
The Software Craftsman

FREE SAMPLE CHAPTER

SHARE WITH OTHERS

cf_, � � [im �

The Software
Craftsman

Professionalism, Pragmatism, Pride

Sandro Mancuso

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com

Library of Congress Cataloging-in-Publication Data

Mancuso, Sandro.
The software craftsman : professionalism, pragmatism, pride / Sandro Mancuso.
 pages cm
Includes index.
ISBN 978-0-13-405250-2 (pbk. : alk. paper)—ISBN 0-13-405250-1 (pbk. : alk. paper)

1. Computer software—Development. 2. Software architecture. 3. Quality of
products. I. Title.
QA76.76.D47M3614 2015
005.3—dc23

2014040470
Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-405250-2
ISBN-10: 0-13-405250-1

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2014

This book is dedicated to my parents, Luiz Carlos and Marisa Mancuso,
for all the sacrifices they’ve made so that I could have better opportunities in life.

It was a very long and difficult road I shall never forget.

This page intentionally left blank

vii

Foreword by Robert C. Martin xv
Preface xvii
Acknowledgments xxv
About the Author xxix

Part I Ideology and Attitude 1

Chapter 1 Software Development in the Twenty-First Century 3
Seniority 5

A New Reality 6

Chapter 2 Agile 9
 Process- Oriented Agile Disciplines 10

 Technical- Oriented Disciplines 10

What Is It to Be Agile? 11

A Game Changer 11
People Empowerment 12
Professional Evolution 12

Agile Manifesto 12

Principles behind the Agile Manifesto 13

The Agile Transformation Era 14

Co nte nt s

Contents

viii

The Agile Hangover 14

A Partial Transformation 16
But It’s Not All Bad News 21

Agile versus Software Craftsmanship 21

Summary 22

Chapter 3 Software Craftsmanship 23
A Better Metaphor 23

What Does Wikipedia Say? 24

A More Personal Definition 24

A Shorter Definition 24

Beyond Definitions 25

Craft, Trade, Engineering, Science, or Art 25

Software Craftsmanship History 26

The Software Craftsmanship Summit 27
Crossing Borders 28
Craftsman Swap 29
Software Craftsmanship Communities 30
The Software Craftsmanship Manifesto 30
The Manifesto 32

Summary 39

Chapter 4 The Software Craftsmanship Attitude 41
Who Owns Your Career? 42

Employer/Employee Relationship 43

Keeping Ourselves Up to Date 44

Books, Many Books 44
Blogs 46
Technical Websites 47

Know Who to Follow 48

Social Media 48

Practice, Practice, Practice 48

Katas 49
Pet Projects 50
Open Source 52
Pair Programming 53

Socialize 54

Deliberate Discovery 55

Contents

ix

 Work- Life Balance 56

Creating Time 57
Focus: The Pomodoro Technique 59
Balance 59

Summary 60

Chapter 5 Heroes, Goodwill, and Professionalism 61
Learning How to Say No 64

An Epic Failure 65
Lesson Learned 67
Being Professional 68

Providing Options 70

An Unexpected and Viable Option 71

Enlightened Managers 74

Summary 75

Chapter 6 Working Software 77
Working Software Is Not Enough 78

Looking After Our Garden 79

The Invisible Threat 79

Hostage of Your Own Software 80
Hire Craftsmen, Not Average Developers 81

The Wrong Notion of Time 81

A Technical Debt Story 82
A Busy Team with No Time to Spare 83
The Unit Test Task Card 86
Using Time Wisely 87

Legacy Code 88

A Change in Attitude 89
Personal and Client Satisfaction 90

Summary 91

Chapter 7 Technical Practices 93
The Right Thing versus the Thing Right 93

Context 94

Extreme Programming History 96

Practices and Values 97

Adding Value through Practices 98

Contents

x

Accountability 104

Pragmatism 105

Summary 106

Chapter 8 The Long Road 107
A Tale from a Brazilian Teenager 107

Focus and Determination 110

But What if We Don’t Know Where We Are Going? 110

Job as Investment 111

Autonomy, Mastery, and Purpose 113

Career Inside Companies 114

Summary 115

Part II A Full Transformation 117

Chapter 9 Recruitment 119
An Ordinary Job Description 120

Too Busy to Interview 122

No Job Descriptions 123

What if a Job Description Is Needed? 125
A Job Is Not Just a Job 130

Recommendations 130

Community Involvement 130

Defining Effective Filtering Criteria 131

Proactive Recruitment 134

Summary 135

Chapter 10 Interviewing Software Craftsmen 137
A Business Negotiation 137

Identifying Productive Partnerships 138

A Hiring Company’s Perspective 139
A Candidate’s Perspective 140

Good Interviews 142

The Right Focus 143
 Mind- Mapping a Conversation 143
 Pair- Programming Interview 144
 Tailor- Made Interviews 147

Contents

xi

Taking a Punt 148

Hiring for an Existing Team versus Hiring for a New Team 149

 Pre- Interview Coding Exercises 150

Everyone Should Know How to Interview 151

Developers Must Interview Developers 152

Summary 152

Chapter 11 Interview Anti- Patterns 153
Don’t Be a Smart- Ass Interviewer 153

Don’t Use Brainteasers 154

Don’t Ask Questions to Which You Don’t Know the Answers 154

Don’t Try to Make the Candidate Look Like a Fool 155

Don’t Block the Internet 156

Don’t Code on a Piece of Paper 156

Don’t Use Algorithms 157

Don’t Conduct Phone Interviews 157

Summary 158

Chapter 12 The Cost of Low Morale 159
The Agile Hangover: Low Morale 159

The Cost of Employing 9- to- 5 Developers 161

Constrained by Lack of Motivation 164

Injecting Passion 165

Summary 167

Chapter 13 Culture of Learning 169
Wrong Motivation 170

Creating a Culture of Learning 171

Start a Book Club 172
Have a Tech Lunch (Brown Bag Session) 173
Have Group Discussions (Roundtables) 173
Switch Projects for an Iteration 174
Conduct Group Code Reviews 176
Have Hands- On Coding Sessions 176
Start Internal Communities of Practice (CoP) 178
Encourage Pet- Project Time 178
Engage with External Technical Communities 179

Contents

xii

What if Others Don’t Want to Join In? 179

Be an Example 180
Focus on Those Who Care 180
Don’t Force 180
Don’t Try to Change Everyone 180
Avoid Consensus Delays 181
Don’t Ask for Authorization 181
Don’t Complicate 181
Establish a Rhythm 182

Summary 182

Chapter 14 Driving Technical Changes 185
Identifying Skepticism Patterns 185

Be Prepared 189

Where Do We Start? 191

Establish Trust 191
Lead by Example 192
Choose Your Battles 193
Iterate, Inspect, and Adapt 194

Fear and Incompetence 195

How Do I Convince My Manager? 196

How Do I Convince My Team to Do TDD? 197

Facing the Skeptics 198

The Ivory- Tower Architect 199
The Wronged 204

Should We Really Care about All That? 205

Summary 205

Chapter 15 Pragmatic Craftsmanship 207
Quality Is Always Expected 207

Busting the “Expensive and Time- Consuming Quality” Myth 209

Do We Need to Test- Drive Everything? 210

Refactoring 211

The “One Way” of Developing Software 212

Helping the Business 213

A Simple and Quick Solution 214

Software Projects Are Not about Us 217

Great versus Mediocre 217

Contents

xiii

Four Rules of Simple Design 218

Design Patterns 219
Refactoring to Patterns 219

Craftsmanship and Pragmatism 221

Summary 222

Chapter 16 A Career as a Software Craftsman 223
Being a Craftsman 224

Honesty and Courage 225

Career Progression 225

Different Ladders 227

Roads and Milestones 227

Building Our Careers, One Job at a Time 229
What if We Don’t Know Where We Want to Go? 231

Job Diversity 231

The Mission 233

Appendix Craftsmanship Myths and Further Explanations 235

Index 241

This page intentionally left blank

xv

fo r e wo r d

In 1973 Roberta Flack sang “Killing Me Softly.” You’ve no doubt heard it in ele-
vators or on your grandmother’s radio station. It’s a soft, lilting ballad about a
woman who goes to a concert and hears a young man sing a song that she so
strongly identifies with that she ponders whether the young man had found and
read her letters. She even professes her belief that he feels her pain when he
strums his guitar, and is singing the story of her whole life.

The book you are holding feels that way to me. Sandro Mancuso’s career has
been very different from mine. He is a bit younger than I. He and I have lived our
lives and worked our careers on different continents and in different cultures. We
share neither nationality nor ethnicity. I’ve met him only a few times, and each
time it was never for more than a few minutes. In short, about the only thing we
have in common is that we are both programmers. But that, it seems, is enough.

Within the pages you are holding you will find a fascinating alternation between
autobiographical anecdotes that chronicle the author’s vast experience and au-
thoritative recommendations based on those experiences. If you are a program-
mer, you will feel these stories and recommendations resonate within you. You
will say to yourself, as I did, “Been there. Done that.” And you may hear the
strains of that song echoing in your mind as he strums your pain.

And strum your pain he will, because this book is about pain. It is about the
pain that you and I and, indeed, all programmers experience. It is the pain of
feeling constantly constrained to do a poor job. It is the pain of feeling trapped
in an un-profession. It is the pain of wanting to do better and not knowing how.

This book also contains the antidote for that pain. Indeed, I believe it contains
the cure. You see, this book is all about software professionalism. Not just the
professionalism of the programmer, but also the professionalism of the whole
software organization. This is a book about Software Craftsmanship.

In these pages the author lays out a plan, a strategy, a set of attitudes, and a suite
of principles that every programmer, programming team, and software organi-
zation can use to haul themselves out of the mire of mediocrity, to make them-
selves more professional, more productive, and more proud of the work they do.

The scope of this book is incredibly wide. Topics range from design patterns,
pair programming, and Test-Driven Development to how to conduct and evalu-
ate interviews, how to respond to tight deadlines, how to write job descriptions,
and how to relate to coworkers and managers.

In short, this book is an encyclopedia on the behavior, attributes, and structure
of an organization striving to grow in professionalism and adhere to the princi-
ples of Software Craftsmanship.

If you are the type of programmer, team lead, or manager who craves to be able
to go home after a long day of work, look in the mirror, and say, “Damn, I did a
good job today!” then this is the book for you.

