor("Some very sad, bad and mad text."));
4 censor.addCensoredWord("gloomy");
5 console.log(censor.getCensoredWords());
6 console.log(censor.censor("A very gloomy day."));

7. Run the readwords.js application using the node readwords.js command and
view the output shown in the following code block. Notice that the censored words are

Writing Data to the Console 53

replaced with **** and that the new censored word gloomy is added to the censorify
module instance censor.

C:\nodeCode\ch03\readwords>node readwords
['sad', 'bad', 'mad']
Some very *****, ***** and ***** text.
['sad', 'bad', 'mad', 'gloomy']
A very *** day.

Writing Data to the Console

One of the most useful modules in Node.js during the development process is the console
module. This module provides a lot of functionality when writing debug and information state-
ments to the console. The console module allows you to control output to the console, imple-
ment time delta output, and write tracebacks and assertions to the console. This section covers
using the console module because you need to know it for subsequent chapters in the book.

Because the console module is so widely used, you do not need to load it into your modules
using a require() statement. You simply call the console function using console.<function>
(<parameters>). Table 3.3 lists the functions available in the console module.

Table 3.3 Member functions of the console module

Function Description

log([data],[...]) Writes data output to the console. The data variable can be a string
or an object that can be resolved to a string. Additional parameters
can also be sent. For example:
console.log("There are %d items", 5);
>>There are 5 items

info([data],[...]) Same as console.log.

error([data],[...]) Same as console.log; however, the output is also sent to
stderr.

warn([data],[...]) Same as console.error.

dir(obj) Writes out a string representation of a JavaScript object to the con-
sole. For example:

console.dir({name:"Brad", role:"Author"});

>> { name: 'Brad', role: 'Author' }

time(label) Assigns a current timestamp with ms precision to the string label.

Chapter 3 Getting Started with Node.js54

Function Description

timeEnd(label) Creates a delta between the current time and the timestamp
assigned to label and outputs the results. For example:
console.time("FileWrite");
f.write(data); //takes about 500ms
console.timeEnd("FileWrite");
>> FileWrite: 500ms

trace(label) Writes out a stack trace of the current position in code to stderr.
For example:
module.trace("traceMark");
>>Trace: traceMark
 at Object.<anonymous> (C:\test.js:24:9)
 at Module._compile (module.js:456:26)
 at Object.Module._ext.js (module.js:474:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)
 at Function.Module.runMain(module.js:497:10)
 at startup (node.js:119:16)
 at node.js:901:3

assert(expression,

 [message])

Writes the message and stack trace to the console if expression
evaluates to false.

Summary

This chapter focused on getting you up to speed on the Node.js environment. Node.js Packaged
Modules provide the functionality that Node.js does not inherently come with. You can
 download these modules from the NPM registry, or you can even create and publish your own.
The package.json file provides the configuration and definition for every Node.js module.

The examples in this chapter covered creating, publishing, and installing your own Node.js
Packaged Modules. You learned how to use the NPM to package a local module as well as
publish one to the NPM registry. You then learned how to install the Node.js modules and use
them in your own Node.js applications.

Next

The next chapter covers the event-driven nature of Node.js. You see how events work in the
Node.js environment and learn how to control, manipulate, and use them in your applications.

Index

Symbols
+ (addition) operator, 17

&& (and) operator, 19

= assignment operator, 18

+= assignment operator, 18

-= assignment operator, 18

/= assignment operator, 18

*= assignment operator, 18

%= assignment operator, 18

` (backquotes), 404–405

{ } (curly braces), 20, 24, 415, 416, 429

/ (division) operator, 18

$ (dollar sign), 243

== (equal) operator, 19

=== (equal) operator, 19

\' escape code, 29

\" escape code, 29

\\ escape code, 29

> (greater than) operator, 19

>= (greater than or equal to) operator, 19

++ (increment) operator, 18

< (less than) operator, 19

<= (less than or equal to) operator, 19

% (modulus) operator, 18

* (multiplication) operator, 18

! (not) operator, 19

!= (not equal) operator, 19

!== (not equal) operator, 19

|| (or) operator, 19

550 () (parentheses)

() (parentheses), 20, 24, 436, 457

| (pipe symbol), 426

- (subtraction) operator, 18

~ (tilde), 404–405

A
abort() method, 120, 161

acceptsCharset property (Request object),

351

accessing MongoDB

access control, 209

authentication, 210–211

Database Administrator accounts,
211

User Administrator accounts,
209–210

from shell client, 203–204

command parameters, 205

shell commands, 204

shell methods, 205

shell scripts, 205–206

accounts (MongoDB)

Database Administrator accounts, 211

user accounts

creating, 206–207

listing, 206–207

removing, 209

roles, 208

User Administrator accounts, 209–210

ActivatedRoute, importing, 488

$add operator, 286

addCensoredWords() function, 52

addClass() method, 446

$addFields operator, 285

addition (+) operator, 17

addListener() function, 65

AddNums interface, 385

address() method, 143, 146

addShard() method, 339

addShardTag() method, 340

addTagRange() method, 340

$addToSet operator, 243, 286

addTrailers() method, 122

addUser() method, 228, 229

admin() method, 227, 229

Admin object, 229

aggregate() method, 283, 301, 317

aggregating results, 282–289

aggregate() method, 283

aggregation examples, 287–289

aggregation expression operators,
285–287

aggregation framework operators,
283–285

aggregation expression operators, 285–287

aggregation framework operators, 283–285

AJAX (Asynchronous JavaScript and XML)

requests, 9

alerts, asynchronous, 516

all() method, 304, 346

$all operator, 264

allowDrop() method, 536

allowHalfOpen option, 86, 145

and() method, 303

and (&&) operator, 19

$and operator, 263

Angular. See also Node.js-to-Angular stack

adding to environment, 393–394

advantages of, 4, 13–14, 391

applications, creating, 395–396, 398–402

Angular bootstrapper, 399–402

animation application, 525–529

component modules, importing,
396–397

551Angular

drag-and-drop application,
533–539

NgModule, 397–398

star rating application, 539–546

zoom application, 530–533

bootstrapper, 398–402

app.module.js, 401

app.module.ts, 400

first.component.js, 402

first.component.ts, 400

first.html listing, 399

browser events, 457–458

built-in directives, 441–442

attribute directives, 392, 445–448

components directives, 392, 442

structural directives, 392, 442–445

change detection, 465–468

CLI (command-line interface), 394–395

components, 396–397, 539–546

Angular bootstrapper components,
398–402

animation application components,
526–529

collections, 204

configuration, 403–404

constructors, 407

custom component directives,
452–456

deleting data in, 461–464

dependency injection, 392–393,
410–414

drag-and-drop application
 components, 534–538

emitting custom events from, 458

image zoom application
 components, 530–532

importing, 396–397

inline CSS and HTML in, 405–406

integrating custom services into,
503–504

nested components, 458–460

NgModule, 397–398

selectors, 404

separation of responsibilities, 393

star rating application components,
539–546

templates, 404–405, 408–410

custom directives, 449

custom attribute directives,
449–452

custom component directives,
452–456

custom events, 458

deleting data with, 461–464

emitting from components, 458

handling with listeners, 458

implementing in nested
 components, 458–460

data binding, 429

attribute binding, 433

class binding, 433–434

definition of, 392

event binding, 436–439

interpolation, 430–431

property binding, 431–433

style binding, 435–436

two-way binding, 439–440

definition of, 4

dependency injection, 392–393

event binding, 436–439

expressions, 415–416

basic expressions, 416–417

built-in pipes, 422–426

Component class interaction,
418–419

custom pipes, 426–428

552 Angular

Angular QuickStart website, 394

animate service, 470

animated component

animated.component.css, 529

animated.component.html, 529

animated.component.ts, 527–528

animation application

animated.component.css, 529

animated.component.html, 529

animated.component.ts, 527–528

app.component.html, 526–527

app.component.ts, 526

app.module.ts, 525–526

folder structure, 525

anonymous functions, 25–26

any data type, 384

app.component.css listing

AreaCalcService, 509

custom directive with component, 454

drag-and-drop application, 535–536

RandomImageService, 513–514

router with navigation bar, 495

star rating application, 544

app.component.html listing

animation application, 526–527

AreaCalcService, 508–509

custom directive with component,
453–454

drag-and-drop application, 535

image zoom application, 531

PiService, 506

PromiseService, 516

RandomImageService, 513

router with navigation bar, 494

SharedService, 519

star rating application, 543–544

zoom directive, 451–452

pipe implementation, 422

TypeScript in, 419–422

modules, 392

observables

creating, 464–465

definition of, 464

detecting data changes with, 465–468

separation of responsibilities, 393

services

animate, 470

animation service, application
using, 525–529

area-calc.service.ts, 506–510

constant data service, 505–506

definition of, 393

forms, 470

http, 470–486

integrating into applications,
503–504

mock back-end service, 540–541

purpose of, 469

ratings service, 541–542

router, 470, 487–501

service that returns a promise,
515–516

shared service, 516–523

use cases for, 503–504

UserService, 483–484

variable data service, 510–514

TypeScript, 383

in Angular expressions, 419–422

classes, 386

data types, 383–384

directives, 462–463

functions, 388–389

inheritance, 387

interfaces, 385–386

modules, 387–388

553app.module.ts listing

drag.component.html, 538

drag.component.ts, 538

drop.component.css, 537

drop.component.html, 537

drop.component.ts, 536

folder structure, 533–534

NgModule, 397–398

star rating application

app.component.css, 544

app.component.html, 543–544

app.component.ts, 543

app.module.ts, 540

folder structure, 539

mockbackend.service.ts, 540–541

rated-item.component.css,
545–546

rated-item.component.html, 545

rated-item.component.ts, 544–545

ratings.service.ts, 541–542

zoom application

app.component.html, 531

app.component.ts, 530–531

folder structure, 530

zoomit.component.css, 532

zoomit.component.html, 532

zoomit.component.ts, 531–532

applications (Node.js), censorify module

censortext.js, 49

creating, 49–50

loading into Node.js applications,
52–53

package.json, 50, 51

publishing to NPM Registry, 50–51

readwords.js, 52

app.module.js listing, 401

app.module.ts listing

Angular bootstrapper, 400

animation application, 525–526

app.component.ts listing

animation application, 526

AreaCalcService, 507–508

custom directive with component, 453

drag-and-drop application, 534–535

image zoom application, 530–531

PiService, 505

PromiseService, 515–516

RandomImageService, 512–513

router with navigation bar, 494

router with parameters, 498

SharedService, 519

simple router application, 490

star rating application, 543

append() method, 318

applications (Angular), 395–396, 398–402.

See also components (Angular)

Angular bootstrapper

app.module.js, 401

app.module.ts, 400

first.component.js, 402

first.component.ts, 400

first.html, 399

animation application

animated.component.css, 529

animated.component.html, 529

animated.component.ts, 527–528

app.component.html, 526–527

app.component.ts, 526

app.module.ts, 525–526

folder structure, 525

component modules, importing,
396–397

drag-and-drop application

app.component.css, 535–536

app.component.html, 535

app.component.ts, 534–535

drag.component.css, 538

http://rated-item.component.html

554 app.module.ts listing

removing items from, 34–35

searching, 34

Routes, defining, 486–487

TypeScript, 384

assert() function, 54

assertion testing module, 40, 190

assigning Express middleware

globally to path, 368

to single route, 368

assignment operators, 18

async pipe, 424

asynchronous alerts, 516

asynchronous file reading, 104–105

asynchronous file system calls, 95

asynchronous file writing, 99–101

Asynchronous JavaScript and XML (AJAX), 9

atomic write operations, 198

atomically modifying documents,

250–251

attachment() method, 353

attribute binding, 433

attribute directives, 392, 445–448

attribute.component.css, 448

attribute.component.html, 447

attribute.component.ts, 446–447

custom attribute directives, 449–452

definition of, 441

ngForm, 445

ngModel, 445

ngStyle, 445

attribute.component.css listing, 448

attribute.component.html listing, 447

attribute.component.ts listing, 446–447

--auth parameter (mongod command), 203

auth property (URL object), 116

authenticate() method, 228, 229

simple mock server implementation,
473–474, 480

simple router implementation, 488–489

star rating application, 540

AppRoutingModule, importing, 488

app-routing.module.ts listing

router with navigation bar, 492–493

router with parameters, 498

simple router implementation, 489–490

arbiter servers, 331

arch() method, 162, 182

AreaCalcService, 506–510

app.component.css, 509

app.component.html, 508–509

app.component.ts, 507–508

area-calc.service.ts, 506–507

area-calc.service.ts listing, 506–507

argv method, 162

arithmetic operators, 17–18

Array object, 32–33

adding items to, 34–35

combining, 33–34

converting into strings, 34

iterating through, 34

manipulating, 32–33

methods, 32–33

removing items from, 34–35

searching, 34

arrays, 16

JavaScript

adding items to, 34–35

combining, 33–34

converting into strings, 34

iterating through, 34

manipulating, 32–33

methods, 32–33

555buffers

first.component.js, 402

first.component.ts, 400

first.html listing, 399

border() function, 450

brackets ({ }), 415, 416

break statement, 23–24

browser events, 457–458

browser view, rendering, 9–10

BrowserAnimationsModule, loading, 526

browsers, 8

browser events, 457–458

browser view, rendering, 9–10

browser-to-webserver communication,
8–9

user interaction, 10

browser-to-webserver communication, 8–9

BSON, 192

$bucket operator, 285

$bucketAuto operator, 285

buffer module. See buffers

buffer_concat.js listing, 81

buffer_copy.js listing, 79

buffer_read.js listing, 78

buffer_slice.js listing, 80

buffer_write.js listing, 77

bufferCommands option (Schema object),

295

buffers, 74–75

compressing/decompressing, 91–92

concatenating, 81

copying, 79–80

creating, 75–76

determining length of, 78

encoding methods, 75

reading from, 77–78

slicing, 80

writing to, 76–77

authentication

HTTP, 375–377

MongoDB, 210–211

session, 377–380

author directive, 47

auto_reconnect option (server object), 224

autoIndex option (Schema object), 295

autoIndexID option (collections), 214

$avg operator, 286

B
\b (backspace) escape code, 30

backend services, 10

backing up MongoDB, 341–342

backquotes (`), 404–405

backspace escape code, 30

Bad Guys component

badguys.component.css, 522

badguys.component.html, 522

badguys.component.ts, 521

base64 encoding, 75

basicAuth middleware, 368, 375–377

basicExpressions.component.ts listing, 417

big endian, 75

bin directives, 47

--bind parameter (mongod command), 203

binding. See data binding

$bit operator, 244

blocking I/O, 57–58

bodyParser middleware, 368, 371–372

Boolean data type

JavaScript, 16

TypeScript, 383

bootstrap metadata option (NgModule), 397

bootstrapper (Angular), 398–402

app.module.js, 401

app.module.ts, 400

556 bufferSize property (Socket object)

