
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134659879
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134659879
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134659879


JVM Performance 
Engineering



This page intentionally left blank 



JVM Performance 
Engineering

Inside OpenJDK and the  
HotSpot Java Virtual Machine

Monica Beckwith

Hoboken, New Jersey



Cover image: Amiak / Shutterstock
Figures 7.8–7.18, 7.22–7.29: The Apache Software Foundation

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and the 
publisher was aware of a trademark claim, the designations have been printed with initial 
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no 
expressed or implied warranty of any kind and assume no responsibility for errors or  
omissions. No liability is assumed for incidental or consequential damages in connection 
with or arising out of the use of the information or programs contained herein.

The views expressed in this book are those of the author and do not necessarily reflect 
the views of Oracle.

Oracle America Inc. does not make any representations or warranties as to the accuracy, 
adequacy or completeness of any information contained in this work, and is not responsi-
ble for any errors or omissions.

For information about buying this title in bulk quantities, or for special sales opportunities 
(which may include electronic versions; custom cover designs; and content particular to 
your business, training goals, marketing focus, or branding interests), please contact our 
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com. 

For questions about sales outside the U.S., please contact intlcs@pearson.com. 

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2024930211 

Copyright © 2024 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be 
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval 
system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. For information regarding permissions, request forms 
and the appropriate contacts within the Pearson Education Global Rights & Permissions 
Department, please visit www.pearson.com/permissions.

ISBN-13: 978-0-13-465987-9 
ISBN-10: 0-13-465987-2

$PrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions


To my cherished companions, who have provided endless 
inspiration and comfort throughout the journey of  

writing this book:

In loving memory of Perl, Sherekhan, Cami, Mr. Spots, and 
Ruby. Their memories continue to guide and brighten my days 

with their lasting legacy of love and warmth.

And to Delphi, Calypso, Ivy, Selene, and little Bash, who 
continue to fill my life with joy, curiosity, and playful 

adventures. Their presence brings daily reminders of the beauty 
and wonder in the world around us.

This book is a tribute to all of them—those who have passed and 
those who are still by my side—celebrating the unconditional 
love and irreplaceable companionship they have graciously 

shared with me.



This page intentionally left blank 



Contents
Preface xv

Acknowledgments xxiii

About the Author xxvii

1 The Performance Evolution of Java: The Language and the Virtual 
Machine 1

A New Ecosystem Is Born 2

A Few Pages from History 2

Understanding Java HotSpot VM and Its Compilation Strategies 3

The Evolution of the HotSpot Execution Engine 3

Interpreter and JIT Compilation 5

Print Compilation 5

Tiered Compilation 6

Client and Server Compilers 7

Segmented Code Cache 7

Adaptive Optimization and Deoptimization 9

HotSpot Garbage Collector: Memory Management Unit 13

Generational Garbage Collection, Stop-the-World, and Concurrent 
Algorithms 13

Young Collections and Weak Generational Hypothesis 14

Old-Generation Collection and Reclamation Triggers 16

Parallel GC Threads, Concurrent GC Threads, and Their 
Configuration 16

The Evolution of the Java Programming Language and Its Ecosystem: A 
Closer Look 18