—Robert C. Martin
August 2014

foreword

xvi

xvii

Pr e faC e

Back in the mid-1990s, two years after I started my professional career, a large
international company in São Paulo, Brazil, announced that they would be hir-
ing 60 developers in one go. Their selection process would take a few weeks and
was divided into four phases: a three-hour-long technical test; two weeks of train-
ing in their proprietary technology followed by a test; a full day of group dynamics;
and a round of final interviews. They announced it in a major newspaper and
around 900 developers applied. I was working for a small software house at the
time, a place where I was very happy, but I felt that I was ready for something
bigger. Since the first phase would be on a Saturday, I decided to apply. Fewer
than 300 developers passed to the next phase, and I was one of them. I was
happy and confident but worried as well. I had to resign from my current job in
order to move forward with the selection process because I would need to take
too many days off for the remaining phases. Back then, my financial situation
was not great and I could not count on any monetary support from my family. It
was quite hard to resign from a job I liked in order to pursue a dream job that I
had no idea I would get. Also, I had no idea how I would pay my bills if I didn’t
get that new job. But I had to do it. I had to try. That was the type of company I
wanted to work for. That’s what I wanted for my career.

I was 21 years old, and although I was young, I already had quite a few years of
coding experience—I started coding when I was 11 and started my professional

xviii

PrefaCe

career when I was 19. The problem is that the mix of youth and a bit of experi-
ence can easily lead to arrogance. And by no means was I an exception. Think of
an arrogant, young developer you know. I could beat anyone hands down. I used
to think I was awesome, better than any other person who studied with me at
university, and better than the vast majority of the developers who worked with
me in my previous jobs.

After going through all of the four phases, the international company announced
that they could not find 60 developers at the level they were expecting. They
hired just 32, and I was one of them. I was over the moon and more cocky than
ever. In my first week there, I was placed in one of the teams responsible for de-
livering one of the business modules of the system. For the first few weeks, while
speaking to developers from different business modules, I heard them talking
about this other team, a team that was supposedly the best team in the company.
They were the “architecture” team, responsible for the core of our system and for
providing all infrastructure code used by the business teams.

The architecture team was led by this incredible guy who, besides doing all the
management work, was also a fantastic developer. He was a busy man, but he
would always find some time to code, check in code against his name, and re-
view the code written by his team. I heard their team was always working on in-
teresting things and that their code was really good. That’s exactly what I was
looking for. I wanted to be working with the best.

After a few long weeks, I decided to speak to the manager of the architecture
team, this guy that I heard so much about. I didn’t really know what to say or
what to expect. I was only certain of one thing: I had nothing to lose. In the
worst-case scenario he would say that he was not interested to have me on his
team. One day I saw him alone in the coffee area. I was shaking. I approached
him and introduced myself. “Hi, I’m Sandro.” He looked at me and shook my
hand with a smile. “I’m Namur. Nice to meet you.” He was calm and relaxed. “I
want to work for you,” I nervously said after a few awkward seconds. He was a
bit surprised but apparently took it in a very positive way. We then started talk-
ing about the selection process, why I applied, what I was expecting from the
job. He also asked me if I had pet projects, technologies I was interested in, if
I wrote code outside working hours, and some other random things that I don’t

xix

PrefaCe

remember. After around 30 minutes of conversation he asked me when I could
start. I was shocked. I was not expecting that at all. I was expecting to schedule a
meeting, have a formal interview, and so on. It took me a long time to realize
that he spent the entire conversation measuring my passion for software devel-
opment. He was analyzing whether I cared about doing things right. He was not
worried about my current technical knowledge. “I’ll speak to my manager and
hopefully it will be as soon as possible,” I said. After a few weeks I was sitting
among my new teammates.

My first day was a Monday. In the morning, Namur came to talk to me and as-
sign me a task. He explained one part of the application and what I had to do,
and he said he would sit with me again on Friday to check what I had done. I
was thrilled. That was my chance to shine. I had to show him why I deserved to
be there. I stayed in the office until almost midnight, slept a few hours, arrived
very early on Tuesday, and around two o’clock in the afternoon, I was done. I
had finished my first assignment in less than half of the time I had been given. I
was feeling great. Well, I always knew how good I was, but being able to do that
in that team, in a totally unknown code base, was a huge achievement.

I rushed to Namur’s office and with excitement I said, “It’s done. I finished it.
And it is working.” He stopped typing and turned to me. “Making things work is
the minimum I expect from someone who is paid for it,” he calmly said. “When
you say that something is finished, it is implied that it works.” That was like a big
slap in my face. My smile faded away a little bit but I thought, maybe it is just his
way of saying things. Maybe he is having a bad day. No, he definitely did not
mean to be rude. “Sit here and let’s see what you’ve done,” he continued. I sat
there and watched him typing in the command line, checking in the code from
source control, and opening my single .pas file containing all my code. He
opened the file using this horrible black and green editor on the command line.
That was the first time I had seen vi. We were using Delphi back then and Delphi
was very famous for its amazingly powerful integrated development environ-
ment (IDE). For me, seeing someone opening Delphi files on vi (a Unix text edi-
tor) was very alien. “Come close so we can have a look at it together,” he said. I
had written about 200 lines of code. He positioned the cursor on the first line
and started looking at the code line by line. Every five lines he would stop and
say things like, “Do you know what happens when we allocate and deallocate

xx

PrefaCe

memory? Can you see here? You are allocating memory in one method and
 deallocating it in another method. This is a potential risk of memory leak. Have
you heard about temporal coupling? Can you see this block of lines here? If you
thought a little bit harder, you could reduce these eight lines to two. Do you
know what happens when you have a try/catch block this big? What about the
names of this variable and method? What do they mean? Have you ever thought
that some of your colleagues, when needing to change this code, may not have
the same amount of information and context as you have now? How would you
feel if you knew nothing about this part of the code but you had to maintain it?
What about this hard-coded bit here? Have you ever thought that if we wanted
to change where it points to, we would need to open it, change it, recompile it,
and redeploy the entire application? Why do you have this piece of code dupli-
cated all over the place? Wow! This is a big method. Do you know how much we
would need to keep in our heads if every single method were that big? What
about making them smaller and naming them according to their behavior?” He
went on and on.

At some point he stopped and started staring at a few lines of code. He spent a
few minutes there, occasionally moving the cursor one page up and down again.
Back in the 1990s, a developer would be considered a senior developer if she
could write code that no one else could understand. “Wow! She must be really
good. I have no idea what her code does.” And I made sure to have some cryptic
code in there, trying to show how clever I was. At some point he figured out
what the code was doing. I was expecting a compliment, at last. “Do you know
how disrespectful this is?” he said calmly. “We work on a very large system, with
many teams and developers working on the same code base. Can you imagine
how hard it would be to understand the code if everyone decided to show off
how smart he or she is? Imagine thousands, if not millions, of lines written like
that.” And that was a second slap in my face.

It was just 200 lines of code, and I could not answer any of his questions or find
a good response to the points he had raised. Line by line he looked at the code,
criticized it, and explained to me how it could be better. Once we reached the
end of the file, I was ashamed and extremely annoyed. He was still very calm, as
if we had been looking at some random code written by an absent stranger.
“Have you understood everything I said? Do you agree with all the suggestions?”

xxi

PrefaCe

Without saying a word, I just nodded. “Do you feel you could write this code in
a better way now?” Without looking at him, I just nodded. “Do you feel you can
apply the things we discussed as we move forward?” Once again, I just nodded.
He then pressed a few keys and deleted the entire file with all my code in it. “Ex-
cellent. Since you still have three days left, do it again.”

I was shocked. I didn’t know how to react to that. I stood up and slowly walked
to the door without saying a word. “Sandro,” he called me when I reached the
door. I stopped and looked back at him. “How it is done is as important as getting
it done.” And with this, he turned back to his computer and started typing again
in that horrible green editor.

I was frustrated. In fact, I was furious. I left his office, went straight downstairs,
and then outside the building. Who the hell does he think he is speaking to me
like that? What a bastard. I can’t work for a guy like that. That’s it. I’m done with
this company. I’m resigning. After a few cigarettes, feeling a little bit calmer, I
started reflecting on what had happened. Namur had spent over one hour going
through my code and explaining to me how it could be improved. He listened to
me on the few occasions I expressed my view and calmly showed me that either I
was wrong or there were better ways. I realized that for the first time since I
wrote my first line of code, I had found someone who took the time to show me
how to write good code. I had found someone who, besides being far better and
more experienced than I was, really cared about helping others become better. I
had found someone who cared about producing great, quality software. I had
found someone who took the time to teach me. And more than that, I had found
my first mentor.

After a few more cigarettes, I pulled myself together and went back inside a dif-
ferent person. That day I learned I was not as good as I thought I was. I learned
how to be humble. I learned that I had a lot more to learn. I learned that just
getting things done was not enough, especially when you are working in a team.
I learned to be respectful to my peers and clients, not leaving crap code behind. I
learned that a great professional cares about his or her work.

For two and a half years I worked with my mentor and some of the best develop-
ers I have ever met. That experience shaped me not just as a professional, but

xxii

PrefaCe

also as a person. Although we never used the term, I realized more than a decade
later that that was my first encounter with Software Craftsmanship. I learned a
lot from all those guys. Technically speaking, it was a great experience, but that
was not the most important thing. What was really important to learn was the
attitude that my boss and all the other developers had toward their career. The
last words he said during our first code review session changed me forever. Ten
years later, I founded the London Software Craftsmanship Community (LSCC)
(http://www.meetup.com/london-software-craftsmanship) and Namur’s words,
“How it is done is as important as getting it done,” were some of the first words I
put on the website. Later I also had LSCC t-shirts printed with those words on
them. Those words did not just make me a better professional, they also made
me a better person.

abo ut th i s bo o k

After decades and many different methodologies, software projects are still fail-
ing. Although there are many reasons why they fail, there are a few things that
cannot be ignored: managers see software development as a production line;
companies do not know how to manage software projects and how to hire good
developers; and many developers still behave like unskilled, unmotivated work-
ers, providing very poor service to their employers and clients. With the advent
of Agile methodologies, the software industry took a big step forward, but the
percentage of failing software projects is still incredibly high. Why are all these
projects still failing? Why are we so bad at delivering successful projects? What is
missing?

Although the term “Software Craftsmanship” has been around for over a decade,
it was not until recently that it emerged as a viable solution for many of the
problems faced by the software industry today.