router, 470

ActivatedRoute, importing, 488

route navigation, 488

route object parameters, 487

Router, importing, 488

router with navigation bar, 492–497

router with parameters, 497–501

Routes array, 486–487

routing module, including, 488

simple router implementation,
488–491

builtInPipes.component.ts listing, 425

byteLength() method, 78

bytesRead property (Socket object), 144

bytesWritten property (Socket object), 144

C
ca option

htp.createServer(), 136

https.request(), 136

tls.connect(), 154

tls.createServer(), 155

callback functions, 67

applying for defined parameters,
 348–349

chaining, 70

implementing closure in, 68–69

passing parameters to, 67–68

callback_chain.js listing, 70

callback_closure.js listing, 69

callback_parameter.js listing, 67–68

canActivate property (route object), 487

canActivateChild property (route object), 487

canDeactivate property (route object), 487

canLoad property (route object), 487

capped collections, 197–198, 330

bufferSize property (Socket object), 143

building templates, 404–405

built-in directives, 441–442

attribute directives, 392, 445–448

attribute.component.css, 448

attribute.component.html, 447

attribute.component.ts, 446–447

definition of, 441

ngForm, 445

ngModel, 445

ngStyle, 445

components directives, 392, 441, 442

structural directives, 392, 442–445

definition of, 441

ngFor, 442, 474, 479, 484, 513

ngIf, 442–443

ngSwitch, 442–443

ngSwitchCase, 442, 443

ngSwitchDefault, 442

structural.component.ts, 443–444

built-in events, 457–458

built-in pipes

builtInPipes.component.ts, 425

table of, 422–424

built-in services

animate, 470

forms, 470

http, 470

GET requests, sending, 470–471

JSON file implementation and
access, 472–475

PUT requests, sending, 470–471

request configuration, 471

response callback functions, 471

simple mock server
 implementation, 475–481

simple mock server updates, 481–486

557class.component.ts listing

chdir() method, 162

checkContinue event, 124

checkGoal() function, 66

checkKeys option, 242

child components, deleting parent data

from, 461–464

child forks, 171–173

child processes, 159–160

child forks, 171–173

ChildProcess object, 164–166

executable files, executing on another
process, 168–169

processes, spawning, 169–171

system command, executing on another
process, 166–168

child_exec.js listing, 167–168

child_fork.js listing, 172–173

child_process module, 40, 159–160

child forks, 171–173

ChildProcess object, 164–166

executable files, executing on another
process, 168–169

processes, spawning, 169–171

system command, executing on another
process, 166–168

child_process_exec_file.js listing, 168–169

child_process_spawn_file.js listing,

170–171

ChildProcess object, 164–166

Children property (route object), 487

cipher class, 188

ciphers option

htp.createServer(), 136

https.request(), 136

tls.createServer(), 155

class binding, 433–434

class.component.ts listing, 434

capped option

collections, 214

Schema object, 295

carriage return escape code, 29

Cascading Style Sheets. See CSS

(Cascading Style Sheets)

case sensitive routing setting (Express), 344

catch() method, 471

catch statement, 35–36

C/C++ add-ons, 40, 190

censor() function, 52

censorify module

censortext.js, 49

creating, 49–50

loading into Node.js applications,
52–53

package.json, 50, 51

publishing to NPM Registry, 50–51

readwords.js, 52

censortext.js listing, 49

cert option

htp.createServer(), 136

https.request(), 136

tls.connect(), 154

certificate class, 188

chaining callback functions, 70

change detection, 465–468

(change) event, 457

changeLoop() method, 510

changeSize() function, 450

character.component.css listing, 462

character.component.html listing, 462

character.component.ts listing, 461–462

charAt() method, 30

charCodeAt() method, 30

charObservable, 517

558 classes

client-side scripts, 9

close event, 82, 121, 123, 124, 142, 145,

165

close() method, 97, 125, 146, 227, 233

closeSync() method, 97

closing files, 96–97

closure in callback functions, 68–69

cluster module, 40, 174

events, 174

HTTP clusters, 176–179

methods, 175

properties, 175

Worker object, 175–176

cluster_server.js listing, 177–179

clusterAdmin role (MongoDB), 208

clusters

cluster module, 40, 174

events, 174

HTTP clusters, 176–179

methods, 175

properties, 175

Worker object, 175–176

sharded MongoDB clusters, 338

adding shards to cluster, 339

config server database instances,
338

query router servers, 338–339

code listings. See listings

collection() method, 228, 230

Collection object, 229–232. See also

collections (MongoDB)

collection option (Schema object), 295

collection_create_list_delete.js listing,

238–239

collection_stat.js listing, 239–240

collectionInfo() method, 227

collectionNames() method, 227

classes. See also services (Angular)

binding, 433–434

certificate, 188

cipher, 188

Component, 418–419

decipher, 188

defining, 386

diffieHellman, 188

@directive, 449

eCDH, 188

EventEmitter, 458

export classes

Directive, 449

ZoomDirective, 451

hash, 189

hmac, 189

inheritance, 387

MongoClient, 222

pipe, 426

SecretAgent, 387

sign, 189

verify, 189

classExpressions.component.ts listing,

418–419

clearCookie() method, 373

clearImmediate() function, 62

clearInterval() function, 61

clearTimeout() function, 60

CLI (command-line interface), 394–395.

See also commands

(click) event, 457

clientError event, 124, 156

ClientRequest object, 118–121

clients

HTTPS clients, 135–136

TCP socket clients, 147–150

TLS socket clients, 153–154

559compatibility of Angular

commands. See also directives

databases, 204

db.help, 204

dbs, 204

executing in another process, 166–168

exit, 204

help, 204

mongod, 202–203

mongodump, 342

ng eject, 395

ng generate component, 395

ng generate directive, 395

ng generate enum, 395

ng generate guard, 395

ng generate interface, 395

ng generate module, 395

ng generate pipe, 395

ng generate service, 395

ng new, 395

ng serve, 395

npm, 42, 44–45

npm adduser, 50

npm install, 46, 51

npm pack, 50

npm search, 45

npm install, 475

profile, 204

roles, 204

show, 204

use, 204

users, 204

comment() method, 302

comment option (options object), 265

communication, browser-to-webserver, 8–9

comparison operators, 19–20

compatibility of Angular, 14

collections (MongoDB)

capped collections, 197–198, 330

Collection object, 229–232

collection_create_list_delete.js
 application example, 238–239

creating, 214–215, 237

definition of, 192

deleting, 215–216, 238

displaying list of, 214

documents

adding, 217, 244–246, 307–309

aggregating with Mongoose,
 317–320

atomically modifying, 250–251

counting, 268–269

Document object, 304–305

finding, 216, 265–268, 305–307

removing, 217–218, 255–258,
314–317

retrieving, 246–248

saving, 252–253, 310–311

updating, 218–219, 248–250,
309–314

upserting, 253–254

listing, 237

number of, 199

sharding on, 340

statistics for, 239–240

collections command, 204

collections() method, 228, 237

$collStatus operator, 284

combining

arrays, 33–34

strings, 31

command-line interface, 394–395. See also

commands

command-line options module, 40

560 compiling models

drag.component.css, 538

drag.component.html, 538

drag.component.ts, 538

drop.component.css, 537

drop.component.html, 537

drop.component.ts, 536

folder structure, 533–534

emitting custom events from, 458

image zoom application

app.component.html, 531

app.component.ts, 530–531

folder structure, 530

zoomit.component.css, 532

zoomit.component.html, 532

zoomit.component.ts, 531–532

importing, 396–397

inline CSS and HTML in, 405–406

integrating custom services into,
 503–504

nested components, 458–460

NgModule, 397–398

selectors, defining, 404

separation of responsibilities, 393

star rating application

app.component.css, 544

app.component.html, 543–544

app.component.ts, 543

app.module.ts, 540

folder structure, 539

mockbackend.service.ts, 540–541

rated-item.component.css, 545–546

rated-item.component.html, 545

rated-item.component.ts, 544–545

ratings.service.ts, 541–542

templates

building, 404–405

external templates, 408–410

compiling models, 298

Component class, 418–419

component directives, 441

component property (route object), 487

components (Angular), 396–397, 539–546.

See also services (Angular)

Angular bootstrapper, 398–402

animation application, 526–527

animated.component.css, 529

animated.Component.html, 529

animated.component.ts, 527–528

app.component.ts, 526

app.module.ts, 525–526

folder structure, 525

collections, 204

configuration, 403–404

constructors, 407

custom component directives, 452–456

container component, 454

CSS for container component, 455

CSS for root component, 454

HTML for container component,
455

HTML for root component,
 453–454

root component, 453

deleting data in, 461–464

dependency injection

building nested components with,
410–412

definition of, 392–393, 410

passing data with, 412–413

sample application with inputs,
413–414

drag-and-drop application

app.component.css, 535–536

app.component.html, 535

app.component.ts, 534–535

561copying

console, writing data to, 53–54

console module, 40, 53–54

constant data service, 505–506

app.component.html, 506

app.component.ts, 505

pi.service.ts, 505

constructor.component.ts listing, 407

constructors, 407

container component, 454

CSS for, 455

HTML for, 455

container directive

container.component.css, 455

container.component.html, 455

container.component.ts, 454

content, generating with CLI (command-line

interface), 394–395

continue event, 120

continue statement, 23–24

contributors directive, 47

converting

arrays to strings, 34

JavaScript objects to JSON, 74

JSON to JavaScript objects, 74

objects to strings, 184–185

cookie() method, 373, 378

cookieParser middleware, 368, 373–374

cookies

cookie sessions, 374–375

sending/receiving, 373–374

cookieSession middleware, 368,

374–375

copy() method, 79

copyDatabase() method, 213

copying

buffers, 79–80

databases, 213

components directives, 392, 442

compound indexes, 328

compress middleware, 368

compressing

buffers, 91–92

streams, 92–93

concat() method, 30, 31, 33–34, 81

$concat operator, 287

concatenating buffers, 81

conditionals

if statements, 20

switch statements, 20–21

config method, 161

--config parameter (mongod command), 202

config servers, creating, 338

configuration

components, 403–404

selectors, 404

templates, 404–405

Express, 343–344

HTTP requests, 471

MongoDB authentication, 210–211

query database operation, 299–302

connect event, 120, 124, 141

connect() method, 56, 140, 147, 154,

223, 292

connected property (ChildProcess object),

166

connecting to MongoDB

MongoClient class, 222

MongoClient object, 223–226

Mongoose, 292–294

write concern, 222

connection event, 124, 145

Connection object, 292–293

connectionTimeOut option

(server object), 224

562 count() method

drop.component.css, 537

external.css, 409

http.component.CSS, 474–475

outer.css, 411

rated-item.component.css, 545–546

./static/css/static.css, 370

update.component.CSS, 485–486

zoomit.component.css, 532

curly braces ({ }), 20, 24, 429

currency pipe, 423

current database, changing, 211–212

Cursor object, 232–233

custom Angular services, 503

constant data service, 505–506

app.component.html, 506

app.component.ts, 505

pi.service.ts, 505

data transform service, 506–510

app.component.css, 509

app.component.html, 508–509

app.component.ts, 507–508

area-calc.service.ts, 506–507

integrating into applications, 503–504

mock back-end service, 540–541

ratings service, 541–542

service that returns a promise,
515–516

shared service, 516–523

app.component.html, 519

app.component.ts, 519

badguys.component.css, 522

badguys.component.html, 522

badguys.component.ts, 521

good-guys.component.css, 521

good-guys.component.html, 520

good-guys.component.ts, 520

shared.service.ts, 517–518

count() method, 231, 233, 268–269, 300

$count operator, 285

counting documents, 268–269

cpus() method, 182

create() method, 300, 307

createAlert() method, 515

createCollection() method, 214, 228, 234,

237, 330

createConnection() method, 140

createDb() method, 481

createDelete.component.CSS listing,

479–480

createDelete.component.html listing, 479

createDelete.component.ts listing, 477–478

createReadStream() method, 105–106

createServer() method, 124, 126, 128, 136,

150, 154–156, 345

createTimedAlert() method, 515

createUser() method, 207, 208, 476, 478

createWriteStream() method, 101–102

crl option

htp.createServer(), 136

https.request(), 136

tls.createServer(), 155

crypto module, 41, 188–190

csrf middleware, 368

CSS (Cascading Style Sheets)