Java 1.1 to Java 1.4.2 (J2SE 1.4.2) 18

Java 5 (J2SE 5.0) 19

Java 6 (Java SE 6) 23

Java 7 (Java SE 7) 25

Java 8 (Java SE 8) 30

Java 9 (Java SE 9) to Java 16 (Java SE 16) 32

Java 17 (Java SE 17) 40

Embracing Evolution for Enhanced Performance 42



viii Contents

2 Performance Implications of Java’s Type System Evolution 43

Java’s Primitive Types and Literals Prior to J2SE 5.0 44

Java’s Reference Types Prior to J2SE 5.0 45

Java Interface Types 45

Java Class Types 47

Java Array Types 48

Java’s Type System Evolution from J2SE 5.0 until Java SE 8 49

Enumerations 49

Annotations 50

Other Noteworthy Enhancements (Java SE 8) 51

Java’s Type System Evolution: Java 9 and Java 10 52

Variable Handle Typed Reference 52

Java’s Type System Evolution: Java 11 to Java 17 55

Switch Expressions 55

Sealed Classes 56

Records 57

Beyond Java 17: Project Valhalla 58

Performance Implications of the Current Type System 58

The Emergence of Value Classes: Implications for Memory 
Management 63

Redefining Generics with Primitive Support 64

Exploring the Current State of Project Valhalla 65

Early Access Release: Advancing Project Valhalla’s Concepts 66

Use Case Scenarios: Bringing Theory to Practice 67

A Comparative Glance at Other Languages 67

Conclusion 68

3 From Monolithic to Modular Java: A Retrospective and Ongoing 
Evolution 69

Introduction 69

Understanding the Java Platform Module System 70

Demystifying Modules 70

Modules Example 71

Compilation and Run Details 72

Introducing a New Module 73

From Monolithic to Modular: The Evolution of the JDK 78

Continuing the Evolution: Modular JDK in JDK 11 and Beyond 78



 Contents ix

Implementing Modular Services with JDK 17 78

Service Provider 79

Service Consumer 79

A Working Example 80

Implementation Details 81

JAR Hell Versioning Problem and Jigsaw Layers 83

Working Example: JAR Hell 85

Implementation Details 86

Open Services Gateway Initiative 91

OSGi Overview 91

Similarities 91

Differences 92

Introduction to Jdeps, Jlink, Jdeprscan, and Jmod 93

Jdeps 93

Jdeprscan 94

Jmod 95

Jlink 96

Conclusion 96

Performance Implications 97

Tools and Future Developments 97

Embracing the Modular Programming Paradigm 97

4 The Unified Java Virtual Machine Logging Interface 99

The Need for Unified Logging 99

Unification and Infrastructure 100

Performance Metrics 101

Tags in the Unified Logging System 101

Log Tags 101

Specific Tags 102

Identifying Missing Information 102

Diving into Levels, Outputs, and Decorators 103

Levels 103

Decorators 104

Outputs 105

Practical Examples of Using the Unified Logging System 107

Benchmarking and Performance Testing 108

Tools and Techniques 108



x Contents

Optimizing and Managing the Unified Logging System 109

Asynchronous Logging and the Unified Logging System 110

Benefits of Asynchronous Logging 110

Implementing Asynchronous Logging in Java 110

Best Practices and Considerations 111

Understanding the Enhancements in JDK 11 and JDK 17 113

JDK 11 113

JDK 17 113

Conclusion 113

5 End-to-End Java Performance Optimization: Engineering Techniques and 
Micro-benchmarking with JMH 115

Introduction 115

Performance Engineering: A Central Pillar of Software Engineering 116

Decoding the Layers of Software Engineering 116

Performance: A Key Quality Attribute 117

Understanding and Evaluating Performance 117

Defining Quality of Service 117

Success Criteria for Performance Requirements 118

Metrics for Measuring Java Performance 118

Footprint 119

Responsiveness 123

Throughput 123

Availability 124

Digging Deeper into Response Time and Availability 125

The Mechanics of Response Time with an Application Timeline 126

The Role of Hardware in Performance 128

Decoding Hardware–Software Dynamics 129

Performance Symphony: Languages, Processors, and Memory 
Models  131

Enhancing Performance: Optimizing the Harmony 132

Memory Models: Deciphering Thread Dynamics and Performance 
Impacts 133

Concurrent Hardware: Navigating the Labyrinth 136

Order Mechanisms in Concurrent Computing: Barriers, Fences, and 
Volatiles 138



 Contents xi

Atomicity in Depth: Java Memory Model and Happens-Before 
Relationship 139

Concurrent Memory Access and Coherency in Multiprocessor 
Systems 141

NUMA Deep Dive: My Experiences at AMD, Sun Microsystems,  
and Arm 141

Bridging Theory and Practice: Concurrency, Libraries, and Advanced 
Tooling 145

Performance Engineering Methodology: A Dynamic and Detailed 
Approach 145

Experimental Design 146

Bottom-Up Methodology 146

Top-Down Methodology 148

Building a Statement of Work 149

The Performance Engineering Process: A Top-Down Approach 150

Building on the Statement of Work: Subsystems Under 
Investigation 151

Key Takeaways 158

The Importance of Performance Benchmarking 158

Key Performance Metrics 159

The Performance Benchmark Regime: From Planning to Analysis 159

Benchmarking JVM Memory Management: A Comprehensive Guide 161

Why Do We Need a Benchmarking Harness? 164

The Role of the Java Micro-Benchmark Suite in Performance 
Optimization 165

Getting Started with Maven 166

Writing, Building, and Running Your First Micro-benchmark in JMH 166

Benchmark Phases: Warm-Up and Measurement 168

Loop Optimizations and @OperationsPerInvocation 169

Benchmarking Modes in JMH 170

Understanding the Profilers in JMH 170

Key Annotations in JMH 171

JVM Benchmarking with JMH 172

Profiling JMH Benchmarks with perfasm 174

Conclusion 175

6 Advanced Memory Management and Garbage Collection in 
OpenJDK 177

Introduction 177

Overview of Garbage Collection in Java 178



xii Contents

Thread-Local Allocation Buffers and Promotion-Local Allocation 
Buffers 179

Optimizing Memory Access with NUMA-Aware Garbage Collection 181

Exploring Garbage Collection Improvements 183

G1 Garbage Collector: A Deep Dive into Advanced Heap 
Management 184

Advantages of the Regionalized Heap 186

Optimizing G1 Parameters for Peak Performance 188

Z Garbage Collector: A Scalable, Low-Latency GC for Multi-terabyte 
Heaps 197

Future Trends in Garbage Collection 210

Practical Tips for Evaluating GC Performance 212

Evaluating GC Performance in Various Workloads 214

Types of Transactional Workloads 214

Synthesis 215

Live Data Set Pressure 216

Understanding Data Lifespan Patterns 216

Impact on Different GC Algorithms 217

Optimizing Memory Management 217

7 Runtime Performance Optimizations: A Focus on Strings, Locks, and 
Beyond 219

Introduction 219

String Optimizations 220

Literal and Interned String Optimization in HotSpot VM 221

String Deduplication Optimization and G1 GC 223

Reducing Strings’ Footprint 224

Enhanced Multithreading Performance: Java Thread Synchronization 236

The Role of Monitor Locks 238

Lock Types in OpenJDK HotSpot VM 238

Code Example and Analysis 239

Advancements in Java’s Locking Mechanisms 241

Optimizing Contention: Enhancements since Java 9 243

Visualizing Contended Lock Optimization: A Performance Engineering 
Exercise 245

Synthesizing Contended Lock Optimization: A Reflection 256

Spin-Wait Hints: An Indirect Locking Improvement  257



 Contents xiii

Transitioning from the Thread-per-Task Model to More Scalable 
Models 259

Traditional One-to-One Thread Mapping 260

Increasing Scalability with the Thread-per-Request Model 261

Reimagining Concurrency with Virtual Threads  265

Conclusion 270

8 Accelerating Time to Steady State with OpenJDK HotSpot VM 273

Introduction 273

JVM Start-up and Warm-up Optimization Techniques 274

Decoding Time to Steady State in Java Applications 274

Ready, Set, Start up! 274

Phases of JVM Start-up 275

Reaching the Application’s Steady State 276

An Application’s Life Cycle 278

Managing State at Start-up and Ramp-up 278

State During Start-up 278

Transition to Ramp-up and Steady State 281

Benefits of Efficient State Management 281

Class Data Sharing 282

Ahead-of-Time Compilation 283

GraalVM: Revolutionizing Java’s Time to Steady State 290

Emerging Technologies: CRIU and Project CRaC for Checkpoint/Restore 
Functionality 292

Start-up and Ramp-up Optimization in Serverless and Other 
Environments 295

Serverless Computing and JVM Optimization 296

Containerized Environments: Ensuring Swift Start-ups and Efficient 
Scaling 297

GraalVM’s Present-Day Contributions 298

Key Takeaways 298

Boosting Warm-up Performance with OpenJDK HotSpot VM 300

Compiler Enhancements 300

Segmented Code Cache and Project Leyden Enhancements 303

The Evolution from PermGen to Metaspace: A Leap Forward Toward 
Peak Performance 304

Conclusion 306



xiv Contents

9 Harnessing Exotic Hardware: The Future of JVM Performance 
Engineering 307

Introduction to Exotic Hardware and the JVM 307

Exotic Hardware in the Cloud 309

Hardware Heterogeneity 310

API Compatibility and Hypervisor Constraints 310

Performance Trade-offs 311

Resource Contention 311

Cloud-Specific Limitations 311

The Role of Language Design and Toolchains 312

Case Studies 313

LWJGL: A Baseline Example 314

Aparapi: Bridging Java and OpenCL 317

Project Sumatra: A Significant Effort 321

TornadoVM: A Specialized JVM for Hardware Accelerators 324

Project Panama: A New Horizon 327

Envisioning the Future of JVM and Project Panama 333

High-Level JVM-Language APIs and Native Libraries 333

Vector API and Vectorized Data Processing Systems 334

Accelerator Descriptors for Data Access, Caching, and Formatting 335

The Future Is Already Knocking at the Door! 335

Concluding Thoughts: The Future of JVM Performance Engineering 336

Index 337



Preface
Welcome to my guide to JVM performance engineering, distilled from more than 20 years of 
expertise as a Java Champion and performance engineer. Within these pages lies a journey 
through the evolution of the JVM—a narrative that unfolds Java’s robust capabilities and archi-
tectural prowess. This book meticulously navigates the intricacies of JVM internals and the art 
and science of performance engineering, examining everything from the inner workings of the 
HotSpot VM to the strategic adoption of modular programming. By asserting Java’s pivotal role 
in modern computing—from server environments to the integration with exotic hardware—it 
stands as a beacon for practitioners and enthusiasts alike, heralding the next frontier in JVM 
performance engineering. 

Intended Audience
This book is primarily written for Java developers and software engineers who are keen to 
enhance their understanding of JVM internals and performance tuning. It will also greatly 
benefit system architects and designers, providing them with insights into JVM’s impact on 
system performance. Performance engineers and JVM tuners will find advanced techniques 
for optimizing JVM performance. Additionally, computer science and engineering students 
and educators will gain a comprehensive understanding of JVM’s complexities and advanced 
features. 

With the hope of furthering education in performance engineering, particularly with a focus 
on the JVM, this text also aligns with advanced courses on programming languages, algo-
rithms, systems, computer architectures, and software engineering. I am passionate about fos-
tering a deeper understanding of these concepts and excited about contributing to coursework 
that integrates the principles of JVM performance engineering and prepares the next genera-
tion of engineers with the knowledge and skills to excel in this critical area of technology.

Focusing on the intricacies and strengths of the language and runtime, this book offers a 
thorough dissection of Java’s capabilities in concurrency, its strengths in multithreading, and 
the sophisticated memory management mechanisms that drive peak performance across varied 
environments. 

Book Organization
Chapter 1, “The Performance Evolution of Java: The Language and the Virtual Machine,” 
expertly traces Java’s journey from its inception in the mid-1990s to the sophisticated advance-
ments in Java 17. Highlighting Java’s groundbreaking runtime environment, complete with 
the JVM, expansive class libraries, and a formidable set of tools, the chapter sets the stage for 
Java’s innovative advancements, underlying technical excellence, continuous progress, and 
flexibility.

Key highlights include an examination of the OpenJDK HotSpot VM’s transformative garbage 
collectors (GCs) and streamlined Java bytecode. This section illustrates Java’s dedication to 



xvi Preface   

performance, showcasing advanced JIT compilation and avant-garde optimization techniques. 
Additionally, the chapter explores the synergistic relationship between the HotSpot VM’s client 
and server compilers, and their dynamic optimization capabilities, demonstrating Java’s con-
tinuous pursuit of agility and efficiency. 

Another focal point is the exploration of OpenJDK’s memory management with the HotSpot 
GCs, particularly highlighting the adoption of the “weak generational hypothesis.” This con-
cept underpins the efficiency of collectors in HotSpot, employing parallel and concurrent GC 
threads as needed, ensuring peak memory optimization and application responsiveness.

The chapter maintains a balance between technical depth and accessibility, making it suitable 
for both seasoned Java developers and those new to the language. Practical examples and code 
snippets are interspersed to provide a hands-on understanding of the concepts discussed.

Chapter 2, “Performance Implications of Java’s Type System Evolution,” seamlessly contin-
ues from the performance focus of Chapter 1, delving into the heart of Java: its evolving type 
system. The chapter explores Java’s foundational elements—primitive and reference types, 
interfaces, classes, and arrays—that anchored Java programming prior to Java SE 5.0.

The narrative continues with the transformative enhancements from Java SE 5.0 onward, such 
as the introduction of generics, annotations, and VarHandle type reference—all further enrich-
ing the language. The chapter spotlights recent additions such as switch expressions, sealed 
classes, and the much-anticipated records.

Special attention is given to Project Valhalla’s ongoing work, examining the performance 
nuances of the existing type system and the potential of future value classes. The section offers 
insights into Project Valhalla’s ongoing endeavors, from refined generics to the conceptualiza-
tion of classes for basic primitives.

Java’s type system is more than just a set of types—it’s a reflection of Java’s commitment to ver-
satility, efficiency, and innovation. The goal of this chapter is to illuminate the type system’s 
past, present, and promising future, fostering a profound understanding of its intricacies.

Chapter 3, “From Monolithic to Modular Java: A Retrospective and Ongoing Evolution,” 
provides extensive coverage of the Java Platform Module System (JPMS) and its breakthrough 
impact on modular programming. This chapter marks Java’s bold transition into the modu-
lar era, beginning with a fundamental exploration of modules. It offers hands-on guidance 
through the creation, compilation, and execution of modules, making it accessible even to 
newcomers in this domain.

Highlighting Java’s transition from a monolithic JDK to a modular framework, the chapter 
reflects Java’s adaptability to evolving needs and its commitment to innovation. A standout 
section of this chapter is the practical implementation of modular services using JDK 17, which 
navigates the intricacies of module interactions, from service providers to consumers, enriched 
by working examples. The chapter addresses key concepts like encapsulation of implementa-
tion details and the challenges of JAR hell, illustrating how Jigsaw layers offer elegant solutions 
in the modular landscape. 

Further enriching this exploration, the chapter draws insightful comparisons with OSGi, spot-
lighting the parallels and distinctions, to give readers a comprehensive understanding of Java’s 



 Preface xvii

modular systems. The introduction of essential tools such as jdeps, jlink, jdeprscan, and jmod, 
integral to the modular ecosystem, is accompanied by thorough explanations and practical 
examples. This approach empowers readers to effectively utilize these tools in their develop-
mental work. 

Concluding with a reflection on the performance nuances of JPMS, the chapter looks forward 
to the future of Java’s modular evolution, inviting readers to contemplate its potential impacts 
and developments.

Chapter 4, “The Unified Java Virtual Machine Logging Interface,” delves into the vital yet 
often underappreciated world of logs in software development. It begins by underscoring the 
necessity of a unified logging system in Java, addressing the challenges posed by disparate log-
ging systems and the myriad benefits of a cohesive approach. The chapter not only highlights 
the unification and infrastructure of the logging system but also emphasizes its role in moni-
toring performance and optimization. 