Software Craftsmanship proposes a very different mindset for developers and
companies. Although Software Craftsmanship is not a methodology, it strongly
recommends the adoption of certain technical practices and disciplines, mostly
the ones defined by Extreme Programming. With a great synergy with Agile and
Lean principles, Software Craftsmanship promises to take our industry to the

http://www.meetup.com/london-software-craftsmanship

xxiii

PrefaCe

next level. Professionalism, technical excellence, and customer satisfaction are
the main focus of Software Craftsmanship. One of its main focuses is changing
the perceptions that software developers are like workers on a production line
and that software projects can be run as if running a factory.

How can we become better developers? How can we deliver better software proj-
ects? With real stories and practical advice for developers and companies, this
book is relevant to all software developers and every professional directly in-
volved in a software project.

This page intentionally left blank

xxv

aC k n ow le dg m e nt s

My career has been a great journey, from a small town in Brazil to the biggest
city in Europe. Having worked for many different companies and on both sides
of the Atlantic, I met a lot of tremendous people who, in one way or another,
helped to shape the person and the professional I am today.

First I would like to thank Professor Maria Cecilia Capelache. When I told her I
would need to quit the university for financial reasons, she immediately offered
me a job, which helped me to continue my studies. Even today I feel she gave me
the job more to help me than because she really needed another developer on
her team. She taught me the difference between all the academic things we learn
at university and the real world of software development. If I had quit university
I probably wouldn’t be writing this book today.

Later I met Luiz Fernando Ferreira, one of the owners of a small software house,
who gave me my second job. Although I was their first employee, I was never
treated as such. From day one I felt I was working with an old friend. For his
friendship, which has continued into today, his transparency during the good
and bad times, and amazing support when the time came for me to move on, I
am forever grateful.

xxvi

aCknowledgments

Moving to a big international company and working under my first mentor
changed my life. I’ll be eternally thankful to Eduardo Namur for making me un-
derstand that how it is done is as important as getting it done, for making each
one of us feel we were a big family, for instilling in me to be the best I could be,
and for exposing me to the principles of Software Craftsmanship before the term
had even been coined.

Alexandre Ehrenberger, a former manager who became a great friend and inspi-
ration, was my biggest supporter when I decided to move to London. He had
lived in Canada for six years and helped me understand what I needed to do in
order to achieve my dream of moving to London. For his friendship, advice, en-
couragement, support, and for showing me that with a lot of hard work dreams
can come true, I’m very thankful.

I knew that if I wanted to move to London I had to do two things. One was to
learn Java, which I solved by studying hard and finding a job where I could work
with it. The other one was to improve my English. I would like to thank Ana
 Maria Netuzzi, a lovely lady, for all the years of private English lessons, for being
a friend, and more often than not, for being my psychologist, listening to all my
personal problems and giving me valuable life advice.

Once in the UK and after a short period working for a small software house, I
joined a startup. This startup had many talented developers and for the second
time in my career I felt I was working with people who really cared about what
they were doing. They helped me to step up my game, but most important, they
were my first friends in the UK. They not only made me a better developer but
also made me feel accepted in the UK. To Chris Webb, Greg Cawthorn, David
Parry, Russell Webb, Simon Kirk, and James Kavanagh, thank you.

Joining Valtech was a big step forward in my career. It was there that I had my
first contact with Agile and Extreme Programming (XP), and it is by far the
place where I have learned the most. Although I could not name all the amazing
people I met there, I feel the need to name a few. First I would like to thank
 Akbar Zamir for being a great mentor and a friend. The most important thing
he taught me was to open my mind to new things. He made me see how much
I did not know. Akbar convinced me to try Test-Driven Development. He also

xxvii

aCknowledgments

introduced me to Domain-Driven Design (DDD) and taught me a lot about
 Agile, XP, diplomacy, pragmatism, and professionalism. Thanks, Akbar. I learned
a lot from you. There were a few other people in Valtech who had a huge influ-
ence in my career. They are David Draper, Kevin Harkin, Andrew Rendell, and
James Bowman. Thank you for teaching and helping me so much.

UBS was my first contact with really huge enterprise systems and a place that
forced me to reevaluate all my beliefs when it comes to software development.
There I had the pleasure to work with a great team. They really helped me see
things differently. One of the best things about UBS was the opportunity, once
again, to work with Mashooq Badar (ex-Valtech and today my partner at Codur-
ance), one of the best developers I’ve ever met and also one of my best friends.
Mash was responsible for bringing me to UBS. Mash also brought in Balint Pato
to one of our projects, and a strong bond was formed. I would like to thank
Mash and Balint for all of our discussions, enthusiasm, passion, friendship, pro-
fessionalism, and for teaching me so much. You guys are awesome and true
craftsmen. Portia Tung was another great person I had the pleasure to meet and
work with at UBS. She is probably the best Agile coach I’ve met. Her contagious
passion in making our working environment a place where we belong, and her
willingness to share her deep knowledge on how to make large organizations
more agile, made my experience at UBS even better. Thanks, Portia, for your
friendship and for teaching me how to bring people together. To Robert Taylor
and Alexander “The Machine” Kikhtenko (a.k.a. Sasha), thank you for being
amazing software craftsmen. It was an absolute pleasure to work with you guys.

David Green. Where do I start? He is a true craftsman, a friend, and one of the
most talented developers I’ve ever met. I still remember all the awesome eve-
nings we spent in the pub discussing our projects, craftsmanship, and how to
make software development better. Dude, I learned a lot from you. David and I
cofounded the London Software Craftsmanship Community (LSCC) and with-
out him LSCC would probably not exist today.

In October 2013, I started Codurance, a consultancy company based on Software
Craftsmanship principles and values, with Mashooq Badar. Codurance was a
massive step forward in our careers. For the first time we have the opportunity
to run a business the way we think a business should be run. This experience

xxviii

aCknowledgments

would not be so great without Samir Talwar. Samir is not just the first craftsman
we hired; he also is a friend and an extremely talented craftsman. Codurance and
LSCC would never be the same without him.

Last but not least, I would like to thank all the passionate developers from the
LSCC. I would never be able to learn so much in such a short period of time if
not for your willingness to sacrifice your own personal time to share your
knowledge with others. A big thanks to Gonçalo Silva, Samir Talwar, Tom Brand,
Tom Westmacott, Emanuele Blanco, Carlos Fernandez Garcia, and Chris Jeffery
for their amazing job organizing LSCC. LSCC would never be such a cool com-
munity without you.

In relation to this book, I would like to thank Micah Martin and Tyler Jennings
for their contributions related to the history of Software Craftsmanship. Thanks,
Kevlin Henney, for the great tips on how to better structure the book and for
convincing me to throw away the original Chapter 1 and write a brand-new one.
Thanks, Gianfranco Alongi and Mani Sarkar, for proofreading parts of the book.
A special thanks to Samir Talwar and Andrew Parker for their amazing job find-
ing hundreds of grammar mistakes and typos, and for their valuable suggestions
on how to make the book better. There were also many other people who con-
tributed to this book, sending me suggestions and typos. Thank you all.

xxix

abo ut th e auth o r

Sandro Mancuso has coded since a very young age but only started his profes-
sional career in 1996. He has worked for startups, software houses, product com-
panies, international consultancy companies, and investment banks. In October
2013, Sandro cofounded Codurance, a consultancy company based on Software
Craftsmanship principles and values.

During his career, Sandro has worked on various projects, with different languages
and technologies and across many different industries. Sandro has a lot of experi-
ence bringing the Software Craftsmanship ideology and Extreme Programming
practices to organizations of all sizes. Sandro is internationally renowned for his
work in spreading Software Craftsmanship principles and is a renowned speaker
at many conferences around the world. His professional aspiration is to raise the
bar of the software industry by helping developers become better at—and care
more about—their craft through sharing his knowledge, skills, and experiences.

Sandro’s involvement with Software Craftsmanship started in 2010, when he
founded the London Software Craftsmanship Community (LSCC), which has
become the largest and most active Software Craftsmanship community in the
world, with more than 2,000 craftsmen. For the past four years he has inspired
and helped developers to start and organize many other Software Craftsmanship
communities in Europe, the United States, and other parts of the world.

This page intentionally left blank

This page intentionally left blank

41

If we think that a piece of code we wrote some time in the past is still good
enough today, it means we didn’t learn anything since.

For us, software craftsmen, caring about and being proud of the work we do is a
given. Constantly finding ways to become better professionals is a lifetime com-
mitment. Satisfying and helping our customers to achieve what they want to
achieve, in the most efficient way, is our main goal. Sharing our knowledge with
 less- experienced software craftsmen is our moral obligation.

A few years ago, I was speaking to a colleague of mine. We had joined the com-
pany at roughly the same time, hired at the same position, and worked in a proj-
ect together for almost one year. Since we were working for a consultancy
company, after some time we went separate ways to work on different projects
and for different clients. It was only after a few years that we had the opportunity
to work together again. I then asked him how things were going with him and he
said, “I don’t really like this company. This company sucks.” I was surprised by
what he said since I had been really enjoying my time in that company. So then I
asked him why he was saying that. “In all these years, they never bought me a
book. Never sent me on a training course, and never gave me a project using
modern technologies. They never gave me a promotion either,” he said. “I
haven’t learned anything new for quite a long time,” he complained.

4Th e So fT wa r e
Cr a fT S m a n S h i p

aT TiTu d e

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

42

I was not quite sure what to think or say about his comments. I had had two
promotions during that period, worked on quite a few good projects, and
learned many new things. “Who owns your career?” I suddenly asked him after a
few seconds of awkward silence. He didn’t quite understand my question and
asked me to repeat it. “Who is in charge of your career and your professional fu-
ture?” I asked him again. Even after a few years since we had this conversation, I
still remember the puzzled look in his eyes.

In this chapter I discuss how we can own our careers, keep ourselves up to date,
practice, and discover the things we didn’t know. I also talk about how to create
time for all these things.

wh o ow n S Yo u r Ca r e e r ?

What if the company we work for does not buy us any books? What if the com-
pany never sent us to any training course or conferences? Would that be the only
way we could learn anything new? Does it really mean the company is bad?