files, 9

inline CSS in Angular applications,
405–406

listings

app.component.css, 454, 495,
 513–514, 535–536, 544

attribute.component.css, 448

character.component.css, 462

container.component.css, 455

details.component.css, 463

drag.component.css, 538

563data I/O

D
Dahl, Ryan, 39

data binding, 429

attribute binding, 433

class binding, 433–434

definition of, 392

event binding, 436–439

interpolation, 430–431

property binding, 431–433

style binding, 435–436

two-way binding, 439–440

data changes, detecting with observables,

465–468

data denormalization, 196–197

data event, 82, 141

data I/O

buffers, 74–75

compressing/decompressing, 91–92

concatenating, 81

copying, 79–80

creating, 75–76

determining length of, 78

encoding methods, 75

reading from, 77–78

slicing, 80

writing to, 76–77

JSON (JavaScript Object Notation), 73

converting JavaScript objects to, 74

converting to JavaScript objects, 74

streams, 81

compressing/decompressing, 92–93

Duplex streams, 86–88

piping, 89–90

Readable streams, 82–84, 89–90

Transform streams, 88–89

Writable streams, 84–86, 89–90

use cases for, 503–504

variable data service, 510–514

app.component.css, 513–514

app.component.html, 513

app.component.ts, 512–513

random-image.service.ts,
511–512

custom directives, 449

custom attribute directives, 449–452

custom component directives,
452–456

container component, 454

CSS for container component, 455

CSS for root component, 454

HTML for container component,
455

HTML for root component,
453–454

root component, 453

custom events, 64–65, 457

deleting data with, 461–464

emitting from components, 458

handling with listeners, 458

implementing in nested components,
458–460

custom middleware, 380–381

custom pipes, 426–428

custom-defined objects, 28

customevent.component.html listing,

459–460

customevent.component.ts listing, 459

customPipes.component.ts listing, 427

custom.pipe.ts listing, 427

cwd() method, 162

cwd property

exec() and execFile() methods, 166

fork() function, 172

spawn() function, 170

564 data life cycles

date pipe, 423

db() method, 227

Db object, 227–228

db_connect_object.js listing, 226

db_connect_url.js listing, 225

db_create_list_delete.js listing, 234–236

db_status.js listing, 236–237

dbAdmin role (MongoDB), 208

dbAdminAnyDatabase role (MongoDB), 208

db.auth() method, 205

db.help command, 204

--dbpath parameter (mongod command), 203

dbs command, 204

debounce() method, 471

debugger module, 41

decipher class, 188

declarations metadata, 397, 410

decompressing

buffers, 91–92

streams, 92–93

decorators

@NgModule, 397–398, 410

@pipe, 426

defined parameters, applying route

parameters with, 348

deflate() method, 91

deflateRaw() method, 91

delaying work

interval timers, 61–62

timeout timers, 60–61

delete() method, 470

deleteChar() method, 461

deleteUser() method, 476, 478

deleting data, 461–464

array items, 34–35

collections, 215–216, 238

databases, 212–213

data life cycles, 199

data model, planning, 194–195

data normalization, 195–196

data passing with dependency injection,

412–413

Data property (route object), 487

data transform service, 506–510

app.component.css, 509

app.component.html, 508–509

app.component.ts, 507–508

area-calc.service.ts, 506–507

data types

JavaScript, 16–17

MongoDB, 193–194

TypeScript, 383–384

data usability, 200

Database Administrator accounts, 211

databases (MongoDB). See also collections

(MongoDB)

changing current, 211–212

connecting to using Mongoose,
 292–294

copying, 213

creating, 212, 234

database change options, 241–242

db_create_list_delete.js sample
 application, 234–236

deleting, 212–213, 234

displaying list of, 211

implementing schemas on, 295–296

listing, 233

query database operation

options, 301–302

setting, 299–301

repairing, 341

update operators, 242–244

databases command, 204

data.service.ts listing, 476, 481–482

565division (/) operator

directives. See also commands

author, 47

bin, 47

built-in directives, 441–442

attribute directives, 392, 445–448

components directives, 392, 442

structural directives, 392, 442–445

contributors, 47

custom directives, 449

custom attribute directives,
 449–452

custom component directives,
452–456

definition of, 441

dependencies, 48

description, 47

engines, 48

keywords, 48

main, 47

name, 47

preferGlobal, 47

repository, 48

scripts, 47

version, 47

directories

creating, 111–112

deleting, 111–112

node_modules, 221

renaming, 112

disable() method, 344

disabled() method, 344

disconnect event, 165, 174, 176

disconnect() method, 165, 175, 176, 292

distinct field values, finding, 276–277

distinct() method, 231, 276–277, 300

$divide operator, 286

division (/) operator, 18

directories, 111–112

documents, 217–218

findAndRemove() method, 257–258

with Mongoose, 314–317

remove() method, 217–218,
 255–256

event listeners, 65

files, 110

MongoDB user accounts, 209

denormalizing data, 196–197

dependencies directive, 48

dependency injection

building nested components with,
410–412

definition of, 392–393, 410

passing data with, 412–413

sample application with inputs,
 413–414

deploying

replica sets, 333–334

sharded MongoDB clusters, 338

adding shards to cluster, 339

config server database instances,
338

query router servers, 338–339

dereferencing timers, 63

description directive, 47

destroy() method, 142, 378

detached property (spawn() function), 170

details.component.css listing, 463

details.component.html listing, 463

details.component.ts listing, 462–463

detecting data changes, 465–468

diffieHellman class, 188

dir() function, 53

@directive class, 449

Directive class, 449

566 dns module

getting from collections, 246–248

growth of, 198

Mongoose Document object, 304–305

paths, 294

references, 195–196

removing

findAndRemove() method, 257–258

with Mongoose, 314–317

remove() method, 217–218,
 255–256

saving

with Mongoose, 310–311

save() method, 252–253

structure of, 192–193

TTY (time-to-live), 199

updating

findAndRemove() method, 218–219

with Mongoose, 311–314

update() method, 248–250

upserting, 253–254

dollar sign, 243

DOM (Document Object Model), 9

doRectangle() method, 507

doSquare() method, 507

doTrapezoid() method, 507

doTriangle() method, 507

double curly braces ({{}}), 429

do/while loops, 22

download responses, sending, 359

downloading MongoDB, 202

drag-and-drop application

app.component.css, 535–536

app.component.html, 535

app.component.ts, 534–535

drag.component.css, 538

drag.component.html, 538

drag.component.ts, 538

drop.component.css, 537

dns module, 41, 186–188

dns_lookup.js listing, 187–188

doc_aggregate.js listing, 288

doc_count.js listing, 268–269

doc_delete_one.js listing, 257–258

doc_delete.js listing, 255–256

doc_distinct.js listing, 277

doc_fields.js listing, 271–272

doc_find.js listing, 247–248

doc_group.js listing, 279–280

doc_insert.js listing, 245–246

doc_limit.js listing, 270–271

doc_modify.js listing, 251

doc_paging.js listing, 273–274

doc_query.js listing, 266–268

doc_save.js listing, 252–253

doc_sort.js listing, 275–276

doc_update.js listing, 249–250

doc_upsert.js listing, 253–254

doCalc() function, 26

doCircle() method, 507

Document object, 292, 304–305

Document Object Model. See DOM

(Document Object Model)

documents (MongoDB)

adding

insert() method, 217, 244–246

with Mongoose, 307–309

aggregating with Mongoose, 317–320

atomically modifying, 250–251

counting, 268–269

data denormalization, 196–197

data normalization, 195–196

embedded documents, 196–197

finding

find() method, 216

with Mongoose, 305–307

sets of documents, 265–268

567environment, adding Angular to

elemMatch() method, 304

$elemMatch operator, 264

embedded documents, 196–197

emit() method, 64, 458

emitter_listener.js listing, 66–67

emitting custom events, 458

enable() method, 344

enabled() method, 344

enableSharding() method, 339–340

encoding methods, 75

encoding property

exec() method, 167

execFile() method, 167

fork() function, 172

encrypt_password.js listing, 189

end event, 82, 141

end() method, 85, 120, 122, 127, 142

endian, 75

endianness() method, 181

engine() method, 360

engines, template, 360

defining, 360–361

locals, adding, 361

rendered templates, sending, 363–364

template creation, 361–363

engines directive, 48

ensureIndex() method, 329

entryComponents metadata option

(NgModule), 397

enum data type, 384

env method, 162

env property

exec() and execFile() methods, 166

fork() function, 172

spawn() function, 170

env setting (Express), 344

environment, adding Angular to, 393–394

drop.component.html, 537

drop.component.ts, 536

folder structure, 533–534

drag-item component

app.component.css, 535–536

app.component.html, 535

app.component.ts, 534–535

drag.component.css, 538

drag.component.html, 538

drag.component.ts, 538

drain event, 84, 142

driver. See MongoDB Node.js driver

drop() method, 215, 232

dropCollection() method, 228, 238

dropDatabase() method, 213, 228, 234

drop-item component

app.component.css, 535–536

app.component.html, 535

app.component.ts, 534–535

drop.component.css, 537

drop.component.html, 537

drop.component.ts, 536

dropping. See deleting data

dummyDB.JSON listing, 472

Duplex streams, 86–88

dynamic GET servers, 127–129

E
each() method, 232

$each operator, 244

eCDH class, 188

EJS template

creating, 361–363

implementing, 363–364

elements of arrays, adding/removing,

34–35

$elemMatch, 266

568 $eq operator

implementing in nested compo-
nents, 458–460

event callbacks, 55–56

event listeners

adding to objects, 65

implementing, 65–67

removing from objects, 65

event queue, scheduling work on,
59–60

IncomingMessage object, 123

process signals, 160

Readable streams, 82

Server object, 124, 145

ServerResponse object, 121

Socket object, 141–142

threaded models, 55–56

Worker object, 176

Writable streams, 84

events module, 41. See also events

exec() method, 166–168, 318

execArgv method, 162

execFile() method, 168–169

execPath method, 162

execPath property (fork() function), 172

executable files, executing on another

process, 168–169

executables

mongod.exe, 202

Node.js executables, verifying, 42–43

executing

executable files on another process,
168–169

processes, 161

system commands on another process,
166–168

exist event, 165

exists() method, 106–107, 303

$exists operator, 263

$eq operator, 263

equal sign (=), 18

equality operators, 19

equals() method, 304

error event, 82, 142, 145, 165, 176

error() function, 53

error handling, 35

finally keyword, 36–37

throwing errors, 36

try/catch blocks, 35–36

errors module, 41

errors property (Document object), 305

escape codes, 29–30

event binding, 436–439

event listeners

adding to objects, 65

implementing, 65–67

removing from objects, 65

event queue, scheduling work on, 59–60

event.component.ts listing, 436–438

EventEmitter object, 64–65, 458

eventHandler() method, 459

events, 55–56

binding, 436–439

blocking I/O, 57–58

browser events, 457–458

callbacks, 67

chaining, 70

implementing closure in, 68–69

passing parameters to, 67–68

ClientRequest object, 120

cluster module, 174

conversation metaphor, 57–59

custom events, 64–65, 458

deleting data with, 461–464

emitting from components, 458

handling with listeners, 458

569expressions

sending, 353–355

status, 353

routes

applying parameters in, 347–350

definition of, 345

implementing, 346

server, starting, 345

template engines, 360

defining, 360–361

locals, adding, 361

rendered templates, sending,
363–364

template creation, 361–363

express_auth_one.js listing, 376

express_auth_session.js listing, 378–379

express_auth.js listing, 376

express_cookies.js listing, 373–374

express_http_https.js listing, 345

express_json.js listing, 356

express_middleware.js listing, 381

express_post.js listing, 372

express_redirect.js listing, 359

express_request.js listing, 351

express_routes.js listing, 349–350

express_send_file.js listing, 358

express_send.js listing, 354

express_session.js listing, 374–375

express_static.js listing, 370

express_templates.js listing, 363–364

expressions, 415–416

basic expressions, 416–417

Component class interaction,
418–419

pipes

built-in pipes, 422–426

custom pipes, 426–428

definition of, 422

TypeScript in, 419–422

existsSync() method, 106–107

exit command, 204

exit event, 174, 176

exit() method, 161

explain option (options object), 264

export classes

Directive, 449

ZoomDirective, 451

export keyword, 392

exporting modules, 392

exports metadata option (NgModule), 397

Express, 13, 343

configuring, 343–344

installing, 343

middleware, 367–368

assigning globally to path, 368

assigning to single route, 368

basicAuth, 368, 375–377

bodyParser, 368, 371–372

compress, 368

cookieParser, 368, 373–374

cookieSession, 368, 374–375

csrf, 368

custom, 380–381

favicon, 367

functions, 369

logger, 367

query, 368, 369

session, 368, 377–380

static, 367, 369–371

Request objects, 350–352

Response objects, 352

download responses, 359

files in, 356–358

headers, 352–353

JSON responses, 355–357

redirection, 359

rendered templates in, 363–364

570 extensibility

truncating, 110–111

verifying path of, 106–107

watching for file changes, 112–113

writing, 97–102

synchronous file system calls, 95

file_read_async.js listing, 105

file_read_stream.js listing, 106

file_read_sync.js listing, 103–104

file_readdir.js listing, 109–110

file_read.js listing, 102–103

file_stats.js listing, 108

file_write_async.js listing, 100–101

file_write_stream.js listing, 101

file_write_sync.js listing, 99

file_write.js listing, 98

files. See also listings

deleting, 110

executing in another process, 168–169

listing, 108–110

node, 42

opening/closing, 96–97

package.json file, 47–48

reading

asynchronous file reading, 104–105

simple file read, 102–103

streamed file reading, 105–106

synchronous file reading, 103–104

renaming, 112

returning statistics about, 107–108

sending in responses, 356–358

static files, serving, 125–127, 369–371

truncating, 110–111

verifying path of, 106–107

watching for file changes, 112–113

writing

asynchronous file writing, 99–101

simple file write, 98

extensibility

of Angular, 14

of Node.js, 3, 12

external sources, interacting with, 132–134

external templates, 408–410

external.component.ts listing, 409

external.css listing, 409

externalTemplate.html listing, 409

F
\f (form feed) escape code, 30

--f parameter (mongod command), 202

$facet operator, 285

@fadeState, 527–529

favicon middleware, 367

feed() function, 386

fields

distinct field values, finding, 276–277

limiting results by, 271–272

naming conventions, 193

required fields, forcing, 296

unique fields, 296

fields option (options object), 264

file system, 41, 95

asynchronous file system calls, 95

directories

creating, 111–112

deleting, 111–112

renaming, 112

files

deleting, 110

listing, 108–110

opening/closing, 96–97

reading, 102–106

renaming, 112

returning statistics about, 107–108

571getObservable() method

fsync option, 242

functions, 24. See also individual functions
(for example, doCalc() function)