The narrative explores the vast array of log tags and their specific roles, emphasizing the impor-
tance of creating comprehensive and insightful logs. In tackling the challenges of discerning 
any missing information, the chapter provides a lucid understanding of log levels, outputs, and 
decorators. The intricacies of these features are meticulously examined, with practical exam-
ples illuminating their application in tangible scenarios.

A key aspect of this chapter is the exploration of asynchronous logging, a critical feature for 
enhancing log performance with minimal impact on application efficiency. This feature is 
essential for developers seeking to balance comprehensive logging with system performance.

Concluding the chapter, the importance of logs as a diagnostic tool is emphasized, showcasing 
their role in both proactive system monitoring and reactive problem-solving. Chapter 4 not 
only highlights the power of effective logging in Java, but also underscores its significance 
in building and maintaining robust applications. This chapter reinforces the theme of Java’s 
ongoing evolution, showcasing how advancements in logging contribute significantly to the 
language’s capability and versatility in application development.

Chapter 5, “End-to-End Java Performance Optimization: Engineering Techniques and Micro-
benchmarking with JMH,” focuses on the essence of performance engineering within the Java 
ecosystem. Emphasizing that performance transcends mere speed, this chapter highlights its 
critical role in crafting an unparalleled user experience. It commences with a formative explo-
ration of performance engineering’s pivotal role within the broader software development 
realm, highlighting its status as a fundamental quality attribute and unraveling its multifac-
eted layers. 

With precision, the chapter delineates the metrics pivotal to gauging Java’s performance, 
encompassing aspects from footprint to the nuances of availability, ensuring readers grasp 
the full spectrum of performance dynamics. Stepping in further. It explores the intricacies of 
response time and its symbiotic relationship with availability. This inspection provides insights 
into the mechanics of application timelines, intricately weaving the narrative of response time, 
throughput, and the inevitable pauses that punctuate them.

Yet, the performance narrative is only complete by acknowledging the profound influence of 
hardware. This chapter decodes the symbiotic relationship between hardware and software, 



xviii Preface   

emphasizing the harmonious symphony that arises from the confluence of languages, proces-
sors, and memory models. From the subtleties of memory models and their bearing on thread 
dynamics to the foundational principles of Java Memory Model, this chapter journeys through 
the maze of concurrent hardware, shedding light on the order mechanisms pivotal to concur-
rent computing. 

Moving beyond theoretical discussions, this chapter draws on over two decades of hands-on 
experience in performance optimization. It introduces a systematic approach to performance 
diagnostics and analysis, offering insights into methodologies and a detailed investigation of 
subsystems and approaches to identifying potential performance issues. The methodologies are 
not only vital for software developers focused on performance optimization but also provide 
valuable insights into the intricate relationship between underlying hardware, software stacks, 
and application performance. 

The chapter emphasizes the importance of a structured benchmarking regime, encompassing 
everything from memory management to the assessment of feature releases and system layers. 
This sets the stage for the Java Micro-Benchmark Suite (JMH), the pièce de résistance of JVM 
benchmarking. From its foundational setup to the intricacies of its myriad features, the journey 
encompasses the genesis of writing benchmarks, to their execution, enriched with insights into 
benchmarking modes, profilers, and JMH’s pivotal annotations. 

Chapter 5 thus serves as a comprehensive guide to end-to-end Java performance optimization 
and as a launchpad for further chapters. It inspires a fervor for relentless optimization and 
arms readers with the knowledge and tools required to unlock Java’s unparalleled performance 
potential.

Memory management is the silent guardian of Java applications, often operating behind the 
scenes but crucial to their success. Chapter 6, “Advanced Memory Management and Garbage 
Collection in OpenJDK,” marks a deep dive into specialized JVM improvements, showcasing 
advanced performance tools and techniques. This chapter offers a leap into the world of gar-
bage collection, unraveling the techniques and innovations that ensure Java applications run 
efficiently and effectively. 

The chapter commences with a foundational overview of garbage collection in Java, setting the 
stage for the detailed exploration of Thread-Local Allocation Buffers (TLABs) and Promotion 
Local Allocation Buffers (PLABs), and elucidating their pivotal roles in memory management. 
As we progress, the chapter sheds light on optimizing memory access, emphasizing the signifi-
cance of the NUMA-aware garbage collection and its impact on performance. 

The highlight of this chapter lies in its exploration of advanced garbage collection techniques. 
The narrative reviews the G1 Garbage Collector (G1 GC), unraveling its revolutionary approach 
to heap management. From grasping the advantages of a regionalized heap to optimizing G1 
GC parameters for peak performance, this section promises a holistic cognizance of one of 
Java’s most advanced garbage collectors. Additionally, the Z Garbage Collector (ZGC) is pre-
sented as a technological marvel with its adaptive optimization techniques, and the advance-
ments that make it a game-changer in real-time applications.



 Preface xix

This chapter also offers insights into the emerging trends in garbage collection, setting the 
stage for what lies ahead. Practicality remains at the forefront, with a dedicated section offering 
invaluable tips for evaluating GC performance. From sympathizing with various workloads, 
such as Online Analytical Processing (OLAP) to Online Transaction Processing (OLTP) and 
Hybrid Transactional/Analytical Processing (HTAP), to synthesizing live data set pressure and 
data lifespan patterns, the chapter equips readers with the apparatus and knowledge to opti-
mize memory management effectively. This chapter is an accessible guide to advanced garbage 
collection techniques that Java professionals need to navigate the topography of memory 
management.

Chapter 7, “Runtime Performance Optimizations: A Focus on Strings, Locks, and Beyond,” 
is dedicated to exploring the critical facets of Java’s runtime performance, particularly in the 
realms of string handling and lock synchronization—two areas essential for efficient applica-
tion performance. 

The chapter excels at taking a comprehensive approach to demystifying these JVM optimi-
zations through detailed under-the-hood analysis—utilizing a range of profiling techniques, 
from bytecode analysis to memory and sample-based profiling to gathering call stack views of 
profiled methods—to enrich the reader’s understanding. Additionally, the chapter leverages 
JMH benchmarking to highlight the tangible improvements such optimizations bring. The 
practical use of async-profiler for method-level insights and NetBeans memory profiler further 
enhances the reader’s granular understanding of the JVM enhancements. This chapter aims 
to test and illuminate the optimizations, equipping readers with a comprehensive approach to 
using these tools effectively, thereby building on the performance engineering methodologies 
and processes discussed in Chapter 5.

The journey continues with an extensive review of the string optimizations in Java, highlight-
ing major advancements across various Java versions, and then shifts focus onto enhanced 
multithreading performance, highlighting Java’s thread synchronization mechanisms. 

Further, the chapter helps navigate the world of concurrency, with discussion of the transition 
from the thread-per-task model to the scalable thread-per-request model. The examination of 
Java’s Executor Service, ThreadPools, ForkJoinPool framework, and CompletableFuture ensures 
a robust comprehension of Java’s concurrency mechanisms.

The chapter concludes with a glimpse into the future of concurrency in Java with virtual 
threads. From understanding virtual threads and their carriers to discussing parallelism and 
integration with existing APIs, this chapter is a practical guide to advanced concurrency mech-
anisms and string optimizations in Java. 

Chapter 8, “Accelerating Time to Steady State with OpenJDK HotSpot VM,” is dedicated to 
optimizing start-up to steady-state performance, crucial for transient applications such as con-
tainerized environments, serverless architectures, and microservices. The chapter emphasizes 
the importance of minimizing JVM start-up and warm-up time to enhance efficient execution, 
incorporating a pivotal exploration into GraalVM’s revolutionary role in this domain. 

The narrative dissects the phases of JVM start-up and the journey to an application’s steady-
state, highlighting the significance of managing state during these phases across various 



xx Preface   

architectures. An in-depth look at Class Data Sharing (CDS) sheds light on shared archive files 
and memory mapping, underscoring the advantages in multi-instance setups. The narrative 
then shifts to ahead-of-time (AOT) compilation, contrasting it with just-in-time (JIT) compila-
tion and detailing the transformative impact of HotSpot VM’s Project Leyden and its forecasted 
ability to manage states via CDS and AOT. This sets the stage for GraalVM and its revolutionary 
impact on Java's performance landscape. By harnessing advanced optimization techniques, 
including static images and dynamic compilation, GraalVM enhances performance for a wide 
array of applications. The exploration of cutting-edge technologies like GraalVM alongside a 
holistic survey of OpenJDK projects such as CRIU and CraC, which introduce groundbreaking 
checkpoint/restore functionality, adds depth to the discussion. This comprehensive cover-
age provides insights into the evolving strategies for optimizing Java applications, making 
this chapter an invaluable resource for developers looking to navigate today’s cloud native 
environments.

The final chapter, Chapter 9, “Harnessing Exotic Hardware: The Future of JVM Performance 
Engineering,” focuses on the fascinating intersection of exotic hardware and the JVM, illu-
minating its galvanizing impact on performance engineering. This chapter begins with an 
introduction to the increasingly prominent world of exotic hardware, particularly within cloud 
environments. It explores the integration of this hardware with the JVM, underscoring the 
pivotal role of language design and toolchains in this process. 

Through a series of carefully detailed case studies, the chapter showcases the real-world 
applications and challenges of integrating such hardware accelerators. From the Lightweight 
Java Game Library (LWJGL), to the innovative Aparapi, which bridges Java and OpenCL, each 
study offers valuable insights into the complexities and triumphs of these integrations. The 
chapter also examines Project Sumatra’s significant contributions to this realm and introduces 
TornadoVM, a specialized JVM tailored for hardware accelerators. 