Imagine that you need a plumber to do some work in your house. Imagine that
you need a lawyer to solve any legal issues, or a doctor when you are sick, or a
dentist when you have an aching tooth. You normally go to these professionals
when you have a problem, so now imagine them turning back to you and saying,
“Could you buy me a book? Can you send me on a training course?” What
would you think about that? To make things even worse, imagine that you, for
some really bizarre reason, decide to buy them a book or send them on a train-
ing course, and once they acquired the knowledge you gave them, they come
back and charge you for their services. How does it sound to you?

These professionals need to invest in their own careers so they can do a good job,
satisfy their clients, and hopefully be referred to other clients. They use their own
money and time to keep themselves current. Those that don’t do it end up losing
clients, receive fewer referrals, and will slowly be forced out of business.

On the other hand, factory workers, for example, rely on training. Factories need
to train their employees to use new machines so they can do their mechanical
and repetitive work well. However, factory workers have no say in what

who ownS Your Career?

43

machines the factory should buy or how they are going to do the work. They are
just told what to do.

Clients pay professionals with the expectation of receiving a good service. They
pay professionals to solve their problems in the best way possible. Clients don’t
pay professionals to learn. Clients pay professionals for their knowledge and
skills. Professionals are expected to provide solutions, viable alternatives, and
ideas to their clients. Professionals are expected to help their clients to achieve
whatever they want to achieve in the best way possible, and that is how they
build their reputation.

We all want to be treated and respected as software professionals but before we
achieve that we need to start behaving like professionals. That means that we
should use our own time and money to get better at what we do. We should own
our own careers and be in control of what we learn and when we learn. We should
be in a position that we can help our clients and employers to achieve their goals.
Developers who rely only on their companies to provide them knowledge are not
professional software developers. They are just factory workers in disguise.

“So companies should not be investing in their own people?” you may be asking.
No, that is not what I meant. Companies should invest in their people but soft-
ware professionals should not see that as their obligation. That should be seen as
a bonus, a win- win situation. Companies that provide time to developers to get
better at what they do are much smarter and can become far more efficient. Pas-
sionate developers will always favor these companies when choosing who they
work for.

Our industry moves, possibly, faster than any other industry. Languages, frame-
works, practices, and processes are all constantly evolving. Keeping up to date
and constantly getting better at what you do is key for a successful career as a
software craftsman.

em ploY e r / em ploY e e re l aTi o n S h i p

In creative work, the employer/employee model is the wrong model. On one
hand, we have a contractual model that states how people should be paid and that
also states the legal and behavioral obligations that need to be respected by

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

44

employers and employees. On the other hand, we have the type of relationship
that professionals have with their clients. The old top- down, command and con-
trol style of management became very popular during the Industrial Revolution
and arguably still has its merits when the majority of the workforce is doing man-
ual or repetitive work. However, it does not work well for creative workers. This
style of management can be extremely damaging to the morale of software pro-
fessionals, making the company far more inefficient. Companies that are still us-
ing this style of management normally struggle to hire talented professionals and
are slowly losing the ones they still have. But, of course, this is just one side of the
story. Keeping our heads down, working hard from 9 to 5, and doing only what we
are told to do is not professional either. That is what factory workers do. If devel-
opers want to be treated as professionals, they should start acting as professionals.
A software professional must, among other things, get involved and contribute to
the business, provide options and solutions, and offer the best service when it
comes to the implementation, technologies, and quality of what we produce.

The relationship between software craftsmen and their clients should be seen as
a productive business partnership, regardless of which contractual model we
may have. Being a permanent employee, a contractor, a consultant, or a devel-
oper working for an outsourcing company should not affect at all this relation-
ship or the attitude we have toward our clients.

Ke e pi n g ou r S e lv e S up To daTe

We live in a world where there is more and more
information, and less and less meaning.

—Jean Baudrillard

Different people have different learning patterns and preferences, and by no means
do I feel that I could describe all the possible ways a person could learn. However,
the following is a small list of things we can do to keep ourselves up to date.

Bo o K S , ma n Y Bo o K S

Having our own library, physical or electronic, is essential. We are very lucky to be in
an industry where so much information is produced. However, there are many dif-
ferent types of books, and choosing which books to read can be a very difficult task.

Keeping ourSelveS up To daTe

45

 • Technology- specific books are very valuable but they expire. They are essential
for the immediate need, when we want to learn a framework, language, or any
other software we need to use. They are great at giving us a deep understand-
ing of how things work and the knowledge acquired can usually be used im-
mediately. They are also great when we are planning our next career steps.
They can give us details of how to use the technologies that may be between
our current job and our desired job. However, many of the technology-
 specific books get old extremely quickly. When a new version of the technol-
ogy they cover is released, or a different way of doing things becomes more
popular, they will not add as much value as before. Examples would be books
about Java, Hibernate, Node.js, or Clojure.

 • Conceptual books are the books that give us the foundation to advance in our
careers. They are the books where we get introduced to new concepts, para-
digms, and practices. The knowledge we acquire through this type of book
cannot always be applied immediately; it may take a significant amount of
time to digest the information and become proficient. Quite often a technol-
ogy or language may be used to explain some technical concepts but usually
the knowledge we get can be applied broadly. Books covering topics like Test-
 Driven Development, Domain- Driven Design, object- oriented design, func-
tional programming, or modeling different types of NoSQL databases, just to
mention a few examples, would fit in this category. Learning new concepts,
paradigms, and practices is far harder than learning a specific technology, and
it may take years until we get comfortable with them. However, conceptual
books are the books that give us the foundation to learn specific technologies
much quicker.

 • Behavioral books are the books that make us more efficient when working in
teams and better professionals in general. They help us learn how to deal with
people, clients, deadlines, team members, and so on. Knowing some program-
ming languages, frameworks, and practices is not enough if we want to be good
professionals. We also need to learn how to deal with everything else that is not
related to code but is also part of a software project or organization. Books in
this category will cover the more human and professional side of software de-
velopment, including topics like Agile methodologies, Software Craftsmanship,
Lean software development, psychology, philosophy, and management.

 • Revolutionary books (some call them classics) are the ones that change the way
we work or even some of our personal values. They propose a different set of

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

46

values and principles, quite often initially rejected or ignored by the majority of
professionals. Bit by bit, they end up making their way into the mainstream.
They are books that every software developer is expected to have read and are
constantly mentioned in technical conversations. Very rarely does a technology-
 specific book become a classic. Normally the revolutionary books are concep-
tual, behavioral, or a combination. Books in this category define or have a great
influence on the direction and evolution of our industry. A few examples would
be The Pragmatic Programmer, The Mythical Man- Month, Design Patterns
(GoF), Test- Driven Development: By Example, Extreme Programming Explained:
Embrace Change, The Clean Coder, Software Craftsmanship, and Refactoring. It
may take many years to master the content in the books in this category.

Books give us a deeper understanding of a technology or subject. Favor conceptual
and behavioral books for your career progression, starting with the revolutionary
ones. Read technology- specific books for your short- and medium- term plans.

Reading itself also has a learning curve. There are many different ways to read
books, and understanding them can make a big difference in how fast we can
read them and how much we can learn. This topic is beyond the scope of this
book but I recommend you research speed- reading techniques.

Blo g S

Blogs are extremely popular and a great way to keep ourselves up to date. Quite a
few very good developers I know and respect just read blogs. They have almost
abandoned books. Blogs tend to fit well in the Software Craftsmanship and Agile
models because they contain real experiences, personal findings, opinions, suc-
cesses, and failures in short snippets. Reading blogs from more experienced pro-
fessionals and subject matter experts is a good, quick, and free way for us to
learn from many different great professionals at the same time. There are also
great apps like Instapaper and Evernote, just to mention a few, that we can use to
keep track of blogs.

Blogs can be dangerous for the uninformed though. The vast majority of blogs
are written without much research or deep thought. Some blog posts are just a

Keeping ourSelveS up To daTe

47

brain dump of half- baked ideas, rants, or random thoughts. Some developers
use their blogs to keep track of their own professional progression. Some report
their own experiences in real projects but that does not necessarily mean they
were able to solve their problems well or even to identify their real problems.
And that is OK. That is exactly why blogs are great. As long as we understand
that we need to read blogs with a pinch of salt, they are fantastic.

But do not think that just experienced professionals should write blogs. All soft-
ware developers should have their own blogs, regardless of how much experi-
ence they have. We should all share our experiences and findings and help to
create a great community of professionals. Sometimes we may think that we are
not good enough or do not have much to say. We may think that we don’t have
an original idea and no one will read our blog anyway. First of all, we should
treat our blog as a record of our own learning and progression— a history of
our thoughts, ideas, and views of the world over our careers. We should not
worry too much about what other people will think about it. We should first
write it for ourselves. Even if developers more experienced than us have written
about the subject many times before, it is worth writing whatever we are cur-
rently learning anyway. Every year there are thousands of new developers join-
ing our industry and they will need to learn many of the things we are learning
now. Maybe for them, our blogs will be very useful since we will be writing
them from the perspective of a beginner. Do not worry about being judged by
more senior developers because that is not going to happen. Whenever we
Google for something and the first link we click leads to something we already
know, we just jump to the next link. All developers should appreciate the effort
that other developers make to write and share their views with the rest of the
world, for free.

Te C h n i C a l we B S iTe S

Technical websites are also good in order to keep ourselves up to date with
what’s going on in the market. There are many websites that work as a digital
magazine, announcing new trends and techniques. Some of these websites have
technical writers writing for them every day. Some of them just aggregate the
best blogs or provide a big discussion forum.

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

48

Kn ow wh o To fo l low

In every profession, there is a group of people that contribute massively to move
that profession forward. We have many of these people, some on the technology-
 specific side and others on the more generic, conceptual, and behavioral side.
They are all important, so know who these people are. That helps us to filter the
information we have online or in physical books. For example, if we work with
Java or Ruby, we should know who publishes the best material on it. We should
know who is helping the language to move forward or defining better ways to
use it. We should know who the people reshaping our industry are. When we
hear terms like Agile and Software Craftsmanship, we should try to discover who
the people behind these ideas are. Look at their history. See what they’ve pub-
lished. Try to understand where they got their inspiration or what they are bas-
ing their ideas on. We may discover that many of the things we talk about today
go back a few decades.