anonymous functions, 25–26

callback functions, 67

applying for defined parameters,
348–349

chaining, 70

implementing closure in, 68–69

passing parameters to, 67–68

defining, 24

passing variables to, 24–25

returning values from, 25

TypeScript functions, 388–389

G
generating content with CLI (command-line

interface), 394–395

$geoNear operator, 285

geospatial indexes, 328

get() method, 304, 344, 352, 470

GET requests

definition of, 9

dynamic GET servers, 127–129

response callback functions, 471

sending, 470–471

GET servers, 127–129

getCensoredWords() function, 52

getCharacters() method, 517

getConnections() method, 146

GetData requests, 55–56

GetFile requests, 55–56

getgid() method, 162

getgroups() method, 163

getHeader() method, 122

getItems() method, 541

getObservable() method, 541, 543

streaming file writing, 101–102

synchronous file writing, 98–99

fill() method, 76

finally keyword, 36–37

find() method, 216, 231, 246–248, 265–

268, 299, 300, 306

findAndModify() method, 231, 250–251

findAndRemove() method, 231, 257, 300

findOne() method, 231, 246–248, 300, 305

findOneAndUpdate() method, 301

finish event, 84

$first operator, 286

first.component.js listing, 402

first.component.ts listing, 400

first.html listing, 399

flush() method, 88

(focus) event, 457

folders, node_modules, 42

forceServerObjectId option, 242

forcing required fields, 296

for/in loops, 23

fork event, 174

fork() method, 171–173

forks, 171–173

for loops, 22–23

form feed escape code, 30

form parameters, processing, 117–118

format() method, 183–184

formatGreeting() function, 25

formatting strings, 183–184

forms service, 470

frameworks. See Angular; Node.js

freemem() method, 182

fresh property (Request object), 351

fromCharCode() method, 30

fs module. See file system

572 getPi() method

hashed indexes, 329

head() method, 470

headers, 10, 352–353

headers property (IncomingMessage

object), 123

headersSent event, 121

help command, 204

--help parameter (mongod command), 202

Hex encoding, 75

high availability, 3, 13

hint() method, 302

hint option (options object), 264

hitCharacter() method, 517–520

hmac class, 189

home.component.html listing, 490

home.component.ts listing, 490

honorCipherOrder option (tls.createServer),

155

host property

ClientRequest object, 119

URL object, 116

hostname() method, 181

hostname property

ClientRequest object, 119

Request object, 351

URL object, 116

href property (URL object), 116

hrtime() method, 162

HTML (Hypertext Markup Language)

events, Angular syntax for, 457–458

files, 9

inline HTML in Angular applications,
405–406

listings

animated.Component.html, 529

app.component.html. See app.com-
ponent.html listing

getPi() method, 505

getRandom() function, 510

getRandomImage() method, 512

getSiblingDB() method, 212

getStarClass() method, 544–545

getuid() method, 162

getUsers() method, 476, 482

getWeather() function, 132

gid property (spawn() function), 170

global module, 41, 190

Good Guys component

good-guys.component.css, 521

good-guys.component.html, 520

good-guys.component.ts, 520

gotoPage2() function, 498–499

$graphLookup operator, 285

greater than (>) operator, 19

greater than or equal to (>=) operator, 19

greeting() function, 25

group() method, 277–282, 318

$group operator, 284

grouping results, 277–282

growth of MongoDB documents, 198

gt() method, 303

$gt operator, 263

gte() method, 303

$gte operator, 263

gunzip() method, 91

gzip() method, 91

H
handshakeTimeout option (tls.createServer),

155

hash class, 189

hash property (URL object), 117

hash-based sharding, 337

http://app.com-ponent.html
http://app.com-ponent.html

573http service

query string and form parameter
 processing, 117–118

requests, 9

ClientRequest object, 118–121

methods, 350–352

POST, 371–372

properties, 350–352

responses, 352

download responses, 359

files in, 356–358

headers, 352–353

IncomingMessage object, 122–123

JSON responses, 355–357

redirecting, 359

rendered templates in, 363–364

sending, 353–355

ServerResponse object, 121–122

status, 353

servers

dynamic GET servers, 127–129

external sources, interacting with,
132–134

POST servers, 130–131

Server object, 123–125

static files, serving, 125–127

URLs (Uniform Resource Locators)

resolving, 117

structure of, 115–116

URL object, 116–117

http module. See HTTP (Hypertext Transfer

Protocol)

http service, 470

GET requests, sending, 470–471

JSON file implementation and access,
472–475

app.module.ts, 473–474

dummyDB.JSON, 472

http.component.CSS, 474–475

app.module.ts, 480

attribute.component.html, 447

badguys.component.html, 522

character.component.html, 462

container.component.html, 455

createDelete.component.html, 479

customevent.component.html,
459–460

details.component.html, 463

drag.component.html, 538

drop.component.html, 537

externalTemplate.html, 409

first.html, 399

good-guys.component.html, 520

home.component.html, 490

http.component.html, 474

observable.component.html, 467

outer.html, 411

page1.component.html, 499

page2.component.html, 496, 500

page3.component.html, 496

rated-item.component.html, 545

route2.component.html, 491

update.component.html, 484–485

user_ejs.html, 362

zoomit.component.html, 532

router-outlet tag, 488

HTTP (Hypertext Transfer Protocol), 8, 115.

See also http service

authentication, 375–377

clusters, 176–179

headers, 10

HTTPS, 8, 134–135

certificate signing request files, 135

HTTPS clients, 135–136

HTTPS servers, 137

private keys, 135

574 http service

httpVersion property (IncomingMessage

object), 123

Hypertext Markup Language. See HTML

(Hypertext Markup Language)

Hypertext Transfer Protocol. See HTTP

(Hypertext Transfer Protocol)

I
_id indexes, 327–328

id metadata option (NgModule), 397

id property

Document object, 304

Schema object, 295

Worker object, 176

IDE (Integrated Development Environment),

43

if statements, 20

imageClick() function, 532

images

animation application

animated.component.css, 529

animated.Component.html, 529

animated.component.ts, 527–528

app.component.html, 526–527

app.component.ts, 526

app.module.ts, 525–526

drag-and-drop application

app.component.css, 535–536

app.component.html, 535

app.component.ts, 534–535

drag.component.css, 538

drag.component.html, 538

drag.component.ts, 538

drop.component.css, 537

drop.component.html, 537

drop.component.ts, 536

folder structure, 533–534

http.component.html, 474

http.component.ts, 473

PUT requests, sending, 470–471

request configuration, 471

response callback functions, 471

simple mock server implementation,
475–481

app.module.ts, 480

createDelete.component.CSS,
479–480

createDelete.component.html, 479

createDelete.component.ts, 477–
478

creating, 475

data.service.ts, 476

user.service.ts, 478–479

simple mock server updates, 481–486

data.service.ts, 481–482

update.component.CSS, 485–486

update.component.html, 484–485

update.component.ts, 482–483

user.service.ts, 483–484

http_client_get.js listing, 128

http_client_post.js listing, 131

http_client_static.js listing, 126–127

http_server_external listing, 132–133

http_server_get.js listing, 128

http_server_post.js listing, 130

http_server_static.js listing, 126

http.component.CSS listing, 474–475

http.component.html listing, 474

http.component.ts listing, 473

HttpModule, importing, 473–474

https module, 41, 134–135

certificate signing request files, 135

HTTPS clients, 135–136

HTTPS servers, 137

private keys, 135

575I/O

inherits() method, 83, 185–186

initgroups() method, 163

inline CSS and HTML, 405–406

InMemoryDbService, importing, 476, 481

InMemoryWebApiModule

implementing, 540

importing, 480–481

in() method, 303

inner.component.ts listing, 412

$in operator, 263

Input decorator, 412

input.component.ts listing, 413–414

insert() method, 217, 230, 244–246

inspect() method, 184–185

installing

Express, 343

MongoDB, 201–202

Node.js, 42

NPMs (Node Packaged Modules), 46

Integrated Development Environment

(IDE), 43

interface keyword, 385

interfaces

Person, 385

PersonInterface, 386

RatedItem, 541

Stringy, 385

TypeScript, 385–386

interpolation, 430–431

interpolation.component.ts listing, 430–431

interrupting loops, 23–24

interval timers, 61–62

intro.ts listing, 406

invalidate() method, 305

I/O

blocking, 57–58

pipes, 159–160

image zoom application

app.component.html, 531

app.component.ts, 530–531

folder structure, 530

zoomit.component.css, 532

zoomit.component.html, 532

zoomit.component.ts, 531–532

immediate timers, 62

import keyword, 392

importing

modules, 392

ActivatedRoute, 488

AppRoutingModule, 488

Component, 396–397

HttpModule, 473–474

InMemoryDbService, 476, 481

InMemoryWebApiModule, 480–481

NgModule, 397–398

Router, 488, 492

Observable object, 510–512

imports metadata option (NgModule), 397

$inc operator, 243

IncomingMessage object, 122–123

increment (++) operator, 18

index() method, 295–296

indexed arrays, 384

indexes, 198–199

adding to schemas, 295–296

creating, 327–330

indexes() method, 296

indexOf() method, 30, 31, 33, 34

indexOptionsDefaults option (collections), 215

$indexStats operator, 285

inflate() method, 91

inflateRaw() method, 91

info() function, 53

inheritance, 387

576 ip property (Request object)

JSON (JavaScript Object Notation), 73

converting JavaScript objects to, 74

converting to JavaScript objects, 74

keywords

export, 392

finally, 36–37

import, 392

new, 27

styles, 405

styleUrls, 408

templateUrl, 408

var, 15–16

loops, 21

do/while, 22

for, 22–23

for/in, 23

interrupting, 23–24

while, 21

methods, 27. See also individual methods
(for example, write() method)

objects, 27

Array, 32–33

converting JSON to, 74

converting to JSON, 74

custom events, 64–65

custom-defined objects, 28

prototyping object patterns, 29

String, 29–31

syntax, 27–28

operators, 17

arithmetic operators, 17–18

assignment operators, 18

comparison operators, 19–20

isinstanceof, 184

statements

break, 23–24

catch, 35–36

ip property (Request object), 351

isClosed() method, 233

isInit() method, 305

isinstanceof operator, 184

isMaster property (cluster module), 175

isModified() method, 305

isNew property (Document object), 305

isSelected() method, 305

isWorker property (cluster module), 175

iterating through arrays, 34

J
JavaScript, 15. See also listings

arrays

adding items to, 34–35

combining, 33–34

converting into strings, 34

iterating through, 34

manipulating, 32–33

methods, 32–33

removing items from, 34–35

searching, 34

conditionals

if statements, 20

switch statements, 20–21

data types, 16–17

error handling, 35

finally keyword, 36–37

throwing errors, 36

try/catch blocks, 35–36

functions, 24. See also individual func-
tions (for example, doCalc() function)

anonymous functions, 25–26

callback functions, 67–70, 348–349

defining, 24

passing variables to, 24–25

returning values from, 25

577$limit operator

K
keepAlive option (server object), 224

key option

htp.createServer(), 135–136

https.request(), 135–136

tls.connect(), 154

tls.createServer(), 155

(keydown) event, 458

(keypress) event, 458

keys

private keys, generating, 135

shard keys, 336–337

x509 public key, 135, 137

(keyup) event, 458

keywords. See also statements

export, 392

import, 392

new, 27

styles, 405

styleUrls, 408

templateUrl, 408

this, 323

var, 15–16

keywords directive, 48

kill() method, 161, 165, 176

killSignal property (exec() method), 167

L
$last operator, 286

lastIndexOf() method, 30, 33

leave() method, 527

length of buffers, determining, 78

less than (<) operator, 19

less than or equal to (<=) operator, 19

limit() method, 301, 318

$limit operator, 284

continue, 23–24

if, 20

return, 25

switch, 20–21

throw, 36

try, 35–36

strings

combining, 31

converting arrays into, 34

manipulating, 29–31

replacing words in, 31

searching, 31

splitting, 32

string-related methods, 30–31

variables

defining, 15–16

passing to functions, 24–25

scope, 26–27

JavaScript Object Notation. See JSON

(JavaScript Object Notation)

join() method, 33, 34

journal option, 242

JSON (JavaScript Object Notation), 73

converting JavaScript objects to, 74

converting to JavaScript objects, 74

file implementation and access,
472–475

app.module.ts, 473–474

dummyDB.JSON, 472

http.component.CSS, 474–475

http.component.html, 474

http.component.ts, 473

responses, sending, 355–357

json pipe, 423

jsonp callback name setting (Express), 344

jsonp replacer setting (Express), 344

jsonp spaces setting (Express), 344

578 limit option (options object)