Through these case studies, the symbiotic potential of integrating exotic hardware with the 
JVM becomes increasingly evident, leading up to an overview of Project Panama, heralding a 
new horizon in JVM performance engineering. At the heart of Project Panama lies the Vector 
API, a symbol of innovation designed for vector computations. This API is not just about com-
putations—it’s about ensuring they are efficiently vectorized and tailored for hardware that 
thrives on vector operations. This ensures that developers have the tools to express parallel 
computations optimized for diverse hardware architectures. But Panama isn’t just about vec-
tors. The Foreign Function and Memory API emerges as a pivotal tool, a bridge that allows Java 
to converse seamlessly with native libraries. This is Java’s answer to the age-old challenge of 
interoperability, ensuring Java applications can interface effortlessly with native code, breaking 
language barriers.

Yet, the integration is no walk in the park. From managing intricate memory access patterns to 
deciphering hardware-specific behaviors, the path to optimization is laden with complexities. 
But these challenges drive innovation, pushing the boundaries of what’s possible. Looking to 
the future, the chapter showcases my vision of Project Panama as the gold standard for JVM 
interoperability. The horizon looks promising, with Panama poised to redefine performance 
and efficiency for Java applications.

This isn’t just about the present or the imminent future. The world of JVM performance 
engineering is on the cusp of a revolution. Innovations are knocking at our door, waiting to be 
embraced—with Tornado VM’s Hybrid APIs, and with HAT toolkit and Project Babylon on the 
horizon.



 Preface xxi

How to Use This Book
1. Sequential Reading for Comprehensive Understanding: This book is designed to be read from 

beginning to end, as each chapter builds upon the knowledge of the previous ones. This 
approach is especially recommended for readers new to JVM performance engineering.

2. Modular Approach for Specific Topics: Experienced readers may prefer to jump directly to 
chapters that address their specific interests or challenges. The table of contents and 
index can guide you to relevant sections.

3. Practical Examples and Code: Throughout the book, practical examples and code snippets 
are provided to illustrate key concepts. To get the most out of these examples, readers are 
encouraged to build on and run the code themselves. (See item 5.)

4. Visual Aids for Enhanced Understanding: In addition to written explanations, this book 
employs a variety of textual and visual aids to deepen your understanding.

a. Case Studies: Real-world scenarios that demonstrate the application of JVM perfor-
mance techniques.

b. Screenshots: Visual outputs depicting profiling results as well as various GC plots, 
which are essential for understanding the GC process and phases.

c. Use-Case Diagrams: Visual representations that map out the system’s functional 
requirements, showing how different entities interact with each other.

d.  Block Diagrams: Illustrations that outline the architecture of a particular JVM or sys-
tem component, highlighting performance features.

e. Class Diagrams: Detailed object-oriented designs of various code examples, showing 
relationships and hierarchies.

f. Process Flowcharts: Step-by-step diagrams that walk you through various performance 
optimization processes and components.

g. Timelines: Visual representations of the different phases or state changes in an activity 
and the sequence of actions that are taken.

5. Utilizing the Companion GitHub Repository: A significant portion of the book’s value lies in 
its practical application. To facilitate this, I have created JVM Performance Engineering 
GitHub Repository (https://github.com/mo-beck/JVM-Performance-Engineering). Here, 
you will find

a. Complete Code Listings: All the code snippets and scripts mentioned in the book are 
available. This allows you to see the code and experiment with it. Use it as a launch-
pad for your projects and fork and improve it.

b. Additional Resources and Updates: The field of JVM Performance Engineering is ever 
evolving. The repository will be periodically updated with new scripts, resources, and 
information to keep you abreast of the latest developments.

c. Interactive Learning: Engage with the material by cloning the repository, running the 
GC scripts against your GC log files, and modifying them to see how outcomes better 
suit your GC learning and understanding journey.

https://github.com/mo-beck/JVM-Performance-Engineering


xxii Preface   

6. Engage with the Community: I encourage readers to engage with the wider community. Use 
the GitHub repository to contribute your ideas, ask questions, and share your insights. 
This collaborative approach enriches the learning experience for everyone involved.

7. Feedback and Suggestions: Your feedback is invaluable. If you have suggestions, corrections, 
or insights, I warmly invite you to share them. You can provide feedback via the GitHub 
repository, via email (jvmbook@codekaram.com), or via social media platforms (https://
www.linkedin.com/in/monicabeckwith/ or https://twitter.com/JVMPerfEngineer).

                                                      
In Java’s vast realm, my tale takes wing, 
A narrative so vivid, of wonders I sing. 

Distributed systems, both near and afar, 
With JVM shining—the brightest star!

Its rise through the ages, a saga profound, 
With each chronicle, inquiries resound. 

“Where lies the wisdom, the legends so grand?” 
They ask with a fervor, eager to understand.

This book is a beacon for all who pursue, 
A tapestry of insights, both aged and new. 

In chapters that flow, like streams to the seas, 
I share my heart’s journey, my tech odyssey.

—Monica Beckwith

Register your copy of JVM Performance Engineering on the InformIT site for convenient 
access to updates and/or corrections as they become available. To start the registration 
process, go to informit.com/register and log in or create an account. Enter the product ISBN 
(9780134659879) and click Submit. If you would like to be notified of exclusive offers on new 
editions and updates, please check the box to receive email from us. 

mailto:jvmbook@codekaram.com
https://www.linkedin.com/in/monicabeckwith/
https://www.linkedin.com/in/monicabeckwith/
https://twitter.com/JVMPerfEngineer
http://informit.com/register


Acknowledgments
Reflecting on the journey of creating this book, my heart is full of gratitude for the many indi-
viduals whose support, expertise, and encouragement have been the wind beneath my wings.

At the forefront of my gratitude is my family—the unwavering pillars of support. To my hus-
band, Ben: Your understanding and belief in my work, coupled with your boundless love and 
care, have been the bedrock of my perseverance.

To my children, Annika and Bodin: Your patience and resilience have been my inspiration. 
Balancing the demands of a teen’s life with the years it took to bring this book to fruition, you 
have shown a maturity and understanding well beyond your years. Your support, whether it 
be a kind word at just the right moment or understanding my need for quiet as I wrestled with 
complex ideas, has meant more to me than words can express. Your unwavering faith, even 
when my work required sacrifices from us all, has been a source of strength and motivation. I 
am incredibly proud of the kind and supportive individuals you are becoming, and I hope this 
book reflects the values we cherish as a family.

Editorial Guidance
A special word of thanks goes to my executive editor at Pearson, Greg Doench, whose patience 
has been nothing short of saintly. Over the years, through health challenges, the dynamic 
nature of  JVM release cycles and project developments, and the unprecedented times of 
COVID, Greg has been a beacon of encouragement. His unwavering support and absence of 
frustration in the face of my tardiness have been nothing less than extraordinary. Greg, your 
steadfast presence and guidance have not only helped shape this manuscript but have also been 
a personal comfort.

Chapter Contributions
The richness of this book’s content is a culmination of my extensive work, research, and 
insights in the field, enriched further by the invaluable contributions of various experts, 
colleagues, collaborators, and friends. Their collective knowledge, feedback, and support have 
been instrumental in adding depth and clarity to each topic discussed, reflecting years of dedi-
cated expertise in this domain.

 ■ In Chapter 3, Nikita Lipski’s deep experience in Java modularity added compelling depth, 
particularly on the topics of the JAR hell versioning issues, layers, and his remarkable 
insights on OSGi.

 ■ Stefano Doni’s enriched field expertise in Quality of Service (QoS), performance stack, 
and theoretical expertise in operational laws and queueing, significantly enhanced 
Chapter 5, bringing a blend of theoretical and practical perspectives.

 ■ The insights and collaborative interactions with Per Liden and Stefan Karlsson were 
crucial in refining my exploration of the Z Garbage Collector (ZGC) in Chapter 6. Per’s 



xxiv Acknowledgments   

numerous talks and blog posts have also been instrumental in helping the community 
understand the intricacies of ZGC in greater detail.

 ■ Chapter 7 benefitted from the combined insights of Alan Bateman and Heinz Kabutz. 
Alan was instrumental in helping me refine this chapter’s coverage of Java’s locking 
mechanisms and virtual threads. His insights helped clarify complex concepts, added 
depth to the discussion of monitor locks, and provided valuable perspective on the evo-
lution of Java’s concurrency model. Heinz’s thorough review ensured the relevance and 
accuracy of the content.

 ■ For Chapter 8, Ludovic Henry’s insistence on clarity with respect to the various termi-
nologies and persistence to include advanced topics and Alina Yurenko’s insights into 
GraalVM and its future developments provided depth and foresight and reshaped the 
chapter to its glorious state today. 

Alina has also influenced me to track the developments in GraalVM—especially the 
introduction of layered native images, which promises to reduce build times and enable 
sharing of base images.

 ■ Last but not the least, for Chapter 9, I am grateful to Gary Frost for his thorough review of 
Aparapi, Project Sumatra, and insights on leveraging the latest JDK (early access) version 
for developing projects like Project Panama. Dr. Juan Fumero’s leadership in the devel-
opment of TornadoVM and insights into parallel programming challenges have been 
instrumental in providing relevant insights for my chapter, deepening its clarity, and 
enhancing its narrative. 

It was a revelation to see our visions converge and witness these industry stalwarts drive 
the enhancements in the integration of Java with modern hardware accelerators.

Mentors, Influencers, and Friends
Several mentors, leaders, and friends have significantly influenced my broader understanding 
of technology:

 ■ Charlie Hunt’s guidance in my GC performance engineering journey has been foun-
dational. His groundbreaking work on String density has inspired many of my own 
approaches with methodologies and process. His seminal work Java Performance is an 
essential resource for all performance enthusiasts and is highly recommended for its 
depth and insight.