So C i a l me d i a

Learn how to use Twitter. Used wisely, Twitter can be a great tool for informa-
tion gathering. Following the people described above and other fellow develop-
ers can be one of the best ways to keep ourselves up to date. Whenever someone
publishes a blog post, they will tweet the link. Whenever someone finds some
interesting material, they will also tweet the links. Sometimes we can follow
quite a few interesting online conversations and that may be a good opportunity
to join in.

pr aC Ti C e , pr aC Ti C e , pr aC Ti C e

How it is done is as important as getting it done. If we want to be good at writ-
ing quality code, we need to practice how to write quality code. There is no other
way. When practicing, the focus should be on the techniques we are using and
not in solving the problem. Solving problems is what we are paid for and what
we do at work. However, when practicing, we should focus on how we are solv-
ing the problem. For example, imagine you are trying to learn or get better at
 Test- Driven Development. This is a hard discipline to master. It is counterintui-
tive at first, and that is why we need to practice.

praCTiCe, praCTiCe, praCTiCe

49

Do you remember when you were learning how to drive? I remember that every
time I was driving up a hill I was praying for the traffic light not to go red. I used
to think to myself, “Damn, I’ll need to stop, put it in first gear, release the clutch
slowly, and be careful that the car does not stall or roll backward.” I also remem-
ber the first time I had some friends in the car and they were asking me, “Can
you switch the radio on?” and I, nervously glancing between all the mirrors,
firmly gripping the steering wheel, would tell them “no.” That happened because
when I was learning how to drive, I was worried about the car. I was worried
about the gear shifting. I was worried about the mirrors, other cars, driving
straight and staying in the lane, not driving into the other lane when turning,
and so on. I could not divert my attention to switch the radio on. Now, after a
few years, imagine how you drive. We do not even remember we are in a car. We
do not think about the mechanics of driving a car anymore. We just focus on
where we are going, what we are going to do when we arrive there; we listen to
music, sing along, have conversations while driving. Driving a car became sec-
ond nature and the car is now almost an extension of our own bodies.

Technical practices and new technologies are the same thing. The more we prac-
tice, the more comfortable we become, to the point where we don’t think about
them anymore. We just focus on what we want to do with them.

When practicing, we need to focus on writing the best code we could possibly
write. If it takes us minutes or even a few hours, to write a single test but it is the
best test we could have written, that is OK. We should not worry if we take a
long time to name a variable, method, or class. As long as we tried our best to
find the most appropriate name for it, we should feel great. We are practicing
and when we do it, we should strive for perfect practice. With this approach,
when facing the demands of a real software project, we can concentrate on find-
ing a good solution to the problem and not on how to write tests or which com-
mands to use.

K aTa S

Katas are simple coding exercises. They have a simple problem domain that can
be understood in a few minutes and are complicated enough not to be solved
too quickly. They normally take from a few minutes to a few hours to be solved

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

50

and are a perfect way to try new techniques and approaches. An example would
be a kata where we need to calculate the score of a bowling game or implement
 tic- tac- toe. We can use these katas to practice things we think we are not very
good at, like Test- Driven Development, another language, or a framework.

Katas have been criticized by certain people in the Agile community, though.
Some people say that it is plain stupid to do the same thing over and over again.
Well, to a certain extent there is some degree of truth to it. Usually this is said
because the term comes from martial arts and that is how it is done in karate, for
example. We do the same movements over and over again. That was probably
the original intent when we started using the term kata for a coding exercise.
However, solving katas with our current toolkit (the techniques and tools that
we are comfortable with) does not make a lot of sense.

When doing katas, the idea is that we stretch ourselves, using practices, tech-
niques, and technologies that we are not very comfortable with, with the intent
of getting better at them. After practicing these things quite a few times, you may
feel ready or at least fairly comfortable with doing that in a professional environ-
ment. Think about musicians who practice for hours, days, and months before
their live performances. That is exactly what we are trying to achieve here.

Katas can be very beneficial when the same kata is done over and over again
but using a completely different approach or technique each time. That allows
us to experiment and compare. The correct word to define this practice, ac-
cording to martial arts, is keiko. However, as developers all over the world have
already adopted the word kata, we should keep using it instead of introducing
another term.

We can find a good source of coding katas at codingkata.org, codekata.pragprog
.com, and kata.softwarecraftsmanship.org.

pe T pr o j e C T S

Pet projects are for me, by far, the best way to learn and practice. A pet project is
a real project but without pressure. There are no deadlines, they do not need to
make money, you control the requirements, and, most important, you use the

praCTiCe, praCTiCe, praCTiCe

51

technologies and methodologies you want, whenever you want, wherever you
want. You are the boss. In real projects, a professional software developer would
first understand the problem domain, then make technical decisions and write
code. We would speak to stakeholders, product owners, users, business, market-
ing, and whoever else is involved and could contribute to the business idea.
These conversations, in a healthy Agile environment, should happen frequently
throughout the project. According to what the customer wants to achieve and
the scope of the project, we would then choose the most suitable technologies to
develop the project. Pet projects are exactly the opposite. First we decide what we
want to learn— practices, disciplines, methodologies, and technologies— and
then we find a problem to solve. It is much easier to understand why and how
we can or cannot use certain technologies if we have a pet project to try them
out. Pet projects allow us to play, experiment, discover, and learn in a very safe
environment, giving us the experience we need to apply what we have learned to
real projects.

Another important thing about pet projects is that we can experience several as-
pects of a real project. For example, we need to come up with an idea. Once we
have an idea, we need to start refining the features and preparing a backlog. Pre-
paring a backlog means thinking about priorities, making rough estimations,
writing stories, and splitting tasks. We also need to think about tests, how we are
going to deploy the application, version control, continuous integration, usabil-
ity, the user interface, infrastructure code, design, and databases. As soon as we
start using the application ourselves, we start changing our minds about the fea-
tures (business) and also the technology choices. And that is exactly what hap-
pens in a real project. We do not need to have all that in place, but we can if we
want to. We can use pet projects to learn any aspect of a real project. We can
even try to write a business plan for it if we want to learn something about that.
Remember, we are the bosses and we do whatever we want, as long as we are
learning something. That’s the whole point.

Above all, pet projects are meant to be fun. A common problem that developers
have with pet projects is finding a good idea. The good news is that you do not
need one. You are not starting a new business. I always advise developers to
choose a subject that they are very passionate about. For example, if you like
traveling, try to create a website about travel. If you like running, create an

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

52

application that can capture your progress, display graphics, and so forth. If you
feel you should be more organized with your own tasks, create a mobile app
where you can track what you need to do. It does not matter if there are thou-
sands of other applications that do the same. There are always different things
you would like them to do. The advantage of choosing a topic you are passionate
about is that you will never run out of ideas for features or improvements. Be-
sides that, you will always want to work on it since you usually will want to use it
as well. All these things will help you to be quite close to a real project, and prac-
ticing them will have an enormous impact on your professional career.

A common question is if we should transform our pet projects into a real busi-
ness. The answer is, “It depends.” I normally would say no to that since if you
want to have a business, writing code and learning new technologies should not
be your number one priority. I would recommend that you find some good ma-
terial and get yourself familiar with Lean startup concepts before writing a single
line of code. The transition from a pet project to a real business can be extremely
painful and full of disappointments. Believe me, I’ve tried it myself. Many of us
get very attached to our own applications and code base, which can blind us to
what the market really wants. If we feel we should transform our little Franken-
stein pet project into a business, focus on the business first and be ready to
throw whatever percentage of what you have written away if that is what the
business demands. Detach yourself from the code, clean it up, and leave just the
bare minimum to satisfy the business needs.

ope n So u r C e

Contributing to open source projects is also a great way to practice. There are
thousands of them out there. Find a project that is related to what you want to
learn or know more about, and download the source code. Start running and
reading the tests, if any exist. Inspect, debug, and play with the code. If you want
to contribute, start small: add some documentation, write some tests, check the
list of bugs to be fixed or features to be implemented, pick a simple task, and give
it a try. You can also propose and implement a new small feature to start with.

Open source projects tend to be very different from pet projects because they are
usually, with few exceptions, very specific in scope. For example, it may be an

praCTiCe, praCTiCe, praCTiCe

53

 object- relational mapper (ORM) framework, a library to make web service calls,
transaction management, a social network integrator, and so on. Although all
these things are extremely important, necessary, and useful, open source projects
tend to be just one of the libraries your professional applications will use, so do
not forget to look at the whole picture.

Another great thing about open source projects is to see great developers in ac-
tion. Looking at how they code and solve problems can be a great way to learn
how to code well. Besides all that, it is also a great way to raise your public profile.

pa i r pr o g r a m m i n g

Pair programming is more a social activity than a technical practice. It enhances
the team spirit and brings developers together. Many developers are afraid to try
it or think they will feel uncomfortable when pairing with others. Many years
ago, I used to think like that but I realized that, in reality, I was afraid to expose
my own limitations. If that is how you feel, the best advice is to get over it. There
is a limit to what we can learn on our own. Of course we can learn whatever we
want because we are all very smart people, but the problem is the amount of
time that it can take. In addition, we will always have a naive and biased opinion
when we are doing things on our own.

When pair programming, we can learn how to use a new language or parts of
the application to which we had no previous exposure, a technical practice like
 Test- Driven Development, a few keyboard shortcuts, or even a completely new
way to solve problems. Pairing can lead to very interesting discussions. It can
help us to validate our own ideas or have them challenged, forcing us to rethink
why we do things the way we do. It also can be a very humbling experience.
Usually, we think of ourselves as very good developers, and we like to think that
all the other developers are bad. Other developers write crap code, not us.
When pairing, we get immediate feedback on our code and ideas. Our pair vali-
dates whatever we type immediately. Whenever our pair does not understand
what we are doing, or does not agree with a variable name, the use of an
 application programming interface (API), or a design decision, we have an op-
portunity to step back and reevaluate the decision. Instead of thinking that the
other person is stupid (which is rarely the case), we should think that we are

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

54

probably not as good as we think we are. A good developer is a developer who
can write code that any other developer can understand. When our pairs don’t
agree or don’t understand what we are doing, we should take this as an oppor-
tunity to have a good discussion. Use it to learn something new and open your
mind to different approaches. If someone is questioning what we’ve just done,
maybe it is because it’s not good enough and there is a better way of doing it.
We should take opportunities like that to share what we know, making every-
one around us better. When teaching, we are forced to structure our thoughts,
making us really understand our quite often half- baked ideas so we can make
someone else understand them.