drag-and-drop application, 535

image zoom application, 531

PiService, 506

PromiseService, 516

RandomImageService, 513

router with navigation bar, 494

SharedService, 519

star rating application, 543–544

zoom directive, 451–452

app.component.ts

animation application, 526

AreaCalcService, 507–508

custom directive with component,
453

drag-and-drop application, 534–535

image zoom application, 530–531

PiService, 505

PromiseService, 515–516

RandomImageService, 512–513

router with navigation bar, 494

router with parameters, 498

SharedService, 519

simple router application, 490

star rating application, 543

app.module.js, 401

app.module.ts

Angular bootstrapper, 400

animation application, 525–526

simple mock server implementa-
tion, 473–474, 480

simple router implementation,
488–489

star rating application, 540

app-routing.module.ts

router with navigation bar, 492–493

router with parameters, 498

simple router implementation,
489–490

limit option (options object), 264

limiting result sets, 270

by fields, 271–272

paging results, 273–274

by size, 270–271

listDatabases() method, 229, 233

listdb_connect_url.js, 225

listen() method, 124, 146, 345

listeners, 458

adding to objects, 65

implementing, 65–67

removing from objects, 65

listeners() function, 65

listening event, 145, 174

listing

collections, 214, 237

databases, 211, 233

files, 108–110

MongoDB server status, 236–237

MongoDB user accounts, 206–207

listings

animated.component.css, 529

animated.Component.html, 529

animated.component.ts, 527–528

app.component.css

AreaCalcService, 509

custom directive with component,
454

drag-and-drop application, 535–536

RandomImageService, 513–514

router with navigation bar, 495

star rating application, 544

app.component.html

animation application, 526–527

AreaCalcService, 508–509

custom directive with component,
453–454

579listings

customevent.component.html, 459–460

customevent.component.ts, 459

customPipes.component.ts, 427

custom.pipe.ts, 427

data.service.ts, 476, 481–482

db_connect_object.js, 226

db_create_list_delete.js, 234–236

db_status.js, 236–237

details.component.css, 463

details.component.html, 463

details.component.ts, 462–463

dns_lookup.js, 187–188

doc_aggregate.js, 288

doc_count.js, 268–269

doc_delete_one.js, 257–258

doc_delete.js, 255–256

doc_distinct.js, 277

doc_fields.js, 271–272

doc_find.js, 247–248

doc_group.js, 279–280

doc_insert.js, 245–246

doc_limit.js, 270–271

doc_modify.js, 251

doc_paging.js, 273–274

doc_query.js, 266–268

doc_save.js, 252–253

doc_sort.js, 275–276

doc_update.js, 249–250

doc_upsert.js, 253–254

drag.component.css, 538

drag.component.html, 538

drag.component.ts, 538

drop.component.css, 537

drop.component.html, 537

drop.component.ts, 536

dummyDB.JSON, 472

emitter_listener.js, 66–67

area-calc.service.ts, 506–507

attribute.component.css, 448

attribute.component.html, 447

attribute.component.ts, 446–447

badguys.component.css, 522

badguys.component.html, 522

badguys.component.ts, 521

basicExpressions.component.ts, 417

buffer_concat.js, 81

buffer_copy.js, 79

buffer_read.js, 78

buffer_slice.js, 80

buffer_write.js, 77

builtInPipes.component.ts, 425

callback_chain.js, 70

callback_closure.js, 69

callback_parameter.js, 67–68

censortext.js, 49

character.component.css, 462

character.component.html, 462

character.component.ts, 461–462

child_exec.js, 167–168

child_fork.js, 172–173

child_process_exec_file.js, 168–169

child_process_spawn_file.js, 170–171

class.component.ts, 434

classExpressions.component.ts, 418–419

cluster_server.js, 177–179

collection_create_list_delete.js, 238–239

collection_stat.js, 239–240

constructor.component.ts, 407

container.component.css, 455

container.component.html, 455

container.component.ts, 454

createDelete.component.CSS, 479–480

createDelete.component.html, 479

createDelete.component.ts, 477–478

580 listings

home.component.html, 490

home.component.ts, 490

http_client_get.js, 128

http_client_post.js, 131

http_client_static.js, 126–127

http_server_external, 132–133

http_server_get.js, 128

http_server_post.js, 130

http_server_static.js, 126

http.component.CSS, 474–475

http.component.html, 474

http.component.ts, 473

inner.component.ts, 412

input.component.ts, 413–414

interpolation.component.ts, 430–431

intro.ts, 406

main_pug.pug, 362–363

mockbackend.service.ts, 540–541

mongoose_aggregate.js, 319

mongoose_connect.js, 293

mongoose_create.js, 308–309

mongoose_find.js, 306–307

mongoose_middleware.js, 323–324

mongoose_remove_many.js, 316

mongoose_remove_one.js, 315

mongoose_save.js, 310

mongoose_update_many.js, 313–314

mongoose_update_one.js, 312

mongoose_validation.js, 321

nav.component.CSS, 494

nav.component.html, 493

nav.component.ts, 493

nexttick.js, 63–64

observable.component.html, 467

observable.component.ts, 466–467

os_info.js, 182–183

outer.component.ts, 411

encrypt_password.js, 189

event.component.ts, 436–438

express_auth_one.js, 376

express_auth_session.js, 378–379

express_auth.js, 376

express_cookies.js, 373–374

express_http_https.js, 345

express_json.js, 356

express_middleware.js, 381

express_post.js, 372

express_redirect.js, 359

express_request.js, 351

express_routes.js, 349–350

express_send_file.js, 358

express_send.js, 354

express_session.js, 374–375

express_static.js, 370

express_templates.js, 363–364

external.component.ts, 409

external.css, 409

externalTemplate.html, 409

file_read_async.js, 105

file_read_stream.js, 106

file_read_sync.js, 103–104

file_readdir.js, 109–110

file_read.js, 102–103

file_stats.js, 108

file_write_async.js, 100–101

file_write_stream.js, 101

file_write_sync.js, 99

file_write.js, 98

first.component.js, 402

first.component.ts, 400

first.html, 399

good-guys.component.css, 521

good-guys.component.html, 520

good-guys.component.ts, 520

581lookup() method

stream_transform.js, 88–89

stream_write.js, 85

structural.component.ts, 443–444

style.component.ts, 435

twoWay.component.ts, 439–440

typescriptExpressions.component.ts, 421

update.component.CSS, 485–486

update.component.html, 484–485

update.component.ts, 482–483

user_ejs.html, 362

user.service.ts, 478–479, 483–484

util_inherit.js, 185–186

word_schema.js, 297

zlib_buffers.js, 91–92

zlib_file.js, 93

zoom.component.ts, 450–452

zoom.directive.ts, 450–451

zoomit.component.css, 532

zoomit.component.html, 532

zoomit.component.ts, 531–532

little endian, 75

load() method, 205, 206

loadavg() method, 182

loadChildren property (route object), 487

local template variables, adding, 361

localAddress property

ClientRequest object, 119

Socket object, 143

localPort property (Socket object), 144

location() method, 353

log() function, 53

logCar() function, 67–70

logColorCar() function, 67

logger middleware, 367

logout() method, 228, 229

--logpath parameter (mongod command), 203

lookup() method, 186

outer.css, 411

outer.html, 411

package.json, 50, 51

page1.component.html, 499

page1.component.ts

router with navigation bar, 495

router with parameters, 499

page2.component.html

router with navigation bar, 496

router with parameters, 500

page2.component.ts

router with navigation bar, 495

router with parameters, 500

page3.component.html, 496

page3.component.ts, 496

person.component.ts, 413

pi.service.ts, 505

process_info.js, 163–164

promise.service.ts, 515

property.component.ts, 432

random-image.service.ts, 511–512

rated-item.component.css, 545–546

rated-item.component.html, 545

rated-item.component.ts, 544–545

ratings.service.ts, 541–542

readwords.js, 52

route2.component.html, 491

route2.component.ts, 491

shared.service.ts, 517–518

simple_interval.js, 61–62

simple_timer.js, 60–61

socket_client.js, 148–149

socket_server.js, 151–152

./static/css/static.css, 370

stream_duplex.js, 87

stream_piped.js, 90

stream_read.js, 83–84

582 $lookup operator

methods. See also individual methods
(for example, write() method)

adding to schemas, 295–296

definition of, 27

methods property (Schema object), 296

middleware (Express), 367–368

assigning globally to path, 368

assigning to single route, 368

basicAuth, 368, 375–377

bodyParser, 368, 371–372

compress, 368

cookieParser, 368, 373–374

cookieSession, 368, 374–375

csrf, 368

custom, 380–381

favicon, 367

functions, 369

logger, 367

Mongoose middleware functions,
322–324

query, 368, 369

session, 368, 377–380

static, 367, 369–371

middleware functions (Mongoose),

322–324

$min operator, 286

mkdir() method, 111

mkdirSync() method, 111

mock back-end service, 540–541

mock web servers

simple JSON file implementation,
472–475

app.module.ts, 473–474

dummyDB.JSON, 472

http.component.CSS, 474–475

http.component.html, 474

http.component.ts, 473

simple mock server implementation,
475–481

$lookup operator, 285

loops, 21

do/while, 22

for, 22–23

for/in, 23

interrupting, 23–24

while, 21

lowercase pipe, 423

lt() method, 303

$lt operator, 263

$lte operator, 263

M
main directive, 47

main_pug.pug listing, 362–363

manipulating

arrays, 32–33

strings, 29–31

map() method, 471

MapReduce, 282. See also aggregating

results

markModified() method, 305

match() method, 30, 318

$match operator, 283, 284

$max operator, 286

max option (collections), 214

maxBuffer property (exec() method), 167

--maxConns parameter (mongod command),

203

maxScan option (options object), 265

maxTickDepth() method, 162

media files, 9

memoryUsage() method, 162

message event, 165, 176

method property

ClientRequest object, 119

IncomingMessage object, 123

Request object, 351

583modules (Node.js)

modules (Node.js)

assertion testing, 190

buffer. See buffers

C/C++ add-ons, 190

child_process, 159–160

child forks, 171–173

ChildProcess object, 164–166

executable files, executing on
another process, 168–169

processes, spawning, 169–171

system command, executing on
another process, 166–168

cluster, 174

events, 174

HTTP clusters, 176–179

methods, 175

properties, 175

Worker object, 175–176

console, 53–54

creating, 49–50

crypto, 188–190

definition of, 43

dns, 186–188

events. See events

express. See Express

fs. See file system

global, 190

http. See HTTP (Hypertext Transfer
Protocol)

https, 134–135

certificate signing request files, 135

HTTPS clients, 135–136

HTTPS servers, 137

private keys, 135

installing, 46

loading into Node.js applications,
52–53

mongodb. See MongoDB Node.js driver

app.module.ts, 480

createDelete.component.CSS,
479–480

createDelete.component.html, 479

createDelete.component.ts,
477–478

creating, 475

data.service.ts, 476

user.service.ts, 478–479

simple mock server updates,
481–486

data.service.ts, 481–482

update.component.CSS, 485–486

update.component.html,
484–485

update.component.ts, 482–483

user.service.ts, 483–484

mockbackend.service.ts listing, 540–541

mod() method, 303

$mod operator, 263, 287

model() method, 298

Model object, 292, 298

models, compiling, 298

modifiedFields() method, 310

modifiedPaths() method, 305

modules (Angular), 392

importing

AppRoutingModule, 488

BrowserAnimationsModule, 526

Component, 396–397

HttpModule, 473–474

InMemoryDbService, 476, 481

InMemoryWebApiModule,
480–481

NgModule, 397–398

Router, 492

routing module, 488

TypeScript, 387–388

584 modules (Node.js)