 ■ Gil Tene’s work on the C4 Garbage Collector and his educational contributions have 
deeply influenced my perspective on low pause collectors and their interactive nature. I 
value our check-ins, which I took as mentorship opportunities to learn from one of the 
brightest minds.

 ■ Thomas Schatzl’s generous insights on the G1 Garbage Collector have added depth and 
context to this area of study, enriching my understanding following my earlier work 
on G1 GC. Thomas is a GC performance expert whose work, including on Parallel GC, 
continues to inspire me.



 Acknowledgments xxv

 ■ Vladimir Kozlov’s leadership and work in various aspects of the HotSpot JVM have been 
crucial in pushing the boundaries of Java’s performance capabilities. I cherish our work 
together on prefetching, tiered thresholds, various code generation, and JVM optimiza-
tions, and I appreciate his dedication to HotSpot VM.

 ■ Kirk Pepperdine, for our ongoing collaborations that span from the early days of devel-
oping G1 GC parser scripts for our joint hands-on lab sessions at JavaOne, to our recent 
methodologies, processes, and benchmarking endeavors at Microsoft, continuously 
pushes the envelope in performance engineering.

 ■ Sergey Kuksenko and Alexey Shipilev, along with my fellow JVM performance engi-
neering experts, have been my comrades in relentless pursuit of Java performance 
optimizations.

 ■ Erik Österlund’s development of generational ZGC represents an exciting and forward- 
looking aspect of garbage collection technology.

 ■ John Rose, for his unparalleled expertise in JVM internals and his pivotal role in the 
evolution of Java as a language and platform. His vision and deep technical knowledge 
have not only propelled the field forward but also provided me with invaluable insights 
throughout my career.

Each of these individuals has not only contributed to the technical depth and richness of 
this book but also played a vital role in my personal and professional growth. Their collective 
wisdom, expertise, and support have been instrumental in shaping both the content and the 
journey of this book, reflecting the collaborative spirit of the Java community.



This page intentionally left blank 



About the Author
Monica Beckwith is a leading figure in Java Virtual Machine (JVM) performance tuning and 
optimizations. With a strong Electrical and Computer Engineering academic foundation, 
Monica has carved out an illustrious, impactful, and inspiring professional journey.

At Advanced Micro Devices (AMD), Monica refined her expertise in Java, JVM, and systems 
performance engineering. Her work brought critical insights to NUMA’s architectural enhance-
ments, improving both hardware and JVM performance through optimized code generation, 
improved footprint and advanced JVM techniques, and memory management. She continued 
her professional growth at Sun Microsystems, contributing significantly to JVM performance 
enhancements across Sun SPARC, Solaris, and Linux, aiding in the evolution of a scalable Java 
ecosystem.

Monica’s role as a Java Champion and coauthor of Java Performance Companion, as well as 
authoring this current book, highlight her steadfast commitment to the Java community. 
Notably, her work in the optimization of G1 Garbage Collector went beyond optimization; she 
delved into diagnosing pain points, fine-tuning processes, and identifying critical areas for 
enhancement, thereby setting new precedents in JVM performance. Her expertise not only 
elevated the efficiency of the G1 GC but also showcased her intricate knowledge of JVM’s com-
plexities. At Arm, as a managed runtimes performance architect, Monica played a key role in 
shaping a unified strategy for the Arm ecosystem, fostering a competitive edge for performance 
on Arm-based servers.

Monica’s significant contributions and thought leadership have enriched the broader tech 
community. Monica serves on the program committee for various prestigious conferences and 
hosts JVM and performance-themed tracks, further emphasizing her commitment to knowl-
edge sharing and community building.

At Microsoft, Monica’s expertise shines brightly as she optimizes JVM-based workloads, 
applications, and key services, across a diverse range of deployment scenarios, from bare metal 
to sophisticated Azure VMs. Her deep-seated understanding of hardware and software engi-
neering, combined with her adeptness in systems engineering and benchmarking principles, 
uniquely positions her at the critical juncture of the hardware and software. This position 
enables her to significantly contribute to the performance, scalability and power efficiency 
characterization, evaluation, and analysis of both current and emerging hardware systems 
within the Azure Compute infrastructure.

Beyond her technical prowess, Monica embodies values that resonate deeply with those around 
her. She is a beacon of integrity, authenticity, and continuous learning. Her belief in the trans-
formative power of actions, the sanctity of reflection, and the profound impact of empathy 
defines her interactions and approach. A passionate speaker, Monica’s commitment to lifelong 
learning is evident in her zeal for delivering talks and disseminating knowledge.

Outside the confines of the tech world, Monica’s dedication extends to nurturing young 
minds as a First Lego League coach. This multifaceted persona, combined with her roles as a 
Java Champion, author, and performance engineer at Microsoft, cements her reputation as a 
respected figure in the tech community and a source of inspiration for many.



This page intentionally left blank 



Chapter 3
From Monolithic to Modular 

Java: A Retrospective and 
Ongoing Evolution

Introduction
In the preceding chapters, we journeyed through the significant advancements in the Java  
language and its execution environment, witnessing the remarkable growth and transfor-
mation of these foundational elements. However, a critical aspect of Java’s evolution, which 
has far-reaching implications for the entire ecosystem, is the transformation of the Java 
Development Kit (JDK) itself. As Java matured, it introduced a plethora of features and  
language-level enhancements, each contributing to the increased complexity and sophistica-
tion of the JDK. For instance, the introduction of the enumeration type in J2SE 5.0 necessitated 
the addition of the java.lang.Enum base class, the java.lang.Class. getEnumConstants() 
method, EnumSet, and EnumMap to the java.util package, along with updates to the 
Serialized Form. Each new feature or syntax addition required meticulous integration and robust 
support to ensure seamless functionality.

With every expansion of Java, the JDK began to exhibit signs of unwieldiness. Its monolithic 
structure presented challenges such as an increased memory footprint, slower start-up times, 
and difficulties in maintenance and updates. The release of JDK 9 marked a significant turning 
point in Java’s history, as it introduced the Java Platform Module System (JPMS) and transi-
tioned Java from a monolithic structure to a more manageable, modular one. This evolution 
continued with JDK 11 and JDK 17, with each bringing further enhancements and refinements 
to the modular Java ecosystem.

This chapter delves into the specifics of this transformation. We will explore the inherent chal-
lenges of the monolithic JDK and detail the journey toward modularization. Our discussion 
will extend to the benefits of modularization for developers, particularly focusing on those 
who have adopted JDK 11 or JDK 17. Furthermore, we’ll consider the impact of these changes on 
JVM performance engineering, offering insights to help developers optimize their applications 



70 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

and leverage the latest JDK innovations. Through this exploration, the goal is to demonstrate 
how Java applications can significantly benefit from modularization.

Understanding the Java Platform Module System
As just mentioned, the JPMS was a strategic response to the mounting complexity and unwield-
iness of the monolithic JDK. The primary goal when developing it was to create a scalable 
platform that could effectively manage security risks at the API level while enhancing perfor-
mance. The advent of modularity within the Java ecosystem empowered developers with the 
flexibility to select and scale modules based on the specific needs of their applications. This 
transformation allowed Java platform developers to use a more modular layout when managing 
the Java APIs, thereby fostering a system that was not only more maintainable but also more 
efficient. A significant advantage of this modular approach is that developers can utilize only 
those parts of the JDK that are necessary for their applications; this selective usage reduces the 
size of their applications and improves load times, leading to more efficient and performant 
applications.

Demystifying Modules
In Java, a module is a cohesive unit comprising packages, resources, and a module descriptor 
(module-info.java) that provides information about the module. The module serves as a  
container for these elements. Thus, a module

 ■ Encapsulates its packages: A module can declare which of its packages should be 
accessible to other modules and which should be hidden. This encapsulation improves 
code maintainability and security by allowing developers to clearly express their code’s 
intended usage.

 ■ Expresses dependencies: A module can declare dependencies on other modules, making 
it clear which modules are required for that module to function correctly. This explicit 
dependency management simplifies the deployment process and helps developers iden-
tify problematic issues early in the development cycle.

 ■ Enforces strong encapsulation: The module system enforces strong encapsulation 
at both compile time and runtime, making it difficult to break the encapsulation 
either accidentally or maliciously. This enforcement leads to better security and 
maintainability.

 ■ Boosts performance: The module system allows the JVM to optimize the loading and 
execution of code, leading to improved start-up times, lower memory consumption, and 
faster execution.

The adoption of the module system has greatly improved the Java platform’s maintainability, 
security, and performance.