Pairing with someone from our team or a friend is great, but pairing with some-
one that we barely know can be even better. Usually team members and friends,
after some time working and pairing together, develop a common understand-
ing and style of coding. When pairing with people we have never paired with be-
fore, we end up potentially exposing ourselves to very different ways to solve and
think about problems. The best way to find different pairing partners is attend-
ing meetings organized by our local user groups or technical communities.
There are also an increasing number of developers willing to set up remote pair-
 programming sessions in whatever we want to work with. There are plenty of
tools out there that can make a remote pairing session very smooth.

We need to keep our minds open to new ideas when pairing. Sometimes we
learn, sometimes we teach, and sometimes we do both.

So C i a li z e

Not only individuals and interactions, but also a community of
professionals.

The idea that software developers are introverted nerds is totally outdated.
Finding other developers whom we can bounce ideas off of, pair- program,
and network is almost essential for a successful career. A great and easy way to
do that is to join your local user groups and technical communities and to
participate in their events. They normally promote free talks, coding activities,

deliBeraTe diSCoverY

55

and social events. Another great aspect of being part of a community is the
feeling that we are not alone. User groups and technical communities tend to
be extremely open and welcoming. We find developers from many different
backgrounds, working for completely different industries, with different tech-
nologies, languages, and processes. Some developers are more experienced
than others but there is one thing they all share: passion. The great thing
about passionate developers is that they are constantly learning and are very
happy to share what they know.

Being a member of a local user group or technical community is a fantastic way
to learn and share ideas.

de li B e r aTe di S Cov e rY

I’m the smartest man in Athens because I know that
I know nothing.

—Socrates

The biggest mistake that software professionals can make is not accepting that
they don’t know what they don’t know. Not knowing what we don’t know is also
called second- level ignorance. Accepting that we have a lot to learn is a sign of
maturity and one of the first steps toward mastery.

The vast majority of us have a natural tendency to be positive and optimistic. An
example of that is how bad we are at estimating tasks. Once tasks are completed,
if we compare the amount of time they took to our original estimations, we will
see that the majority of them took longer than we expected. We need to accept
that there is a massive chance that things will not go according to plan, which
means there will be unforeseen and unpredictable problems. Unfortunately, we
have absolutely no idea when, where, or how. The consequence of us ignoring
this fact is that we will be caught by surprise and will not be able to handle the
problems as well as we could if we knew about them upfront.

There is not a magical way to completely solve this problem but we can try to
minimize it. One way of doing this is to constantly expose ourselves to situations

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

56

where we can learn something new about the context we are in. This is very im-
portant mainly in the early days of a project or before building a major set of
new features—when we are most ignorant about what we need to do. Spending
time trying to identify and minimize our ignorance across all the axes we can
think of can be time extremely well spent.

Ignorance is a constant. Imagine we could start our latest project from scratch
again. Same people, same requirements, same organizational constraints, same
everything, but the difference this time is that we would start with all the knowl-
edge we already have. How long do you think it would take? Now, stop and think
about it. When asking this question, usually the answers average between one
half and one quarter of the original time and that’s where my own answer would
be as well. Ignorance is the single greatest impediment to throughput, meaning
that if we reduce the level of our ignorance as fast as we can, we can be far more
productive and efficient.

We should always try to create opportunities where we can learn something we
don’t know. “But if I don’t know what I don’t know, how can I create opportuni-
ties to learn that?” you may ask. Speak to random colleagues and ask them how
they keep up with the progress in our industry. Go to technical community and
user group events. Show your code to other people. Ask for help even when you
think you don’t need it. Try to figure out which aspects of your current project
you and your team have not explored yet, then start discussions about it or even
write a proof of concept. Aiming to remove the ignorance constraint should al-
ways be your priority in order to deliver projects more efficiently and grow as
professionals.

 wo r K- l i f e Ba l a n C e

So far I have been saying how important it is to look after our careers and that
we should dedicate loads of time outside working hours to practice and learn.
However, we all have family, friends, and other interests in life. I have a wife and
two kids, whom I love to bits and want to spend a lot of quality time with. It is
never easy to balance work and personal life because we spend more than
50 percent of our waking hours at work, including all the time commuting to
and from it.

worK-life BalanCe

57

The most common thing I hear every time I talk about investing time in our
own careers outside working hours is, “I don’t have time.” And if you say or
agree with that, you are probably right. That’s what you decided to believe and
that, in turn, became your reality. But the truth is, we all have time. We are just
not very good at optimizing it. Maybe we prefer to spend our time with some-
thing else that may or may not be as important as our careers.

Stop reading now and think about what you did yesterday, from the time you
woke up to when you went to bed. What did you do the day before yesterday?
Seriously. Stop and really think about that. Now think about how much of it was
waste? How much of it was productive? By productive we can mean many
things, from learning something new to spending time with our loved ones. If
you took some time to rest, this is also important, especially after a busy day or a
busy week. Our bodies need to recharge and we should cater to that as well.
Some people genuinely do not have a lot of time. I once met a German speaker
at a conference who told me he had a wife and five kids. Talking about learning
and practicing outside working hours, he told me that his only alternative was to
be very smart in how he uses the very limited amount of time he has. Despite his
tough situation, he managed to present at a conference.

Cr e aTi n g Ti m e

Quite often, lack of time is used as an excuse for our own laziness. People are dif-
ferent. Some live in large cities, some in small villages, some have family, and some
live on their own. Some people have hobbies. Some love going to the gym. Some
are young and love going out with friends; others are older and prefer to stay at
home. Some are morning people; some go to bed very late and hate to wake up
early. By no means do the following tips apply to everyone; they are just a collec-
tion of things that we can do to create time and use it to invest in our careers.

I realized that I used to waste a lot of time in front of the TV, aimlessly browsing
the Internet, checking all the uninteresting things my friends publish on social
networks, playing computer games, or watching sports. I decided to cut down on
the number of hours spent on these things. That doesn’t mean I don’t do them
anymore. It just means that I do them in moderation. Although they are great
ways to relax and switch off, we do not need to do them every night, all night.

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

58

Your local coffee shop is your friend. Find a coffee shop near your workplace
with a good Internet connection. If there isn’t one, find one along the way. Even
if your company has a coffee area, I would avoid that since we can be tempted to
do work during this time or may be interrupted by colleagues. Take one day a
week and try to get to a coffee shop one or two hours before you start working.
Use this time to write code, read a technical book, blogs, or whatever you think
you need to do to learn and move your career forward.

Lunchtime is another great opportunity we have to practice and learn something
new. Once or twice a week just grab a sandwich and your laptop, and go some-
where quiet. It is amazing what we can do in such a small period of time when
we are focused.

Check if there is a user group or tech community in your city and join them.
Usually user groups meet regularly; many operate on a monthly schedule. Make
a commitment to go to the meetings at least once or twice a month. Meetings
tend to last between one to three hours so I’m sure the vast majority of us can
plan for that. The advantage of attending user group meetings is that we usually
can learn a huge amount in a very short period of time, either from a presenta-
tion or from speaking or coding with other developers. There is a limit to what
we can learn on our own. Although we all feel we can learn anything, sometimes
we don’t know where to start. It’s also worth remembering that it can be a lot
faster to learn something from someone with more experience than trying to
learn on our own.

Go to bed 30 minutes earlier than normal and use this time to read a book, look
at blogs, or watch technical screencasts before falling asleep. This is something
that works really well for me. Every single night I try to read at least a few pages,
regardless of the time I go to bed.

Buy yourself a Kindle, iPad, or another e- book reader, and carry it with you at all
times. Use it every time you have some dead time, like commuting or waiting for
your dentist, doctor, or hairdresser appointment.

I believe every developer has a good smartphone today but if you do not have
one, buy one now. Use Twitter or any other information aggregator when you

worK-life BalanCe

59

have a break or dead time. This is a great way to quickly read something or keep
up with the latest news and trends. Being able to go to a single place and get all
the information you want is key when you want to optimize time.

fo C u S : Th e po m o d o r o Te C h n i q u e

In order to use our time outside working hours wisely, it is extremely important
that we focus. A good technique is to decide beforehand what we want to do be-
fore we actually use this time slot. It is like deciding the agenda before schedul-
ing a meeting. It does not need to be strict, but we need at least to have a good
idea of what we want to achieve. Once this is done, we must ensure we can focus
and get it done. One way we can achieve this is by using the Pomodoro tech-
nique. There are five basic steps to implement this technique:

1. Decide on the task to be done.

2. Set the Pomodoro (timer) to 25 minutes.

3. Work on the task until the timer rings.

4. Take a short break (normally 5 minutes).

5. Every four “Pomodoros,” take a longer break (15–30 minutes).

During a Pomodoro (25 minutes), we focus on the task and nothing else. The
breaks between Pomodoros are for a quick rest, coffee, checking emails, making
a phone call, checking your Twitter, or whatever you feel like. We should do
whatever we can to finish the Pomodoro with no interruptions but in case it
needs to be interrupted (there is an important call we need to take or we really
need to speak to someone), then the Pomodoro must be terminated and not
paused. A new one should be created when we are ready to work on the task
again. There are many Pomodoro tools available out there. Some are very so-
phisticated where you can keep track of all the tasks you completed, interrupted
Pomodoros, and many other statistics. I, personally, prefer the simple ones but
feel free to use one that suits you better.

Ba l a n C e

Whatever you do, a sustainable pace is key. Keeping a healthy work- life balance is
tough but not impossible. If you are the type of person that says, “I don’t want to

ChapTer 4 The SofTware CrafTSmanShip aTTiTude

60

touch a computer outside work,” you probably should think again about your
career choice; maybe software development is not for you. For the majority of
us, software development—besides being our job—is also a hobby, which makes
it relatively easy to find enough spare time to practice and better ourselves.

Keeping our professional life healthy is essential for a healthy family life. An un-
healthy professional life, where we are constantly worried about not being paid
well, or that we may not find another well- paid and interesting job if we are
made redundant, may seriously damage our personal lives. Being at the top of
our game, with good connections and with skills that are in demand in the mar-
ket, puts us in a good position not to worry too much about our professional
lives and give our family and friends the attention they very much deserve.

Su m m a rY

Owning our careers is hard. We need to put a lot of effort into getting to a posi-
tion where we can say, “I feel confident I can find a good and well- paid job
whenever I want.” Determination and passion are essential for a successful career
as a software craftsman. However, without focus, much of our efforts are wasted.
We need to learn how to keep ourselves up to date and how to practice. We need
to learn how to use our time well. The day we stop learning and practicing is the
day we start losing control of our careers. The more knowledge and skills we
have, the easier it is to own our careers— that means we are able to choose
where, when, and for whom to work, and how much to charge for our services.