MongoClient object, 222, 223–226

mongod command, 202–203

MongoDB, 192. See also MongoDB Node.js

driver; Node.js-to-Angular stack

access control, 209

authentication, 210–211

Database Administrator accounts,
211

User Administrator accounts,
209–210

access from shell client, 203–204

command parameters, 205

shell commands, 204

shell methods, 205

shell scripts, 205–206

advantages of, 3, 12–13

atomic write operations, 198

backing up, 341–342

collections

accessing statistics for, 239–240

adding documents to, 217,
 244–246, 307–309

atomically modifying documents
in, 250–251

capped collections, 197–198, 330

collection_create_list_delete.js
application example, 238–239

creating, 214–215, 237

definition of, 192

deleting, 215–216, 238

deleting documents in, 217–218,
255–256

displaying list of, 214

enabling sharding on, 340

finding documents in, 216, 305–307

getting documents from, 246–248

listing, 237

number of, 199

mongoose. See Mongoose

net, 41. See also socket services

Server object, 144–147

Socket objects, 140–144

Node Package Manager, 44–45

Node Package Registry, 43–44

publishing modules to, 50–51

viewing, 43–44

os, 181–183

overview of, 40–41

package.json file, 47–48

process, 159

process execution, 161

process I/O pipes, 159–160

process signals, 160

returning information from,
161–164

publishing to NPM Registry, 50–51

REPL (Read Event Print Loop), 190

searching for, 45

stream. See streams

tls, 139–140, 152–153

TLS socket clients, 153–154

TLS socket servers, 154–156

util, 183–186

format() method, 183–184

inherits() method, 185–186

inspect() method, 184–185

isinstanceof operator, 184

V8, 190

Zlib, 91

compressing/decompressing buffers,
91–92

compressing/decompressing
streams, 92–93

modules module, 41

modulus (%) operator, 18

585MongoDB

data denormalization, 196–197

data normalization, 195–196

embedded documents, 196–197

finding, 216, 265–268, 305–307

getting from collections, 246–248

growth of, 198

paths, 294

references, 195–196

removing, 217–218, 255–256,
 257–258, 314–317

saving, 252–253, 310–311

structure of, 192–193

TTY (time-to-live), 199

updating, 218–219, 248–250,
309–314

upserting, 253–254

downloading, 202

indexing, 198–199, 327–330

installing, 201–202

MapReduce, 282

middleware functions, 322–324

Mongoose, 291–292

adding documents with, 307–309

aggregating documents with,
317–320

Document object, 304–305

finding documents with, 305–307

middleware functions, 322–324

models, compiling, 298

objects, 292

Query object, 298–305

removing multiple documents
with, 315–317

removing single documents with,
314–315

schemas, 294–298

updating multiple documents with,
313–314

removing documents from, 314–317

removing single document from,
257–258

saving documents in, 252–253,
310–311

updating documents in, 218–219,
248–250, 309–310

upserting documents in, 253–254

connecting to

MongoClient object, 222, 223–226

Mongoose, 292–294

write concern, 222

data life cycles, 199

data model, planning, 194–195

data types, 193–194

data usability and performance, 200

databases

changing current, 211–212

connecting to using Mongoose,
292–294

copying, 213

creating, 212, 234

database change options, 241–242

db_create_list_delete.js sample
application, 234–236

deleting, 212–213, 234

displaying list of, 211

listing, 233

repairing, 341

update operators, 242–244

definition of, 3, 12

distinct field values, finding, 276–277

documents

adding, 217, 244–246, 307–309

aggregating with Mongoose,
 317–320

atomically modifying, 250–251

counting, 268–269

586 MongoDB

user accounts

creating, 206–207

listing, 206–207

removing, 209

roles, 208

mongodb module. See MongoDB Node.js

driver

MongoDB Node.js driver. See also

Mongoose

adding to project, 221

collections

accessing statistics for, 239–240

collection_create_list_delete.js
application example, 238–239

creating, 237

deleting, 238

listing, 237

database change options, 241–242

database update operators, 242–244

databases

creating, 234

db_create_list_delete.js sample
application, 234–236

deleting, 234

listing, 233

distinct field values, finding, 276–277

documents

adding to collections, 244–246

atomically modifying, 250–251

counting, 268–269

deleting, 255–258

finding specific sets of,
265–268

getting from collections, 246–248

saving in collections, 252–253

updating in collections, 248–250

upserting, 253–254

updating single documents with,
311–313

validation framework, 320–322

objects

Admin, 229

Collection, 229–232

Cursor, 232–233

Db, 227–228

MongoClient, 222, 223–226

options, 264–265

query, 262–264

replication, 199

applying, 330–332

replica sets, 333–334

strategy, 332–333

result sets, 270

aggregating, 282–289

grouping results, 277–282

limiting by size, 270–271

limiting fields returned in, 271–272

paging results, 273–274

sorting, 275–276

server status, displaying, 236–237

sharding, 199

definition of, 334

enabling on collections, 340

enabling on databases, 339–340

hash-based sharding, 337

partitioning methods, 337

range-based sharding, 337

shard keys, 336–337

shard tag ranges, 340–341

sharded MongoDB clusters,
338–339

sharding server types, 335

starting, 202–203

stopping, 203

587navigating routes

methods, 295–296

paths, 294

required fields, forcing, 296

unique fields, 296

value types, 294–298

validation framework, 320–322

mongoose_aggregate.js listing, 319

mongoose_connect.js listing, 293

mongoose_create.js listing, 308–309

mongoose_find.js listing, 306–307

mongoose_middleware.js listing, 323–324

mongoose_remove_many.js listing, 316

mongoose_remove_one.js listing, 315

mongoose_save.js listing, 310

mongoose_update_many.js listing,

313–314

mongoose_update_one.js listing, 312

mongoose_validation.js listing, 321

(mouseover) event, 458

multi option, 242

multikey indexes, 328

multiple documents

removing with Mongoose, 315–317

updating with Mongoose, 313–314

multiplication (*) operator, 18

$multiply operator, 287

myCustomEvent, 459

N
\n (new line) escape code, 29

name directive, 47

naming conventions, 193, 404

nav.component.CSS listing, 494

nav.component.html listing, 493

nav.component.ts listing, 493

navigating routes, 488

objects

Admin, 229

Collection, 229–232

Cursor, 232–233

Db, 227–228

query objects, 262–265

result sets, 270

aggregating, 282–289

grouping results, 277–282

limiting by size, 270–271

limiting fields returned in, 271–272

paging results, 273–274

sorting, 275–276

mongod.exe, 202

mongodump command, 342

Mongoose, 291–292

connecting to MongoDB with, 292–294

Document object, 304–305

documents

adding, 307–309

aggregating, 317–320

finding, 305–307

removing multiple, 315–317

removing single, 314–315

saving, 310–311

updating multiple, 313–314

updating single, 311–313

models, compiling, 298

objects, 292

Query object, 298–299

operators, 302–304

query database operation, 299–302

schemas

defining, 294–295

implementing on database,
295–296

indexes, 295–296

588 navigation bar, router with

ng generate directive command, 395

ng generate enum command, 395

ng generate guard command, 395

ng generate interface command, 395

ng generate module command, 395

ng generate pipe command, 395

ng generate service command, 395

ng new command, 395

ng serve command, 395

ng-content directive, 452

ngFor directive, 442, 474, 479, 484, 513

ngForm directive, 445

ngIf directive, 442–443

ngModel directive, 445

NgModule, 397–398, 410

ngOnInit() method, 465, 482, 505, 531,

543

ngStyle directive, 445

ngSwitch directive, 442–443

ngSwitchCase directive, 442, 443

ngSwitchDefault directive, 442

nin() method, 303

$nin operator, 263

node file, 42

Node Package Manager. See NPM (Node

Package Manager)

Node Package Registry

publishing modules to, 50–51

viewing, 43–44

Node Packaged Modules. See NPMs (Node

Packaged Modules)

node_modules directory, 221

node_modules folder, 42

Node.js. See also modules (Node.js);

MongoDB Node.js driver

advantages of, 2–3, 11–12

buffers, 74–75

navigation bar, router with, 492–497

app.component.CSS, 495

app.component.html, 494

app.component.ts, 494

app-routing.module.ts, 492–493

nav.component.CSS, 494

nav.component.html, 493

nav.component.ts, 493

page1.component.ts, 495

page2.component.html, 496

page2.component.ts, 495

page3.component.html, 496

page3.component.ts, 496

ne() method, 303

$ne operator, 263

nested components

building with dependency injection,
410–412

custom events in, 458–460

net module, 41. See also socket services

Server object, 144–147

Socket objects

creating, 140–141

data flow across, 144

events, 141–142

methods, 142–143

properties, 143–144

networkInterfaces() method, 182

new keyword, 27

new line escape code, 29

new option, 242

newSession event, 156

nextObject() method, 232

nextTick() function, 63–64, 161

nexttick.js listing, 63–64

ng eject command, 395

ng generate component command, 395

589Node.js

executables, verifying, 42–43

files

asynchronous file system calls, 95

deleting, 110

listing, 108–110

opening/closing, 96–97

reading, 102–106

renaming, 112

returning statistics about, 107–108

synchronous file system calls, 95

truncating, 110–111

verifying path of, 106–107

watching for file changes, 112–113

writing, 97–102

HTTP services, 115

ClientRequest object, 118–121

dynamic GET servers, 127–129

external sources, interacting with,
132–134

IncomingMessage object, 122–123

POST servers, 130–131

query string and form parameter
processing, 117–118

Server object, 123–125

ServerResponse object, 121–122

static files, serving, 125–127

URLs (Uniform Resource Locators),
115–117

HTTPS services, 134–135

certificate signing request files, 135

HTTPS clients, 135–136

HTTPS servers, 137

private keys, 135

IDE (Integrated Development
Environment), 43

install location, 42

installing, 42

compressing/decompressing, 91–92

concatenating, 81

copying, 79–80

creating, 75–76

determining length of, 78

encoding methods, 75

reading from, 77–78

slicing, 80

writing to, 76–77

child processes, 164

child forks, 171–173

ChildProcess object, 164–166

executable files, executing on
another process, 168–169

processes, spawning, 169–171

system command, executing on
another process, 166–168

companies using, 40

connecting to MongoDB from

MongoClient object, 223–226

write concern, 222

definition of, 2, 11, 39

development of, 39

directories

creating, 111–112

deleting, 111–112

renaming, 112

events, 55–56

blocking I/O, 57–58

callbacks, 67–70

conversation metaphor, 57–59

custom events, 64–65

event callbacks, 55–56

event listeners, 65–67

event queue, scheduling work on,
59–60

threaded models, 55–56

590 Node.js

streams, 81

compressing/decompressing, 92–93

Duplex streams, 86–88

piping, 89–90

Readable streams, 82–84, 89–90

Transform streams, 88–89

Writable streams, 84–86, 89–90

strings

converting objects to, 184–185

formatting, 183–184

timers, 60

dereferencing, 63

immediate timers, 62

interval timers, 61–62

timeout timers, 60–61

use cases for, 40

Zlib, 91

compressing/decompressing buffers,
91–92

compressing/decompressing
streams, 92–93

Node.js modules. See modules (Node.js)

Node.js-to-Angular stack, 7

components of, 11–14

web development framework

backend services, 10

browsers, 8–10

diagram of, 7–8

users, 8

webservers, 10

nodelay option (server object), 224

--nohttpinterface parameter (mongod

command), 203

--nojournal parameter (mongod command),

203

--noprealloc parameter (mongod command),

203

JSON (JavaScript Object Notation), 73

converting JavaScript objects to, 74

converting to JavaScript objects, 74

manipulating documents from. See
documents (MongoDB)

MongoClient object, 222

nextTick() function, 63–64

objects

checking type of, 184

converting to strings, 184–185

EventEmitter, 64–65

Stats, 107

process clusters, 174

events, 174

HTTP clusters, 176–179

methods, 175

properties, 175

Worker object, 175–176

processes, 159

executable files, executing on
another process, 168–169

process execution, 161

process I/O pipes, 159–160

process signals, 160

returning information about,
161–164

spawning, 169–171

system command, executing on
another process, 166–168

socket services, 139–140

net.Server object, 144–147

net.Socket object, 140–144

TCP socket clients, 147–150

TCP socket servers, 150–152

TLS socket clients, 153–154

TLS socket servers, 154–156

TLS/SSL, 152–153

591objects

iterating through, 34

manipulating, 32–33

methods, 32–33

removing items from, 34–35

searching, 34

checking type of, 184

ChildProcess object, 164–166

ClientRequest, 118–121

Collection. See collections (MongoDB)

Connection, 292–293

converting JSON to, 74

converting to JSON, 74

converting to strings, 184–185

Cursor, 232–233

custom events, 64–65

custom-defined objects, 28

Db, 227–228

Document, 292, 304–305

event listeners

adding, 65

implementing, 65–67

removing, 65

EventEmitter, 64–65

IncomingMessage, 122–123

inheriting from, 185–186

Model, 292, 298

MongoClient, 222, 223–226

Observable

creating, 464–465

detecting data changes with,
465–468

importing, 510–512

options, 264–265, 275–276

properties, 27

prototyping object patterns, 29

Query, 262–264, 298–299

operators, 302–304

query database operation, 299–302

nor() method, 303

$nor operator, 263

normalizing data, 195–196

NoSQL, 191–192. See also MongoDB

not (!) operator, 19

not equal (!=) operator, 19

$not operator, 263

NPM (Node Package Manager), 44–45

npm command, 42, 44–45

npm adduser, 50

npm install, 46, 51

npm pack, 50

npm search, 45

npm install command, 475

NPMs (Node Packaged Modules). See

modules (Node.js)

NPNProtocols option (tls.createServer), 155

null data type

JavaScript, 17

TypeScript, 384

number data type

JavaScript, 16

TypeScript, 383

number of MongoDB collections, 199

number pipe, 423

numberOfRetries option (options object),

265

O
Object Document Model (ODM). See

Mongoose

object literals, 17

objects, 27

Admin, 229

Array, 32–33

adding items to, 34–35

combining, 33–34

converting into strings, 34

592 objects

observable.component.html listing, 467

observable.component.ts listing, 466–467

observables

definition of, 464

Observable object

creating, 464–465

detecting data changes with,
465–468

importing, 510–512

ODM (Object Document Model). See

Mongoose

once() function, 65

onDrop() method, 536

on() function, 65, 126, 160

online event, 174

open() method, 56, 96–97, 227

opening files, 96–97

openSync() method, 96–97

operators

JavaScript, 17

arithmetic operators, 17–18

assignment operators, 18

comparison operators, 19–20

isinstanceof, 184

MongoDB

$add, 286

$addFields, 285

$addToSet, 243, 286

$all, 264

$and, 263

$avg, 286

$bit, 244

$bucket, 285

$bucketAuto, 285

$collStatus, 284

$concat, 287

$count, 285

Request, 350–352

Response, 352

download responses, 359

files in, 356–358

headers, 352–353

JSON responses, 355–357

redirection, 359

rendered templates in, 363–364

sending, 353–355

status, 353

route, 487

Schema, 292, 294–295

Server, 123–125, 144–147

ServerResponse, 121–122

Socket

creating, 140–141

data flow across, 144

events, 141–142

methods, 142–143

properties, 143–144

Stats, 107

String, 29–31

combining, 31

converting arrays into, 34

escape codes, 29–30

manipulating, 29–31

methods, 30–31

replacing words in, 31

searching, 31

splitting, 32

syntax, 27–28

URL, 116–117

Worker, 175–176

Observable object

creating, 464–465

detecting data changes with, 465–468

importing, 510–512

593page1.component.html listing

$rename, 243

$replaceRoot, 285

$sample, 285

$set, 243

$setOnInsert, 243

$size, 264

$skip, 284

$slice, 244

$sort, 244, 284

$sortByCount, 285

$strcasecmp, 287

$substr, 287

$subtract, 287

$sum, 286

$toLower, 287

$toUpper, 287

$type, 263

$unset, 243

$unwind, 284

options object, 264–265, 275–276

or() method, 303

or (||) operator, 19

$or operator, 263

originalUrl property (Request object), 351

os module, 41, 181–183

os_info.js listing, 182–183

$out operator, 285

outer.component.ts listing, 411

outer.css listing, 411

outer.html listing, 411

outlet property (route object), 487

P
package.json file, 47–48, 50, 51

packages. See modules (Node.js)