 Understanding the Java Platform Module System 71

Modules Example
Let’s explore the module system by considering two example modules: com.house. 
brickhouse and com.house.bricks. The com.house.brickhouse module contains two 
classes, House1 and House2, which calculate the number of bricks needed for houses with 
different levels. The com.house.bricks module contains a Story class that provides a method 
to count bricks based on the number of levels. Here’s the directory structure for com.house.
brickhouse:

src

── com.house.brickhouse

        ├── com

        │   └── house

        │       └── brickhouse

        │           ├── House1.java

        │           └── House2.java

        └── module-info.java

com.house.brickhouse:
   module-info.java:

module com.house.brickhouse {

    requires com.house.bricks;

    exports com.house.brickhouse;

}

com/house/brickhouse/House1.java:

package com.house.brickhouse;

import com.house.bricks.Story;

public class House1 {

    public static void main(String[] args) {

        System.out.println("My single-level house will need " + Story.count(1) + " bricks");

    }

}

com/house/brickhouse/House2.java:

package com.house.brickhouse;

import com.house.bricks.Story;

 

public class House2 {

    public static void main(String[] args) {

        System.out.println("My two-level house will need " + Story.count(2) + " bricks");

    }

}



72 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

Now let’s look at the directory structure for com.house.bricks:

src

└── com.house.bricks

    ├── com

    │   └── house

    │       └── bricks

    │           └── Story.java

    └── module-info.java

 

com.house.bricks:
   module-info.java:
 

module com.house.bricks {

    exports com.house.bricks;

}

 

com/house/bricks/Story.java:
 

package com.house.bricks;

 

public class Story {

    public static int count(int level) {

        return level * 18000;

    }

}

Compilation and Run Details
We compile the com.house.bricks module first:

$ javac -d mods/com.house.bricks src/com.house.bricks/module-info.java src/com.house.bricks/com/
house/bricks/Story.java

Next, we compile the com.house.brickhouse module:

$ javac --module-path mods -d mods/com.house.brickhouse 

src/com.house.brickhouse/module-info.java 

src/com.house.brickhouse/com/house/brickhouse/House1.java

src/com.house.brickhouse/com/house/brickhouse/House2.java

Now we run the House1 example:

$ java --module-path mods -m com.house.brickhouse/com.house.brickhouse.House1



 Understanding the Java Platform Module System 73

Output:

My single-level house will need 18000 bricks

Then we run the House2 example:

$ java --module-path mods -m com.house.brickhouse/com.house.brickhouse.House2

Output:

My two-level house will need 36000 bricks

Introducing a New Module
Now, let’s expand our project by introducing a new module that provides various types of 
bricks. We’ll call this module com.house.bricktypes, and it will include different classes for 
different types of bricks. Here’s the new directory structure for the com.house.bricktypes 
module:

src

└── com.house.bricktypes

    ├── com

    │   └── house

    │       └── bricktypes

    │           ├── ClayBrick.java

    │           └── ConcreteBrick.java

    └── module-info.java

com.house.bricktypes:
    module-info.java:

module com.house.bricktypes {

    exports com.house.bricktypes;

}

The ClayBrick.java and ConcreteBrick.java classes will define the properties and  
methods for their respective brick types.

ClayBrick.java:

package com.house.bricktypes;

 

public class ClayBrick {

    public static int getBricksPerSquareMeter() {

        return 60;

    }

}



74 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

ConcreteBrick.java:

package com.house.bricktypes;

 

public class ConcreteBrick {

    public static int getBricksPerSquareMeter() {

        return 50;

    }

}

With the new module in place, we need to update our existing modules to make use of these 
new brick types. Let’s start by updating the module-info.java file in the com.house. 
brickhouse module:

module com.house.brickhouse {

    requires com.house.bricks;

    requires com.house.bricktypes;

    exports com.house.brickhouse;

}

We modify the House1.java and House2.java files to use the new brick types.

House1.java:

package com.house.brickhouse;

import com.house.bricks.Story;

import com.house.bricktypes.ClayBrick;

 

public class House1 {

    public static void main(String[] args) {

        int bricksPerSquareMeter = ClayBrick.getBricksPerSquareMeter();

        System.out.println(" My single-level house will need "  
+ Story.count(1, bricksPerSquareMeter) + " clay bricks");

    }

}

House2.java:

package com.house.brickhouse;

import com.house.bricks.Story;

import com.house.bricktypes.ConcreteBrick;

 

public class House2 {



 Understanding the Java Platform Module System 75

    public static void main(String[] args) {

        int bricksPerSquareMeter = ConcreteBrick.getBricksPerSquareMeter();

        System.out.println(" My two-level house will need "  
+ Story.count(2, bricksPerSquareMeter) + " concrete bricks");

    }

}

By making these changes, we’re allowing our House1 and House2 classes to use different types 
of bricks, which adds more flexibility to our program. Let’s now update the Story.java class in 
the com.house.bricks module to accept the bricks per square meter:

package com.house.bricks; 

 

public class Story {

    public static int count(int level, int bricksPerSquareMeter) {

        return level * bricksPerSquareMeter * 300;

    }

}

Now that we’ve updated our modules, let’s compile and run them to see the changes in action:

 ■ Create a new mods directory for the com.house.bricktypes module:

$ mkdir mods/com.house.bricktypes

 ■ Compile the com.house.bricktypes module:

$ javac -d mods/com.house.bricktypes 

src/com.house.bricktypes/module-info.java 

src/com.house.bricktypes/com/house/bricktypes/*.java

 ■ Recompile the com.house.bricks and com.house.brickhouse modules:

$ javac --module-path mods -d mods/com.house.bricks 

src/com.house.bricks/module-info.java src/com.house.bricks/com/house/bricks/Story.java 

$ javac --module-path mods -d mods/com.house.brickhouse 

src/com.house.brickhouse/module-info.java 

src/com.house.brickhouse/com/house/brickhouse/House1.java 

src/com.house.brickhouse/com/house/brickhouse/House2.java

With these updates, our program is now more versatile and can handle different types of bricks. 
This is just one example of how the modular system in Java can make our code more flexible 
and maintainable.



76 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

Figure 3.1 Class Diagram to Show the Relationships Between Modules

Let’s now visualize these relationships with a class diagram. Figure 3.1 includes the new 
module com.house.bricktypes, and the arrows represent “Uses” relationships. House1 uses 
Story and ClayBrick, whereas House2 uses Story and ConcreteBrick. As a result, instances 
of House1 and House2 will contain references to instances of Story and either ClayBrick or 
ConcreteBrick, respectively. They use these references to interact with the methods and attri-
butes of the Story, ClayBrick, and ConcreteBrick classes. Here are more details:

 ■ House1 and House2: These classes represent two different types of houses. Both classes 
have the following attributes:

 ■ name: A string representing the name of the house.

 ■ levels: An integer representing the number of levels in the house.

 ■ story: An instance of the Story class representing a level of the house.

 ■ main(String[] args): The entry method for the class, which acts as the initial kick-
starter for the application’s execution.

 ■ Story: This class represents a level in a house. It has the following attributes:

 ■ level: An integer representing the level number.

 ■ bricksPerSquareMeter: An integer representing the number of bricks per square 
meter for the level.

 ■ count(int level, int bricksPerSquareMeter): A method that calculates the 
total number of bricks required for a given level and bricks per square meter.

 ■ ClayBrick and ConcreteBrick: These classes represent two different types of bricks. 
Both classes have the following attributes:

 ■ getBricksPerSquareMeter(): A static method that returns the number of bricks per 
square meter. This method is called by the houses to obtain the value needed for calcu-
lations in the Story class.



 Understanding the Java Platform Module System 77

Next, let’s look at the use-case diagram of the Brick House Construction system with the House 
Owner as the actor and Clay Brick and Concrete Brick as the systems (Figure 3.2). This diagram 
illustrates how the House Owner interacts with the system to calculate the number of bricks 
required for different types of houses and choose the type of bricks for the construction.

Here’s more information on the elements of the use-case diagram:

 ■ House Owner: This is the actor who wants to build a house. The House Owner interacts 
with the Brick House Construction system in the following ways:

 ■ Calculate Bricks for House 1: The House Owner uses the system to calculate the 
number of bricks required to build House 1.

 ■ Calculate Bricks for House 2: The House Owner uses the system to calculate the  
number of bricks required to build House 2.

 ■ Choose Brick Type: The House Owner uses the system to select the type of bricks to be 
used for the construction.

 ■ Brick House Construction: This system helps the House Owner in the construction 
process. It provides the following use cases:

 ■ Calculate Bricks for House 1: This use case calculates the number of bricks required 
for House 1. It interacts with both the Clay Brick and Concrete Brick systems to get the 
necessary data.

 ■ Calculate Bricks for House 2: This use case calculates the number of bricks required 
for House 2. It also interacts with both the Clay Brick and Concrete Brick systems to get 
the necessary data.

 ■ Choose Brick Type: This use case allows the House Owner to choose the type of bricks 
for the construction.

 ■ Clay Brick and Concrete Brick: These systems provide the data (e.g., size, cost) to 
the Brick House Construction system that is needed to calculate the number of bricks 
required for the construction of the houses.

Figure 3.2 Use-Case Diagram of Brick House Construction



78 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

From Monolithic to Modular: The Evolution of the JDK
Before the introduction of the modular JDK, the bloating of the JDK led to overly complex and 
difficult-to-read applications. In particular, complex dependencies and cross-dependencies 
made it difficult to maintain and extend applications. JAR (Java Archives) hell (i.e., problems 
related to loading classes in Java) arose due to both the lack of simplicity and JARs’ lack of 
awareness about the classes they contained.

The sheer footprint of the JDK also posed a challenge, particularly for smaller devices or other 
situations where the entire monolithic JDK wasn’t needed. The modular JDK came to the  
rescue, transforming the JDK landscape.

Continuing the Evolution: Modular JDK in JDK 11 and 
Beyond
The Java Platform Module System (JPMS) was first introduced in JDK 9, and its evolution has 
continued in subsequent releases. JDK 11, the first long-term support (LTS) release after JDK 
8, further refined the modular Java platform. Some of the notable improvements and changes 
made in JDK 11 are summarized here:

 ■ Removal of deprecated modules: Some Java Enterprise Edition (EE) and Common 
Object Request Broker Architecture (CORBA) modules that had been deprecated in JDK 
9 were finally removed in JDK 11. This change promoted a leaner Java platform and 
reduced the maintenance burden.

 ■ Matured module system: The JPMS has matured over time, benefiting from the 
feedback of developers and real-world usage. Newer JDK releases have addressed issues, 
improved performance, and optimized the module system’s capabilities.