Time should never be used as an excuse for not doing certain things. Ever. We all
have time. In fact, we all have exactly the same amount of time. The difference is
how we choose to spend our time.

241

In d e x

8th Light, 26, 29–30

A
Accountability, 104

Agile

building the right thing, 10

description, 11

failure of. See Agile hangover

founders of, 9–10

influence of, 11–12

measured in Post- Its, 15

people empowerment, 12

principles of, 13

 process- oriented disciplines, 10

professional evolution, 12

vs. Software Craftsmanship, 21

for teams and organizations, 10

for technical practices and

techniques, 10

 technical- oriented disciplines, 10

transformation era, 14

Agile, partial transformation

naive approach to software projects,
19–20

adopting Extreme Programming,
19

Agile coaches, 18

common problems, 19–20

overview, 16–18

rejecting technical practices, 19

Agile coaches, 18

Agile hangover

low morale, 159–161

overview, 14–16

Agile Manifesto

principles, 13, 27

proposed fifth value, 27

values, 12–13

Algorithms, in interviews, 157

Always leave code cleaner than you
found it, 34

Art, Software Craftsmanship as,
25–26

242

Index

Authorization
anecdote, 200–204
asking for, 181
forgiveness over, 196–197

Automated testing, XP (Extreme Pro-
gramming), 99–100

Autonomy, in careers, 113–114

B
Balancing work and life, 56–60
Beck, Kent

creating the Agile Manifesto, 9
Extreme Programming Explained:

Embrace Change, 46, 99
“Four Rules of Simple Design,”

218–221
history of XP (Extreme

 Programming), 96
Behavioral books, 45
Blogs, for professional development,

46–47
Book clubs, 172
Books, for professional development

behavioral, 45
classics, 45–46
conceptual, 45
revolutionary, 45–46
 technology- specific, 45

Books and publications
Apprenticeship Patterns: Guidance

for the Aspiring Software Crafts-
man, 28

Clean Code: A Handbook of Agile
Software Craftsmanship, 27

The Clean Coder: A Code of Conduct
for Professional Programmers, 27

Design Patterns, 4, 46
Driving Technical Change, 185
Extreme Programming Explained:

Embrace Change, 46, 99

GoF (Gang of Four) book. See
Design Patterns

The Mythical Man- Month, 46
The Pragmatic Programmer: From

Journeyman to Master, 26, 46
Refactoring, 46
Seven Languages in Seven Weeks,

166
Software Craftsmanship: The New

Imperative, 26
 Test- Driven Development: By

Example, 46
The Wandering Book, 28

The boss, 187
Boy Scout rule, 34
Brainteasers, in interviews, 154
A Brazilian teenager, career develop-

ment, 107–109
Bugs. See Testing and fixing bugs
Building the right thing, with Agile,

10
The burned, 186

C
C3 (Chrysler Comprehensive

 Compensation) payroll system,
96–97

Career ladders, 227
Career progression, 225–227
Careers in Software Craftsmanship.

See also Recruitment
the author (anecdote), 107–109
autonomy, 113–114
being a craftsman, 224–225
a Brazilian teenager (anecdote),

107–109
career ladders, 227
career progression, 225–227
choosing a job, checklist for,

229–231

Index

243

continuing education. See Culture
of learning; Professional
development

courage, 225

creating opportunities, 110–111
CV building, 112, 228

defining a direction, 110–111

employer/employee relationships,
43–44

focus and determination,
110–111

honesty, 225

inside companies, 113–114

job as investment, 111–112

job checklist, 229–231

job diversity, 231–233

jobs as investments, 111–112

mastery, 113–114

milestones, 227–231

the mission, 233

passion, 224–225

Peter Principle, 114

predicted job growth, 137–138

purpose, 113–114

reaching your level of
 incompetence, 114

roads, 227–231

specializing, 232–233

taking ownership, 42–43

time management, 57–60

uncertainty, 231

 work- life balance, 56–60

Change management. See Driving
technical changes

Chrysler Comprehensive Compensation
(C3) payroll system, 96–97

Classic books, 45–46

Clean Code: A Handbook of Agile
 Software Craftsmanship, 27

The Clean Coder: A Code of Conduct
for Professional Programmers, 27

Code
dealing with bad code, 79–81
as a garden, 79. See also Gardeners,

craftsmen as
group code reviews, 176
 hands- on coding sessions, 176–178
quality vs. time per feature, 80

Coding exercises (katas), 49–50
Coding on paper, in interviews, 156
Coffee shops, as workplace, 58
Collaboration. See Customer

collaboration
Communities of practice (CoPs),

178
Community involvement, recruit-

ment interviews, 130–131
Community of professionals, 32,

35–36. See also Software Crafts-
manship, communities

Computers, bringing to interviews,
147

Conceptual books, 45
Conferences

SoCraTes UK, 30
Software Craftsmanship Confer-

ences, 28
Confusing questions, in interviews,

154–155
Consensus delays, 181
Contempt for the candidate, in inter-

views, 155–156
Context, 94–96, 98–104
Continuing education. See Culture of

learning; Professional
development

Continuous integration, XP (Extreme
Programming), 101–102

CoPs (communities of practice), 178

Index

244

Costs
employing 9-to-5 developers,

161–164
lack of motivation, 164–165
low morale, 159–161
and quality of code, 209–211
software projects, 33–35

Courage
in career development, 225
driving technical change, 189–190

Craft, Software Craftsmanship as,
25–26

Craftsman swap, 29–30
Craftsmanship over execution, 27
Culture of learning, creating. See also

Professional development
book clubs, 172
external technical communities,

179
group code reviews, 176
 hands- on coding sessions,

176–178
internal CoPs (communities of

practice), 178
lightning talks, 173–174
 pet- project time, 178–179
roundtable discussions, 173–174
switching projects, 174–175
technical lunches, 173
 technology- agnostic thinking,

177–178
Culture of learning, persuading

people to join
asking for authorization, 181
consensus delays, 181
establishing a rhythm, 182
focus on those who care, 180
forcing the issue, 180
keeping it simple, 181–182
leading by example, 180

overview, 179
trying to change everyone, 180–181

Customer collaboration
but also productive partnerships,

32, 36–37
over contract negotiation, 13

CV building, 112, 228
The cynic, 186

D
Deliberate discovery, for professional

development, 55–56
Design Patterns, 46
Design patterns, legacy code, 219–221
Design review, vs. TDD (Test- Driven

Development), 101
Documentation, working software

over comprehensive documentation,
12

Dogmatic thinking, 105
Doing the right thing vs. doing the

thing right, 93–94
Drive: The Surprising Truth about

What Motivates Us, 113
Driving Technical Change, 185
Driving technical changes. See also

Skepticism patterns, identifying
adaptation, 194–195
being prepared, 189–190
choosing your battles, 193–194
convincing management, 196–197
courage, 189–190
establishing trust, 191–192
fear, 195–196
feedback loops, 195
forgiveness over authorization,

196–197
gaining expertise, 191–192
incompetence, 195–196
inspection, 194–195

Index

245

iteration boundary trick, 194–195
leading by example, 192–193
selling my team on TDD, 197–198

E
Education, technical. See Culture of

learning; Professional
development

Ego, and quality of code, 217
 Employer- employee relationships

careers in Software Craftsmanship,
43–44

in productive partnerships, 36–37
Employing 9-to-5 developers,

161–164
Engineering, Software Craftsmanship

as, 25–26
External technical communities, 179
Extreme Programming Explained: Em-

brace Change, 46, 99
Extreme Programming (XP). See XP

(Extreme Programming)

F
The fanboy, 189
Fear, as barrier to well- crafted

 software, 33
Filtering criteria, recruitment

 interviews, 131–133
First international Software

 Craftsmanship Conference, 28
Focus and determination, 110–111
Focus on those who care, 180
“Four Rules of Simple Design,”

218–221

G
Gaining expertise, driving technical

change, 191–192
Gardeners, craftsmen as, 81. See also

Code, as a garden

GoF (Gang of Four) book. See Design
Patterns

Good developer, defining for
 recruitment interviews, 133

Great vs. mediocre, 217
Group code reviews, 176

H
 Hands- on coding sessions, 176–178
The herd, 186
Hiring 9-to-5 developers, 161–164
Honesty, in career development, 225

I
“I’ll try.” equivalent to “Yes, I will do

it.” 69
The indifferent, 188
Individuals and interactions

but also a community of profes-
sionals, 32, 35–36

over process and tools, 12
The inept, 188
The insecure, 189
Internal CoPs (communities of prac-

tice), 178
Internet, blocking during interviews,

156
Interviews. See Recruitment,

interviews
Intimidating the candidate, in inter-

views, 153–154
The irrational, 187
The Ivory- Tower Architect, 188,

199–204

J
Job descriptions. See Recruitment, job

descriptions
Job diversity, 231–233
Job growth, predicted for software

 engineers, 137–138

Index

246

Jobs. See also Careers in Software
Craftsmanship

checklist for choosing, 229–231
as investments, 111–112

K
Katas (coding exercises), 49–50
Keeping it simple, 181–182

L
Leadership. See Management
Leading by example, creating a culture

of learning, 180
Legacy code

attitudes towards, 89–90
design patterns, 219–221
refactoring, 90–91, 219–221

Level of incompetence, 114
Lightning talks, 173–174
Low morale

Agile hangover, 159–161
employing 9-to-5 developers,

161–164
lack of motivation, 164–165

LSCC (London Software Craftsman-
ship Community) (UK), 30

M
Management

distance from actual projects, 20
unrealistic deadlines and enlight-

ened managers, 74–75
Manifesto for Software Craftsman-

ship. See Software Craftsmanship
Manifesto

Manifestos. See also Software Crafts-
manship Manifesto

Agile Manifesto, 12
Manifesto for Software Craftsman-

ship. See Software Craftsmanship
Manifesto

Mastery of a career, 113–114
Milestones in career development,

227–231
 Mind- mapping an interview conver-

sation, 143–144
Misleading questions, in interviews,

154–155
The mission, in career development,

233
Motivation

the author (anecdote), 107–109
autonomy, 113–114
a Brazilian teenager (anecdote),