page1.component.html listing, 499

$divide, 286

$each, 244

$elemMatch, 264, 266

$eq, 263

$exists, 263

$facet, 285

$first, 286

$geoNear, 285

$graphLookup, 285

$group, 284

$gt, 263

$gte, 263

$inc, 243, 263

$indexStats, 285

$last, 286

$limit, 284

$lookup, 285

$lt, 263

$lte, 263

$match, 283, 284

$max, 286

$min, 286

$mod, 263, 287

$multiply, 287

$ne, 263

$nin, 263

$nor, 263

$not, 263

$or, 263

$out, 285

$pop, 243

$project, 284

$pull, 244

$pullAll, 243

$push, 244, 286

$redact, 284

$regex, 264

594 page1.component.ts listing

passing data

with dependency injection, 412–413

parameters to functions, 67–68

variables to functions, 24–25

passphrase option

htp.createServer(), 136

https.request(), 136

tls.connect(), 154

tls.createServer(), 155

patch() method, 470

path module, 41

path property

ClientRequest object, 119

Request object, 351

route object, 487

URL object, 117

pathname property (URL object), 117

paths

assigning Express middleware to, 368

document paths, 294

verifying, 106–107

pause() method, 82, 142

pauseOnConnect option, 145

performance, MongoDB, 200

periodic work, scheduling

with immediate timers, 62

with interval timers, 61–62

Person interface, 385

person.component.ts listing, 413

PersonInterface, 386

pfx option

htp.createServer(), 136

https.request(), 136

tls.connect(), 154

tls.createServer(), 155

pid method, 162

pid property (ChildProcess object), 166

page1.component.ts listing

router with navigation bar, 495

router with parameters, 499

page2.component.html listing

router with navigation bar, 496

router with parameters, 500

page2.component.ts listing

router with navigation bar, 495

router with parameters, 500

page3.component.html listing, 496

page3.component.ts listing, 496

paging results, 273–274

param() method, 349

parameters

MongoDB shell commands, 205

passing to callback functions, 67–68

route parameters, applying, 347

callback functions, 348–349

with defined parameters, 348

express_routes.js example, 349–350

with query strings, 347–348

with regex, 348

router with parameters, 497–501

app.component.ts, 498

app-routing.module.ts, 498

page1.component.html, 499

page1.component.ts, 499

page2.component.html, 500

page2.component.ts, 500

parent components, deleting data in,

461–464

parentheses (), 20, 24, 436, 457

parse() method, 74, 116, 117–118, 347

parseWeather() function, 132

parsing query strings, 117–118

partial option (options object), 265

partitioning methods, 337

595properties

preventDefault() method, 536

primary servers, 330

private keys, 135

process module, 41, 159

process execution, 161

process I/O pipes, 159–160

process signals, 160

returning information from, 161–164

process property (Worker object), 176

process signals, 160

process_info.js listing, 163–164

processes, 159

child processes, 159–160

ChildProcess object, 164–166

executable files, executing on
another process, 168–169

processes, spawning, 169–173

system command, executing on
another process, 166–168

process clusters, 174

events, 174

HTTP clusters, 176–179

methods, 175

properties, 175

Worker object, 175–176

process execution, 161

process I/O pipes, 159–160

process signals, 160

returning information about, 161–164

profile command, 204

project() method, 318

$project operator, 284

PromiseService, 515–516

promise.service.ts listing, 515

properties

binding, 431–433

ClientRequest object, 119

ping() method, 229

pipe class, 426

@pipe decorator, 426

pipe event, 84

pipe() method, 83, 89–90

pipe symbol (|), 426

pipes

built-in pipes

builtInPipes.component.ts, 425

table of, 422–424

custom pipes, 426–428

definition of, 422

piping Readable streams to Writable
streams, 89–90

process I/O pipes, 159–160

PiService, 505–506

app.component.html, 506

app.component.ts, 505

pi.service.ts, 505

pi.service.ts listing, 505

platform() method, 162, 182

playLoop() function, 465

poolSize option (server object), 224

pop() method, 33

$pop operator, 243

--port parameter (mongod command), 202

port property

ClientRequest object, 119

URL object, 116

post() method, 470

post middleware functions, 322–324

POST requests

body data, handling, 371–372

definition of, 9

POST servers, 130–131

pre middleware functions, 322–324

preferGlobal directive, 47

596 properties

result sets, 270

aggregating, 282–289

grouping results, 277–282

limiting by size, 270–271

limiting fields returned in, 271–272

paging results, 273–274

sorting, 275–276

query middleware, 368, 369

query object (MongoDB), 262–264

Query object (Mongoose), 298–299

operators, 302–304

query database operation

options, 301–302

setting, 299–302

query property

Request object, 351

URL object, 117

query router servers, 335, 338–339

query strings, 41

applying route parameters with, 347–348

processing, 117–118

queryRemover() function, 380

--quiet parameter (mongod command), 202

R
\r (carriage return) escape code, 29

RandomImageService, 510–514

app.component.css, 513–514

app.component.html, 513

app.component.ts, 512–513

random-image.service.ts, 511–512

random-image.service.ts listing, 511–512

range-based sharding, 337

rated-item component, 543–544

rated-item.component.css, 545–546

rated-item.component.html, 545

rated-item.component.ts, 544–545

cluster module, 175

definition of, 27

Document object, 304–305

IncomingMessage object, 123

net.Socket object, 143–144

Request object, 351

URL object, 116–117

Worker object, 176

property binding, 431–433

property.component.ts listing, 432

protocol property

Request object, 351

URL object, 116

prototyping object patterns, 29

providers metadata option

(NgModule), 397

publishing modules, 50–51

$pull operator, 244

$pullAll operator, 243

push() method, 33

$push operator, 244, 286

put() method, 470

PUT requests

response callback functions, 471

sending, 470–471

Q
queries

MongoDB query object, 262–264

Mongoose Query object, 298–299

operators, 302–304

query database operation, 299–302

options objects, 264–265

query strings, 41

applying route parameters with,
347–348

processing, 117–118

597REPL (Read Event Print Loop) module

ref() method, 63, 143, 146

references, MongoDB documents, 195–196

regenerate() method, 378

regex, applying route parameters with, 348

regex() method, 303

$regex operator, 264

Registry, Node Package Registry

publishing modules to, 50–51

viewing, 43–44

rejectUnauthorized option

htp.createServer(), 136

https.request(), 136

tls.connect(), 154

tls.createServer(), 155

release() method, 182

remoteAddress property (Socket object), 143

remoteFamily property (Socket object), 143

remotePort property (Socket object), 143

remove() method, 217, 230, 255, 301, 305,

314–316

removeHeader() method, 122

removeListener() function, 65

removeShardTag() method, 341

removeUser() method, 209, 228, 229

removing data. See deleting data

rename() method, 112, 230

$rename operator, 243

renameCollection() method, 228

renameSync() method, 112

renaming files/directories, 112

render() method, 363–364

rendered templates, sending, 363–364

rendering browser view, 9–10

--repair parameter (mongod command), 203

repairDatabase() method, 341

repairing databases, 341

REPL (Read Event Print Loop) module,

41, 190

RatedItem interface, 541

ratings.service.ts listing, 541–542

Read Event Print Loop (REPL) module,

41, 190

read() method, 82, 104–105, 302, 318

read option (Schema object), 295

read role (MongoDB), 208

readable event, 82

Readable streams, 82–84, 89–90

readAnyDatabase role (MongoDB), 208

readConcern option (server object), 224

readdir() method, 109

readdirSync() method, 109

readFile() method, 102–103

reading files

asynchronous file reading, 104–105

simple file read, 102–103

streamed file reading, 105–106

synchronous file reading, 103–104

readInt8() method, 77

readInt16BE() method, 77

readInt16LE() method, 77

readline module, 41

readPreference option

options object, 265

server object, 224

readSync() method, 103–104

readwords.js listing, 52

readWrite role (MongoDB), 208

readWriteAnyDatabase role (MongoDB), 208

receiving cookies, 373–374

ReconnectInterval option (server object), 224

reconnectTries option (server object), 224

$redact operator, 284

redirect() method, 359

redirecting responses, 359

redirectTo property (route object), 487

598 replace() method

resolveTxt() method, 187

resolving URLs (Uniform Resource Locators),

117

response callback functions (HTTP), 471

response event, 120

Response objects, 352

download responses, 359

headers, 352–353

JSON responses, 355–357

redirection, 359

sending, 353–355

sending files in, 356–358

sending rendered templates in, 363–364

status, 353

responses

IncomingMessage object, 122–123

response event, 120

Response objects, 352

download responses, 359

headers, 352–353

JSON responses, 355–357

redirection, 359

sending, 353–355

sending files in, 356–358

sending rendered templates in,
363–364

status, 353

ServerResponse object, 121–122

responsibilities, separation of, 393

result sets, 270

aggregating, 282–289

aggregate() method, 283

aggregation examples, 287–289

aggregation expression operators,
285–287

aggregation framework operators,
283–285

replace() method, 30, 31

$replaceRoot operator, 285

replacing words in strings, 31

replica sets, deploying, 333–334

replication

applying, 330–332

replica sets, 333–334

strategy, 332–333

replications, 199

repository directive, 48

request event, 124

request() method, 118, 136

Request objects, 350–352

requestCert option (tls.createServer), 155

requests, 9

ClientRequest object, 118–121

configuration, 471

GET requests, 470–471

GetData, 55–56

GetFile, 55–56

POST, 371–372

PUT requests, 470–471

request event, 124

Request objects, 350–352

response callback functions, 471

require() method, 52

required fields, forcing, 296

requiredPaths() method, 296

resolve() method, 117, 186, 515

Resolve property (route object), 487

resolve4() method, 187

resolve6() method, 187

resolveCname() method, 187

resolveMx() method, 187

resolveNs() method, 187

resolveSrv() method, 187

599runGaurdsAndResolvers property (route object)

page1.component.ts, 495

page2.component.html, 496

page2.component.ts, 495

page3.component.html, 496

page3.component.ts, 496

router with parameters, 497–501

app.component.ts, 498

app-routing.module.ts, 498

page1.component.html, 499

page1.component.ts, 499

page2.component.html, 500

page2.component.ts, 500

Routes array, defining, 486–487

routing module, including, 488

simple router implementation, 488–491

app.component.ts, 490

app.module.ts, 488–489

app-routing.module.ts, 489–490

home.component.html, 490

home.component.ts, 490

route2.component.html, 491

route2.component.ts, 491

router-outlet tag, 488

routes

applying parameters in, 347

callback functions, 348–349

with defined parameters, 348

express_routes.js example, 349–350

with query strings, 347–348

with regex, 348

assigning Express middleware to, 368

definition of, 345

implementing, 346

Routes array, defining, 486–487

routing module, including, 488

runGaurdsAndResolvers property (route

object), 487

grouping results, 277–282

limiting by size, 270–271

limiting fields returned in, 271–272

paging results, 273–274

sorting, 275–276

resume() method, 82, 142

resumeSession event, 156

return statement, 25

return values, 25

reusable code, 14, 361

reverse() method, 33, 187

rewind() method, 233

rmdir() method, 111

rmdirSync() method, 111

roles (MongoDB), 208

roles command, 204

root component (custom directive), 453

CSS for, 454

HTML for, 453–454

route object, 487

route2.component.html listing, 491

route2.component.ts listing, 491

Router, importing, 488

Router module, importing, 492

router service, 470

ActivatedRoute, importing, 488

route navigation, 488

route object parameters, 487

Router, importing, 488

router with navigation bar, 492–497

app.component.CSS, 495

app.component.html, 494

app.component.ts, 494

app-routing.module.ts, 492–493

nav.component.CSS, 494

nav.component.html, 493

nav.component.ts, 493

600 safe() method

searching

arrays, 34

collections, 216

documents, 216, 265–268

field values, 276–277

for NPMs (Node Packaged Modules), 45

strings, 31

secondary servers, 331

SecretAgent class, 387

secure property (Request object), 351

secureConnection event, 156

secureProtocol option

htp.createServer(), 136

https.request(), 136

tls.connect(), 154

tls.createServer(), 155

select() method, 301

selectCharacter() function, 461

selector option (components), 403

selectors, 404

selectUser() method, 482

send() method, 165, 176, 353–355

sendData event, 121

sendfile() method, 356–358

sending

cookies, 373–374

rendered templates, 363–364

requests, 470–471

responses

download responses, 359

JSON responses, 355–357

redirection, 359

send() method, 353–355

separation of responsibilities, 393

serializeFunctions option, 242

Server object, 123–125, 144–147

server status, displaying, 236–237

S
safe() method, 302

safe option (Schema object), 295

$sample operator, 285

save() method, 217, 218–219, 230,

252–253, 305, 308, 310, 378

saving documents, 252–253, 310–311

scalability

of MongoDB, 3, 13

of Node.js, 3, 12

scheduling work

nextTick() function, 63–64

timers, 60

dereferencing, 63

immediate timers, 62

interval timers, 61–62

timeout timers, 60–61

Schema object, 292, 294–295

schema property (Document object), 305

schemas

defining, 294–295

implementing on database,
295–296

indexes, adding, 295–296

methods, adding, 295–296

paths, 294

required fields, forcing, 296

Schema object, 292, 294–295

unique fields, 296

value types, 294–298

schemas metadata option

(NgModule), 397

scope of variables, 26–27

scripts, 205–206. See also listings

scripts directive, 47

search() method, 30

search property (URL object), 117

601services (Angular)

data transform service, 506–510

app.component.css, 509

app.component.html, 508–509

app.component.ts, 507–508

area-calc.service.ts, 506–507

definition of, 393

forms, 470

http, 470

GET requests, sending, 470–471

JSON file implementation and
access, 472–475

PUT requests, sending, 470–471

request configuration, 471

response callback functions, 471

simple mock server
 implementation, 475–481

simple mock server updates,
 481–486

integrating into applications, 503–504

mock back-end service, 540–541

purpose of, 469

ratings service, 541–542

router, 470

ActivatedRoute, importing, 488

route navigation, 488

route object parameters, 487

Router, importing, 488

router with navigation bar, 492–497

router with parameters, 497–501

Routes array, 486–487

routing module, including, 488

simple router implementation,
488–491

service that returns a promise, 515–516

shared service, 516–523

app.component.html, 519

app.component.ts, 519

badguys.component.css, 522

servername option (tls.connect), 154

ServerResponse object, 121–122

servers. See also mock web servers

arbiter, 331

config servers, 335, 338

Express server, starting, 345

HTTP (Hypertext Transfer Protocol)

dynamic GET servers, 127–129

external sources, interacting with,
132–134

POST servers, 130–131

Server object, 123–125

static files, serving, 125–127

HTTPS, 137

MongoDB server status, displaying,
236–237

primary servers, 330

query router servers, 335, 338–339

secondary servers, 331

shard servers, 335

TCP socket servers, 150–152

TLS socket servers, 154–156

server-side programs, 10

serverStatus() method, 229

services (Angular)

animate, 470

animation service, application using

animated.component.css, 529

animated.component.html, 529

animated.component.ts, 527–528

app.component.html, 526–527

app.component.ts, 526

app.module.ts, 525–526

folder structure, 525

constant data service, 505–506

app.component.html, 506

app.component.ts, 505

pi.service.ts, 505

602 services (Angular)