 ■ Refined APIs: APIs and features have been refined in subsequent releases, providing a 
more consistent and coherent experience for developers using the module system.

 ■ Continued enhancements: JDK 11 and subsequent releases have continued to enhance 
the module system—for example, by offering better diagnostic messages and error report-
ing, improved JVM performance, and other incremental improvements that benefit 
developers.

Implementing Modular Services with JDK 17
With the JDK’s modular approach, we can enhance the concept of services (introduced in 
Java 1.6) by decoupling modules that provide the service interface from their provider mod-
ule, eventually creating a fully decoupled consumer. To employ services, the type is usually 
declared as an interface or an abstract class, and the service providers need to be clearly identi-
fied in their modules, enabling them to be recognized as providers. Lastly, consumer modules 
are required to utilize those providers.



 Implementing Modular Services with JDK 17 79

To better explain the decoupling that occurs, we’ll use a step-by-step example to build a 
BricksProvider along with its providers and consumers.

Service Provider
A service provider is a module that implements a service interface and makes it available for 
other modules to consume. It is responsible for implementing the functionalities defined in the 
service interface. In our example, we’ll create a module called com.example.bricksprovider, 
which will implement the BrickHouse interface and provide the service.

Creating the com.example.bricksprovider Module

First, we create a new directory called bricksprovider; inside it, we create the com/example/
bricksprovider directory structure. Next, we create a module-info.java file in the  
bricks provider directory with the following content:

module com.example.bricksprovider {

    requires com.example.brickhouse;

    provides com.example.brickhouse.BrickHouse with com.example.bricksprovider.BricksProvider;

}

This module-info.java file declares that our module requires the com.example.brickhouse 
module and provides an implementation of the BrickHouse interface through the com. 
example.bricksprovider.BricksProvider class.

Now, we create the BricksProvider.java file inside the com/example/bricksprovider 
directory with the following content:

package com.example.bricksprovider;

import com.example.brickhouse.BrickHouse;

 

public class BricksProvider implements BrickHouse {

    @Override

    public void build() {

        System.out.println("Building a house with bricks...");

    }

}

Service Consumer
A service consumer is a module that uses a service provided by another module. It declares the 
service it requires in its module-info.java file using the uses keyword. The service consumer 
can then use the ServiceLoader API to discover and instantiate implementations of the 
required service.



80 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

Creating the com.example.builder Module

First, we create a new directory called builder; inside it, we create the com/example/builder 
directory structure. Next, we create a module-info.java file in the builder directory with 
the following content:

module com.example.builder {

    requires com.example.brickhouse;

    uses com.example.brickhouse.BrickHouse;

}

This module-info.java file declares that our module requires the com.example.brickhouse 
module and uses the BrickHouse service.

Now, we create a Builder.java file inside the com/example/builder directory with the 
following content:

package com.example.builder;

import com.example.brickhouse.BrickHouse;

import java.util.ServiceLoader;

 

public class Builder {

    public static void main(String[] args) {

        ServiceLoader<BrickHouse> loader = ServiceLoader.load(BrickHouse.class);

        loader.forEach(BrickHouse::build);

    }

}

A Working Example
Let’s consider a simple example of a modular Java application that uses services:

 ■ com.example.brickhouse: A module that defines the BrickHouse service interface 
that other modules can implement

 ■ com.example.bricksprovider: A module that provides an implementation of the 
BrickHouse service and declares it in its module-info.java file using the provides 
keyword

 ■ com.example.builder: A module that consumes the BrickHouse service and declares 
the required service in its module-info.java file using the uses keyword

The builder can then use the ServiceLoader API to discover and instantiate the BrickHouse 
implementation provided by the com.example.bricksprovider module.



 Implementing Modular Services with JDK 17 81

Figure 3.3 Modular Services

Figure 3.3 depicts the relationships between the modules and classes in a module diagram. 
The module diagram represents the dependencies and relationships between the modules and 
classes:

 ■ The com.example.builder module contains the Builder.java class, which uses the 
BrickHouse interface from the com.example.brickhouse module.

 ■ The com.example.bricksprovider module contains the BricksProvider.java class, 
which implements and provides the BrickHouse interface.

Implementation Details
The ServiceLoader API is a powerful mechanism that allows the com.example.builder 
module to discover and instantiate the BrickHouse implementation provided by the com.
example.bricksprovider module at runtime. This allows for more flexibility and better 
separation of concerns between modules. The following subsections focus on some implemen-
tation details that can help us better understand the interactions between the modules and the 
role of the ServiceLoader API.

Discovering Service Implementations

The ServiceLoader.load() method takes a service interface as its argument—in our case, 
BrickHouse.class—and returns a ServiceLoader instance. This instance is an iterable 
object containing all available service implementations. The ServiceLoader relies on the 
information provided in the module-info.java files to discover the service implementations.



82 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

Instantiating Service Implementations

When iterating over the ServiceLoader instance, the API automatically instantiates the ser-
vice implementations provided by the service providers. In our example, the BricksProvider 
class is instantiated, and its build() method is called when iterating over the ServiceLoader 
instance.

Encapsulating Implementation Details

By using the JPMS, the com.example.bricksprovider module can encapsulate its implemen-
tation details, exposing only the BrickHouse service that it provides. This allows the com.
example.builder module to consume the service without depending on the concrete  
implementation, creating a more robust and maintainable system.

Adding More Service Providers

Our example can be easily extended by adding more service providers implementing the 
BrickHouse interface. As long as the new service providers are properly declared in their 
respective module-info.java files, the com.example.builder module will be able to discover 
and use them automatically through the ServiceLoader API. This allows for a more modular 
and extensible system that can adapt to changing requirements or new implementations.

Figure 3.4 is a use-case diagram that depicts the interactions between the service consumer and 
service provider. It includes two actors: Service Consumer and Service Provider.

 ■ Service Consumer: This uses the services provided by the Service Provider. The Service 
Consumer interacts with the Modular JDK in the following ways:

 ■ Discover Service Implementations: The Service Consumer uses the Modular JDK to 
find available service implementations.

 ■ Instantiate Service Implementations: Once the service implementations are discov-
ered, the Service Consumer uses the Modular JDK to create instances of these services.

 ■ Encapsulate Implementation Details: The Service Consumer benefits from the 
encapsulation provided by the Modular JDK, which allows it to use services without 
needing to know their underlying implementation.

 ■ Service Provider: This implements and provides the services. The Service Provider inter-
acts with the Modular JDK in the following ways:

 ■ Implement Service Interface: The Service Provider uses the Modular JDK to 
implement the service interface, which defines the contract for the service.

 ■ Encapsulate Implementation Details: The Service Provider uses the Modular JDK to 
hide the details of its service implementation, exposing only the service interface.

 ■ Add More Service Providers: The Service Provider can use the Modular JDK to add 
more providers for the service, enhancing the modularity and extensibility of the 
system.



 JAR Hell Versioning Problem and Jigsaw Layers 83

Figure 3.4 Use-Case Diagram Highlighting the Service Consumer and Service Provider

The Modular JDK acts as a robust facilitator for these interactions, establishing a comprehensive 
platform where service providers can effectively offer their services. Simultaneously, it provides 
an avenue for service consumers to discover and utilize these services efficiently. This dynamic 
ecosystem fosters a seamless exchange of services, enhancing the overall functionality and 
interoperability of modular Java applications.

JAR Hell Versioning Problem and Jigsaw Layers
Before diving into the details of the JAR hell versioning problem and Jigsaw layers, I’d like to 
introduce Nikita Lipski, a fellow JVM engineer and an expert in the field of Java modularity. 
Nikita has provided valuable insights and a comprehensive write-up on this topic, which we 
will be discussing in this section. His work will help us better understand the JAR hell version-
ing problem and how Jigsaw layers can be utilized to address this issue in JDK 11 and JDK 17.

Java’s backward compatibility is one of its key features. This compatibility ensures that when a 
new version of Java is released, applications built for older versions can run on the new version 
without any changes to the source code, and often even without recompilation. The same 
principle applies to third-party libraries—applications can work with updated versions of the 
libraries without modifications to the source code.



84 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

However, this compatibility does not extend to versioning at the source level, and the JPMS 
does not introduce versioning at this level, either. Instead, versioning is managed at the artifact 
level, using artifact management systems like Maven or Gradle. These systems handle version-
ing and dependency management for the libraries and frameworks used in Java projects, ensur-
ing that the correct versions of the dependencies are included in the build process. But what 
happens when a Java application depends on multiple third-party libraries, which in turn may 
depend on different versions of another library? This can lead to conflicts and runtime errors if 
multiple versions of the same library are present on the classpath.

So, although JPMS has certainly improved modularity and code organization in Java, the “JAR 
hell” problem can still be relevant when dealing with versioning at the artifact level. Let’s look 
at an example (shown in Figure 3.5) where an application depends on two third-party libraries 
(Foo and Bar), which in turn depend on different versions of another library (Baz).

If both versions of the Baz library are placed on the classpath, it becomes unclear which version 
of the library will be used at runtime, resulting in unavoidable version conflicts. To address 
this issue, JPMS prohibits such situations by detecting split packages, which are not allowed in 
JPMS, in support of its “reliable configuration” goal (Figure 3.6).

While detecting versioning problems early is useful, JPMS does not provide a recommended 
way to resolve them. One approach to address these problems is to use the latest version of the 
conflicting library, assuming it is backward compatible. However, this might not always be 
possible due to introduced incompatibilities.

To address such cases, JPMS offers the ModuleLayer feature, which allows for the installation 
of a module sub-graph into the module system in an isolated manner. When different ver-
sions of the conflicting library are placed into separate layers, both of those versions can be 
loaded by JPMS. Although there is no direct way to access a module of the child layer from 
the parent layer, this can be achieved indirectly—by implementing a service provider in the 
child layer module, which the parent layer module can then use. (See the earlier discussion of 
“Implementing Modular Services with JDK 17” for more details.)