107–109
careers inside companies,

113–114
creating opportunities, 110–111
CV building, 112, 228
defining a direction, 110–111
focus and determination, 110–111
jobs as investments, 111–112
lack of, 164–165
mastery, 113–114
Peter Principle, 114
purpose, 113–114
reaching your level of incompe-

tence, 114
wrong, 170–171

The Mythical Man- Month, 46

N
A naive approach to software projects,

19–20

O
Offshore outsourcing, 20
Open source projects, for professional

development, 52–53
Opportunities, creating, 110–111
Owning your career in Software

Craftsmanship, 42–43

Index

247

P
Pair programming

for professional development,
53–54

in recruitment interviews, 144–147
XP (Extreme Programming),

102–103
Paris Software Craftsmanship Com-

munity, 30
Partnerships

choosing clients for, 38
customer collaboration, 36–37
productive, 36–37, 37–38
when clients aren’t ready, 37–38

Partnerships, productive
with customer collaboration, 32,

36–37
 employer- employee relationships,

36–37
identifying during recruitment

 interviews, 138–142
reluctant clients, 37–38

Passion
in career development, 224–225
injecting into software craftsmen,

165–167
The Passionate Programmer, 69
People empowerment, with Agile, 12
Permission. See Authorization
Pet projects, 50–52
Peter Principle, 114
 Pet- project time, 178–179
Phone interviews, 157–158
Pomodoro technique, 59
 Post- Its, as measurement of Agile, 15
Practices and values, XP (Extreme

Programming), 97–98
Practicing your craft. See also Culture

of learning; Professional
development

contributing to open source proj-
ects, 52–53

katas (coding exercises), 49–50
overview, 48–49
pair programming, 53–54
pet projects, 50–52

The Pragmatic Programmer: From
Journeyman to Master, 26, 46

Pragmatism, 105, 221–222
Principles of

Agile, 13
Agile Manifesto, 27

Proactive recruitment, 134–135
 Process- oriented Agile disciplines, 10
Productive partnerships

with customer collaboration, 32,
36–37

 employer- employee relationships,
36–37

identifying during recruitment
 interviews, 138–142

reluctant clients, 37–38
Professional development. See also

Culture of learning
blogs, 46–47
deliberate discovery, 55–56
reading books, 44–46
second-level ignorance, 55
social media, 47
socializing, 54–55
technical websites, 47
Twitter, 47

Professional development, practicing
your craft

contributing to open source proj-
ects, 52–53

katas (coding exercises), 49–50
overview, 48–49
pair programming, 53–54
pet projects, 50–52

Index

248

Professional evolution, with Agile, 12
Professionalism, unrealistic deadlines,

68–70
Purpose of a career, 113–114

Q
Quality of code

cost of, 209–211
as the default, 207–209
and developer ego, 217
“Four Rules of Simple Design,”

218–221
great vs. mediocre, 217
helping the business, 213–216
influence of development method,

212–213
quick does not mean dirty, 214–216
refactoring, 211–212
TDD (Test- Driven Development),

209–216
vs. time per feature, 80
time requirements, 209–211

Quick does not mean dirty, 214–216

R
Reality of software development, 6–8
Recommendations, recruitment inter-

views, 130
Recruitment. See also Careers in Soft-

ware Craftsmanship
for new teams vs. existing teams,

149
proactive, 134–135
time required for, 123

Recruitment, interview anti- patterns
algorithms, 157
being a smart- ass, 153–154
blocking the Internet, 156
brainteasers, 154
coding on paper, 156

confusing or misleading questions,
154–155

contempt for the candidate,
155–156

intimidating the candidate,
153–154

phone interviews, 157–158
Recruitment, interviews

asking questions about the job,
139

asking questions with exact an-
swers, 141

bringing your own computer, 147
candidate’s perspective, 140–142
community involvement, 130–131
defining a good developer, 133
developers interviewing developers,

152
effective filtering criteria, 131–133
following a hunch, 149
good interviews, 142–148
hiring company’s perspective,

139–140
identifying productive partner-

ships, 138–142
interviewer skills, 151–152
 mind- mapping a conversation,

143–144
pair programming, 144–147
 pre- interview coding exercises,

150–151
from prepared scripts, 141
recommendations, 130
the right focus, 143
skimping on time for, 122–123
tailoring for specific candidates,

147–148
trust indicators, 140

Recruitment, job descriptions
including, 125–130

Index

249

omitting, 123–125
problems with, 120–122, 124–125
samples, 120, 125–127, 127–130

Refactoring
legacy code, 219–221
quality of code, 211–212
XP (Extreme Programming),

103–104
Refactoring, 46
Responding to change

but also steadily adding value, 32,
33–35

over following a plan, 13
Revolutionary books, 45–46
Rhythm, establishing a, 182
Roads to career development,

227–231
Roundtable discussions, 173–174

S
Saying no to unrealistic deadlines

anecdote, 69–70
with options, 70–74
overview, 64–68

Saying yes to avoid disappointment,
69

Science, Software Craftsmanship as,
25–26

Scripts, for recruitment interviews,
141

Second-level ignorance, 55
Seniority, 5–6
Seven Languages in Seven Weeks, 166
Skepticism patterns, identifying

the boss, 187
the burned, 186
the cynic, 186
the fanboy, 189
the herd, 186
the indifferent, 188

the inept, 188
the insecure, 189
the irrational, 187
the Ivory- Tower Architect, 188
the time crunched, 186–187
the uninformed, 186
the wronged, 188

Skeptics, facing
the Ivory- Tower Architect,

199–204
overview, 198–199
the wronged, 204–205

 Smart- ass interviewers, 153–154
Social media, for professional devel-

opment, 47
Socializing, for professional develop-

ment, 54–55
SoCraTes UK conference, 30
Software Apprenticeship

Summit, 26
Software Craftsmanship. See also Ca-

reers in Software Craftsmanship
vs. Agile, 20–21
as art, 25–26
as craft, 25–26
definitions, 12, 23–25
as engineering, 25–26
and pragmatism, 221–222
as science, 25–26
as trade, 25–26

Software Craftsmanship,
communities

history of, 30
local user groups or technology

communities, 58
LSCC (London Software Crafts-

manship Community) (UK), 30
Paris Software Craftsmanship

Community (France), 30
Softwerkskammer (Germany), 30

Index

250

Software Craftsmanship, history. See
also Software Craftsmanship
Manifesto

beginning of, 26–27
craftsman swap (2009), 29–30
first international Software Crafts-

manship Conference (2009),
28

proposed fifth value for the Agile
Manifesto, 27

Software Apprenticeship Summit
(2002), 26

Software Craftsmanship communi-
ties (2008–2011), 30

Software Craftsmanship Summit
(2008), 27–28

Software Craftsmanship: The New Im-
perative, 26

Software Craftsmanship Conferences,
28

Software Craftsmanship Manifesto
creation of, 28, 30–31
problems with, 38
values, 32–37

Software Craftsmanship Summit,
27–28

Software craftsmen
as gardeners, 81
injecting passion into, 165–167

Software development method, influ-
ence on quality of code,
212–213

Software projects
costs, 33–35
a naive approach, 19–20

Softwerkskammer, 30
Specializing in career choices,

232–233
Steadily adding value, 32, 33–35
Switching projects, 174–175

T
TDD (Test- Driven Development),

100–101
Teams and organizations, Agile for, 10
Technical debt, 82–83
Technical lunches, 173
Technical practices and techniques

accountability, 104
Agile for, 10
context, 94–96, 98–104
dogmatic thinking, 105
doing the right thing vs. doing the

thing right, 93–94
pragmatism, 105
XP (Extreme Programming) his-

tory, 96–97
Technical websites, for professional

development, 47
 Technical- oriented Agile disciplines,

10
 Technology- agnostic thinking,

177–178
 Technology- specific books, 45
 Test- Driven Development: By Example,

46
 Test- Driven Development (TDD),

100–101
Testing and fixing bugs

anecdote, 83–87
test first, 100
time management, 83–87
unit test task card, 86–87
unit testing and fixing bugs,

83–87
using time wisely, 87–88

The time crunched, 186–187
Time management

anecdote, 83–87
creating time, 57–60
technical debt anecdote, 82–83

Index

251

testing and fixing bugs, 83–87
unit test task card, 86–87
using time wisely, 87–88

Time requirements
and quality of code, 209–211
for recruitment interviews,

122–123
Toyota, becoming Agile, 17–18
Trade, Software Craftsmanship as,

25–26
Training. See Culture of learning; Pro-

fessional development
Trust, driving technical change,

191–192
Trust indicators, in recruitment inter-

views, 140
Trying to change everyone, 180–181
Twitter, for professional development,

47

U
Uncertainty about career path, 231
The uninformed, 186
Unit test task card, 86–87
Unit testing and fixing bugs, 83–87.

See also Testing and fixing bugs
Unrealistic deadlines

anecdotes, 61–64, 65–68, 71–74
enlightened managers, 74–75
“I’ll try.” equivalent to “Yes, I will

do it.” 69
learning to say no, 64–68, 69–70
professionalism, 68–70
saying no, with options, 70–74
saying yes to avoid disappointment,

69

V
Value through practices, 98–104
Values

Agile Manifesto, 12–13
Software Craftsmanship Manifesto,

32–37

W
The Wandering Book, 28
 Well- crafted software, 32–33
Working software

but also well- crafted software,
32–33

code is like a garden, 79
code quality vs. time per feature,

80
craftsmen are like gardeners, 81
dealing with bad code, 79–81
frequent deliveries, 78
as measure of progress, 78
over comprehensive documenta-

tion, 12
technical debt anecdote, 82–83

 Work- life balance, 56–60
The wronged, 188, 204–205

X
XP (Extreme Programming), history

automated testing, 99–100
C3 (Chrysler Comprehensive Com-

pensation) payroll system,
96–97

continuous integration, 101–102
pair programming, 102–103
practices and values, 97–98
refactoring, 103–104
TDD (Test- Driven Development),

100–101
test first, 100
value through practices,

98–104
XP (Extreme Programming), in an

Agile transformation, 19

	Contents
	Foreword by Robert C. Martin
	Preface
	Acknowledgments
	About the Author
	Chapter 4 The Software Craftsmanship Attitude
	Who Owns Your Career?
	Keeping Ourselves Up to Date
	Know Who to Follow
	Practice, Practice, Practice
	Socialize
	Deliberate Discovery
	Work-Life Balance
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Blank Page