settings property (cluster module), 175

setuid() method, 162

setup event, 174

setupMaster() method, 175

shard keys, 336–337

shard tag ranges, 340–341

sharding, 199

definition of, 334

enabling on collections, 340

enabling on databases, 339–340

hash-based sharding, 337

partitioning methods, 337

range-based sharding, 337

shard keys, 336–337

shard tag ranges, 340–341

sharded MongoDB clusters, 338

adding shards to cluster, 339

config server database instances,
338

query router servers, 338–339

sharding server types, 335

shared service, 516–523

app.component.html, 519

app.component.ts, 519

badguys.component.css, 522

badguys.component.html, 522

badguys.component.ts, 521

good-guys.component.css, 521

good-guys.component.html, 520

good-guys.component.ts, 520

shared.service.ts, 517–518

SharedService. See shared service

shared.service.ts listing, 517–518

shell clients, accessing MongoDB from,

203–204

command parameters, 205

shell commands, 204

badguys.component.html, 522

badguys.component.ts, 521

good-guys.component.css, 521

good-guys.component.html, 520

good-guys.component.ts, 520

shared.service.ts, 517–518

use cases for, 503–504

UserService, 483–484

variable data service, 510–514

app.component.css, 513–514

app.component.html, 513

app.component.ts, 512–513

random-image.service.ts, 511–512

session middleware, 368, 377–380

sessionIdContext option (tls.createServer),

155

sessions

implementing, 374–375

session authentication, 377–380

session middleware, 368

set() method, 304, 344, 352

$set operator, 243

setEncoding() method, 82, 142

setgid() method, 162

setgroups() method, 163

setHeader() method, 122

setImmediate() function, 62

setInterval() function, 61–62

setKeepAlive() method, 143

setMaxListeners() function, 65

setNoDelay() method, 121, 143

$setOnInsert operator, 243

setOptions() method, 301

setRating() method, 544

sets of documents, finding, 265–268

setSocketKeepAlive() method, 121

setTimeout() function, 60–61, 120, 122,

123, 143, 510

603split() method

socket event, 120

Socket objects

creating, 140–141

data flow across, 144

events, 141–142

methods, 142–143

properties, 143–144

socket property (IncomingMessage object),

123

socket services, 139–140

net.Server object, 144–147

net.Socket object

creating, 140–141

data flow across, 144

events, 141–142

methods, 142–143

properties, 143–144

TCP socket clients, 147–150

TCP socket servers, 150–152

TLS socket clients, 153–154

TLS socket servers, 154–156

socket_client.js listing, 148–149

socket_server.js listing, 151–152

socketPath property (ClientRequest object),

119

socketTimeOut option (server object), 224

soldierOfGondor() function, 388

sort() method, 33, 233, 302, 318

$sort operator, 244, 284

sort option (options object), 264, 275–276

$sortByCount operator, 285

sorting result sets, 275–276

spare property (indexes), 329

spawn() method, 169–171

spawning processes, 169–171

splice() method, 33

split() method, 30, 32

shell methods, 205

shell scripts, 205–206

shift() method, 33

show command, 204

SIGBREAK event, 160

SIGHUP event, 160

SIGINT event, 160

SIGKILL event, 160

sign class, 189

signals, process, 160

SIGPIPE event, 160

SIGSTOP event, 160

SIGTERM event, 160

SIGUSR1 event, 160

SIGWINCH event, 160

silent property (fork() function), 172

simple_interval.js listing, 61–62

simple_timer.js listing, 60–61

single documents

removing with Mongoose, 314–315

updating with Mongoose, 311–313

single field indexes, 328

size, limiting results by, 270–271

size() method, 304

$size operator, 264

size option (collections), 214

skip() method, 302, 318

$skip operator, 284

skip option (options object), 264

slice() method, 30, 33, 80

$slice operator, 244

slice:start:end pipe, 423

slicing buffers, 80

snapshot() method, 302

snapshot option (options object), 265

SNICallback option (tls.createServer), 155

604 splitting strings

statsSync() method, 107

status of Response objects, 353

statusCode event, 121, 123

stderr, 159, 166

stdin, 159, 166

stdio property (spawn() function), 170

stdout, 159, 166

stopping MongoDB, 203

strategy, replication, 332–333

$strcasecmp operator, 287

stream module. See streams

stream_duplex.js listing, 87

stream_piped.js listing, 90

stream_read.js listing, 83–84

stream_transform.js listing, 88–89

stream_write.js listing, 85

streams, 81

compressing/decompressing, 92–93

Duplex streams, 86–88

piping, 89–90

Readable streams, 82–84, 89–90

streamed file reading, 105–106

streamed file writing, 101–102

Transform streams, 88–89

Writable streams, 84–86, 89–90

strict option (Schema object), 295

strict routing setting (Express), 344

string decoder module, 41

String object, 29–31

combining, 31

converting arrays into, 34

escape codes, 29–30

manipulating, 29–31

methods, 30–31

replacing words in, 31

searching, 31

splitting, 32

splitting strings, 32

SQL injection, 13

ssl option (server object), 224

stale property (Request object), 351

star rating application

app.component.css, 544

app.component.html, 543–544

app.component.ts, 543

app.module.ts, 540

folder structure, 539

mockbackend.service.ts, 540–541

rated-item.component.css, 545–546

rated-item.component.html, 545

rated-item.component.ts, 544–545

ratings.service.ts, 541–542

starting

Express server, 345

MongoDB, 202–203

query router servers, 338–339

statements. See also keywords

break, 23–24

catch, 35–36

continue, 23–24

finally, 36–37

if, 20

return, 25

switch, 20–21

throw, 36

try, 35–36

static files, serving, 125–127, 369–371

static middleware, 367, 369–371

./static/css/static.css listing, 370

statistics, accessing

collection statistics, 239–240

file statistics, 107–108

stats() method, 107–108, 232

Stats object, 107

605text indexes

substrings, searching for, 31

$subtract operator, 287

subtraction (-) operator, 18

suicide property (Worker object), 176

$sum operator, 286

switch statements, 20–21

synchronous file reading, 103–104

synchronous file system calls, 95

synchronous file writing, 98–99

system command, executing on another

process, 166–168

T
\t (tab) escape code, 30

tab escape code, 30

tags, router-outlet, 488

TCP (Transmission Control Protocol)

socket clients, 147–150

socket servers, 150–152

template engines, 360

defining, 360–361

locals, adding, 361

rendered templates, sending, 363–364

template creation, 361–363

template option (components), 404

templates

building, 404–405

creating, 361–363

external templates, 408–410

template engines, 360

defining, 360–361

locals, adding, 361

rendered templates, sending,
363–364

template creation, 361–363

templateUrl keyword, 408

templateUrl option (components), 404

text indexes, 328

stringify() method, 74, 118

strings, 16

converting objects to, 184–185

formatting, 183–184

JavaScript

combining, 31

converting arrays into, 34

escape codes, 29–30

manipulating, 29–31

methods, 30–31

replacing words in, 31

searching, 31

splitting, 32

query strings, 41

applying route parameters with,
347–348

processing, 117–118

TypeScript, 383

Stringy interface, 385

structural directives, 392, 442–445

definition of, 441

ngFor, 442

ngIf, 442–443

ngSwitch, 442–443

ngSwitchCase, 442, 443

ngSwitchDefault, 442

structural.component.ts, 443–444

structural.component.ts listing, 443–444

style binding, 435–436

style.component.ts listing, 435

styles keyword, 405

styles option (components), 404

stylesUrls option (components), 404

styleUrls keyword, 408

(submit) event, 457

subscribe() method, 464

substr() method, 31

$substr operator, 287

606 then() method

toUpperCase() method, 31

trace() function, 54

trailers property (IncomingMessage object),

123

transform() method, 88

Transform streams, 88–89

Transmission Control Protocol. See TCP

(Transmission Control Protocol)

truncate() method, 110–111

truncateSync() method, 110–111

truncating files, 110–111

trust proxy setting (Express), 344

try statement, 35–36

TTY (time-to-live) values

documents, 199

indexes, 329

two-way binding, 439–440

twoWay.component.ts listing, 439–440

type() method, 181, 353

$type operator, 263

types. See data types

TypeScript, 383. See also listings

in Angular expressions, 419–422

classes

defining, 386

inheritance, 387

data types, 383–384

directives, 462–463

functions, 388–389

interfaces, 385–386

modules, 387–388

typescriptExpressions.component.ts listing,

421

U
ucs2 encoding, 75

uid property (spawn() function), 170

then() method, 472–473

this keyword, 323

threaded event models, 55–56

throw statement, 36

throwing errors, 36

tilde (~), 404–405

time() function, 53

timeEnd() function, 54

timeout event, 141

timeout property

exec() method, 167

options object, 265

timeout timers, 60–61

timers, 41, 60

dereferencing, 63

immediate timers, 62

interval timers, 61–62

timeout timers, 60–61

time-to-live (TTY) values

documents, 199

indexes, 329

title method, 162

tls module, 41, 139–140, 152–153. See
also socket services

TLS socket clients, 153–154

TLS socket servers, 154–156

tmpdir() method, 181

toArray() method, 232

toJSON() method, 305

$toLower operator, 287

toLowerCase() method, 31

toObject() method, 305

toPromise() method, 471, 472–473

toString() method, 33, 77, 305

totalmem() method, 182

touch() method, 378

$toUpper operator, 287

607validation framework (Mongoose)

URL object, 116–117

url property (IncomingMessage object), 123

URLs (Uniform Resource Locators), 41

resolving, 117

structure of, 115–116

URL object, 116–117

use command, 204

use() method, 368

user accounts (MongoDB)

creating, 206–207

listing, 206–207

removing, 209

roles, 208

User Administrator accounts, 209–210

user_ejs.html listing, 362

userAdmin role (MongoDB), 208

userAdminAnyDatabase role (MongoDB),

208

users, 8, 10

users command, 204

UserService, 483–484

user.service.ts listing, 478–479, 483–484

utf8 encoding, 75

utf16le encoding, 75

util module, 183

format() method, 183–184

inherits() method, 185–186

inspect() method, 184–185

isinstanceof operator, 184

util_inherit.js listing, 185–186

utilities module, 41

UUID() method, 205

V
V8 module, 41, 190

validate() method, 305, 320

validation framework (Mongoose), 320–322

Uniform Resource Locators. See URLs

(Uniform Resource Locators)

unique fields, 296

unique property (indexes), 329

unlink() method, 110

unlinkSync() method, 110

unpipe event, 85

unpipe() method, 83, 89–90

unref() method, 63, 143, 146

$unset operator, 243

unshift() method, 33

unwind() method, 318

$unwind operator, 284

update() method, 218–219, 231, 248–250,

301, 304, 311, 313

update operators, 242–244

update.component.CSS listing, 485–486

update.component.html listing, 484–485

update.component.ts listing, 482–483

updateRating() method, 541–542

updateUser() method, 482, 483

updating

documents

findAndRemove() method, 218–219

with Mongoose, 309–314

update() method, 248–250

mock web server items, 481–486

data.service.ts, 481–482

update.component.CSS, 485–486

update.component.html, 484–485

update.component.ts, 482–483

user.service.ts, 483–484

upgrade event, 120, 124

uppercase pipe, 423

upsert option, 242

upserting documents, 253–254

uptime() method, 162, 182

608 validationAction option (collections)

watching for file changes, 112–113

web applications. See components

(Angular); services (Angular)

web browsers. See browsers

web development framework

backend services, 10

browsers, 8

browser view, rendering, 9–10

browser-to-webserver
 communication, 8–9

user interaction, 10

diagram of, 7–8

users, 8

webservers, 10

web servers. See mock web servers

webservers, 10

where() method, 302

while loops, 21

word_schema.js listing, 297

words, replacing in strings, 31

work, scheduling

adding to event queue, 59–60

nextTick() function, 63–64

timers, 60

dereferencing, 63

immediate timers, 62

interval timers, 61–62

timeout timers, 60–61

Worker object, 175–176

worker property (cluster module), 175

workers property (cluster module), 175

Writable streams, 84–86, 89–90

write concern, 222

write() method, 76, 84–85, 118, 120, 122,

128, 142, 151

write operations, 198

writeContinue() method, 122

writeFile() method, 98

validationAction option (collections), 215

validationLevel option (collections), 215

validator option (collections), 214

valueOf() method, 31, 33

var keyword, 15–16

variable data service, 510–514

app.component.css, 513–514

app.component.html, 513

app.component.ts, 512–513

random-image.service.ts, 511–512

variables

defining, 15–16

local template variables, 361

passing to functions, 24–25

scope, 26–27

--verbose parameter (mongod command), 202

verify class, 189

verifying

file path, 106–107

Node.js executables, 42–43

version directive, 47

version method, 161

--version parameter (mongod command), 202

versions method, 161

view cache setting (Express), 344

view engine setting (Express), 344

viewProviders option (components), 404

views (browser), rendering, 9–10

views setting (Express), 344

Visual Studio Code, 394

VM module, 41

void data type, 384

W
w option, 224, 241

warn() function, 53

watchFile() method, 112–113

609zoomit component

zlib_buffers.js listing, 91–92

zlib_file.js listing, 93

zoom application

app.component.html, 531

app.component.ts, 530–531

folder structure, 530

zoomit.component.css, 532

zoomit.component.html, 532

zoomit.component.ts, 531–532

zoom directive, 449–452

ZoomDirective export class, 451

zoom.directive.ts listing,

450–451

zoomit component

zoomit.component.css, 532

zoomit.component.html, 532

zoomit.component.ts, 531–532

writeInt8() method, 76

writeInt16BE() method, 76

writeInt16LE() method, 76

writeSync() method, 98–101

writing

to console, 53–54

files

asynchronous file writing, 99–101

simple file write, 98

streaming file writing, 101–102

synchronous file writing, 98–99

wtimeout option, 241

wTimeOut option (server object), 224

X-Y-Z
x509 public key, 135, 137

Zlib module, 41, 91

compressing/decompressing buffers,
91–92

compressing/decompressing streams,
92–93

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	II: Learning Node.js
	3 Getting Started with Node.js
	Understanding Node.js
	Who Uses Node.js?
	What Is Node.js Used For?
	What Does Node.js Come With?

	Installing Node.js
	Looking at the Node.js Install Location
	Verify Node.js Executables
	Selecting a Node.js IDE

	Working with Node Packages
	What Are Node Packaged Modules?
	Understanding the Node Package Registry
	Using the Node Package Manager
	Searching for Node Package Modules
	Installing Node Packaged Modules
	Using package.json

	Creating a Node.js Application
	Creating a Node.js Packaged Module
	Publishing a Node.js Packaged Module to the NPM Registry
	Using a Node.js Packaged Module in a Node.js Application

	Writing Data to the Console
	Summary
	Next

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