Figure 3.5 Modularity and Version Conflicts



 JAR Hell Versioning Problem and Jigsaw Layers 85

Figure 3.6 Reliable Configuration with JPMS

Working Example: JAR Hell
In this section, a working example is provided to demonstrate the use of module layers in 
addressing the JAR hell problem in the context of JDK 17 (this strategy is applicable to JDK 11 
users as well). This example builds upon Nikita’s explanation and the house service provider 
implementation we discussed earlier. It demonstrates how you can work with different versions 
of a library (termed basic and high-quality implementations) within a modular application.

First, let’s take a look at the sample code provided by Java SE 9 documentation:1

 1  ModuleFinder finder = ModuleFinder.of(dir1, dir2, dir3);

 2  ModuleLayer parent = ModuleLayer.boot();

 3   Configuration cf = parent.configuration().resolve(finder, ModuleFinder.of(), 
Set.of("myapp"));

 4  ClassLoader scl = ClassLoader.getSystemClassLoader();

 5  ModuleLayer layer = parent.defineModulesWithOneLoader(cf, scl);

In this example:

 ■ At line 1, a ModuleFinder is set up to locate modules from specific directories (dir1, 
dir2, and dir3).

 ■ At line 2, the boot layer is established as the parent layer.

 ■ At line 3, the boot layer’s configuration is resolved as the parent configuration for the 
modules found in the directories specified in line 1.

 ■ At line 5, a new layer with the resolved configuration is created, using a single class loader 
with the system class loader as its parent.

1 https://docs.oracle.com/javase/9/docs/api/java/lang/ModuleLayer.html

https://docs.oracle.com/javase/9/docs/api/java/lang/ModuleLayer.html


86 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

Figure 3.7 JPMS Example Versions and Layers

Figure 3.8 JPMS Example Version Layers Flattened

Now, let’s extend our house service provider implementation. We’ll have basic and high-quality 
implementations provided in the com.codekaram.provider modules. You can think of the 
“basic implementation” as version 1 of the house library and the “high-quality implementa-
tion” as version 2 of the house library (Figure 3.7).

For each level, we will reach out to both the libraries. So, our combinations would be level 1 + 
basic implementation provider, level 1 + high-quality implementation provider, level 2 + basic 
implementation provider, and level 2 + high-quality implementation provider. For simplicity, 
let’s denote the combinations as house ver1.b, house ver1.hq, house ver2.b, and house ver2.hq, 
respectively (Figure 3.8).

Implementation Details
Building upon the concepts introduced by Nikita in the previous section, let’s dive into the 
implementation details and understand how the layers’ structure and program flow work in 
practice. First, let’s look at the source trees:

ModuleLayer

├── basic

│   └── src

│       └── com.codekaram.provider



 JAR Hell Versioning Problem and Jigsaw Layers 87

│           ├── classes

│           │   ├── com

│           │   │   └── codekaram

│           │   │       └── provider

│           │   │           └── House.java

│           │   └── module-info.java

│           └── tests

├── high-quality

│   └── src

│       └── com.codekaram.provider

│           ├── classes

│           │   ├── com

│           │   │   └── codekaram

│           │   │       └── provider

│           │   │           └── House.java

│           │   └── module-info.java

│           └── tests

└── src

    └── com.codekaram.brickhouse

        ├── classes

        │   ├── com

        │   │   └── codekaram

        │   │       └── brickhouse

        │   │           ├── loadLayers.java

        │   │           └── spi

        │   │               └── BricksProvider.java

        │   └── module-info.java

        └── tests

Here’s the module file information and the module graph for com.codekaram.provider. Note 
that these look exactly the same for both the basic and high-quality implementations.

module com.codekaram.provider {

    requires com.codekaram.brickhouse;

    uses com.codekaram.brickhouse.spi.BricksProvider;

    provides com.codekaram.brickhouse.spi.BricksProvider with com.codekaram.provider.House;

}

The module diagram (shown in Figure 3.9) helps visualize the dependencies between modules 
and the services they provide, which can be useful for understanding the structure of a modu-
lar Java application:

 ■ The com.codekaram.provider module depends on the com.codekaram.brickhouse 
module and implicitly depends on the java.base module, which is the foundational 
module of every Java application. This is indicated by the arrows pointing from com.



88 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

codekaram.provider to com.codekaram.brickhouse and the assumed arrow to 
java.base.

 ■ The com.codekaram.brickhouse module also implicitly depends on the java.base 
module, as all Java modules do.

Figure 3.9 A Working Example with Services and Layers

 ■ The java.base module does not depend on any other module and is the core module 
upon which all other modules rely.

 ■ The com.codekaram.provider module provides the service com.codekaram. 
brickhouse.spi.BricksProvider with the implementation com.codekaram. 
provider.House. This relationship is represented in the graph by a dashed arrow from 
com.codekaram.provider to com.codekaram.brickhouse.spi.BricksProvider.

Before diving into the code for these providers, let’s look at the module file information for the 
com.codekaram.brickhouse module:

module com.codekaram.brickhouse {

    uses com.codekaram.brickhouse.spi.BricksProvider;

    exports com.codekaram.brickhouse.spi;

}

The loadLayers class will not only handle forming layers, but also be able to load the service 
providers for each level. That’s a bit of a simplification, but it helps us to better understand the 
flow. Now, let’s examine the loadLayers implementation. Here’s the creation of the layers’ 
code based on the sample code from the “Working Example: JAR Hell” section:

static ModuleLayer getProviderLayer(String getCustomDir) {

   ModuleFinder finder = ModuleFinder.of(Paths.get(getCustomDir));

   ModuleLayer parent = ModuleLayer.boot();

   Configuration cf = parent.configuration().resolve(finder, 

     ModuleFinder.of(), Set.of("com.codekaram.provider"));

   ClassLoader scl = ClassLoader.getSystemClassLoader();

   ModuleLayer layer = parent.defineModulesWithOneLoader(cf, scl);



 JAR Hell Versioning Problem and Jigsaw Layers 89

   System.out.println("Created a new layer for " + layer);

   return layer;

}

If we simply want to create two layers, one for house version basic and another for house ver-
sion high-quality, all we have to do is call getProviderLayer() (from the main method):

doWork( Stream.of(args) 
.map(getCustomDir -> getProviderLayer(getCustomDir)));

If we pass the two directories basic and high-quality as runtime parameters, the  
getProviderLayer() method will look for com.codekaram.provider in those directories 
and then create a layer for each. Let’s examine the output (the line numbers have been added 
for the purpose of clarity and explanation):

 1   $ java --module-path mods -m com.codekaram.brickhouse/ 
com.codekaram.brickhouse.loadLayers basic high-quality

 2  Created a new layer for com.codekaram.provider

 3  I am the basic provider

 4  Created a new layer for com.codekaram.provider

 5  I am the high-quality provider

 ■ Line 1 is our command-line argument with basic and high-quality as directories that 
provide the implementation of the BrickProvider service.

 ■ Lines 2 and 4 are outputs indicating that com.codekaram.provider was found in both 
the directories and a new layer was created for each.

 ■ Lines 3 and 5 are the output of provider.getName() as implemented in the doWork() 
code:

private static void doWork(Stream<ModuleLayer> myLayers){  

myLayers.flatMap(moduleLayer -> ServiceLoader 

   .load(moduleLayer, BricksProvider.class)

    .stream().map(ServiceLoader.Provider::get))

  .forEach(eachSLProvider -> System.out.println("I am the " + eachSLProvider.getName() +  
" provider"));}

In doWork(), we first create a service loader for the BricksProvider service and load the 
provider from the module layer. We then print the return String of the getName() method 
for that provider. As seen in the output, we have two module layers and we were successful in 
printing the I am the basic provider and I am the high-quality provider out-
puts, where basic and high-quality are the return strings of the getName() method.



90 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

Now, let’s visualize the workings of the four layers that we discussed earlier. To do so, we’ll 
create a simple problem statement that builds a quote for basic and high-quality bricks for both 
levels of the house. First, we add the following code to our main() method:

int[] level = {1,2};

IntStream levels = Arrays.stream(level);

Next, we stream doWork() as follows:

levels.forEach(levelcount -> loadLayers

         .doWork(…

We now have four layers similar to those mentioned earlier (house ver1.b, house ver1.hq, house 
ver2.b, and house ver2.hq). Here’s the updated output:

Created a new layer for com.codekaram.provider

My basic 1 level house will need 18000 bricks and those will cost me $6120

Created a new layer for com.codekaram.provider

My high-quality 1 level house will need 18000 bricks and those will cost me $9000

Created a new layer for com.codekaram.provider

My basic 2 level house will need 36000 bricks and those will cost me $12240

Created a new layer for com.codekaram.provider

My high-quality 2 level house will need 36000 bricks and those will be over my budget of $15000

 

NOTE The return string of the getName() methods for our providers has been 
changed to return just the "basic" and "high-quality" strings instead of an 
entire sentence.

The variation in the last line of the updated output serves as a demonstration of how addi-
tional conditions can be applied to service providers. Here, a budget constraint check has been 
integrated into the high-quality provider’s implementation for a two-level house. You can, of 
course, customize the output and conditions as per your requirements.

Here’s the updated doWork() method to handle both the level and the provider, along with the 
relevant code in the main method:

private static void doWork(int level, Stream<ModuleLayer> myLayers){

    myLayers.flatMap(moduleLayer -> ServiceLoader

        .load(moduleLayer, BricksProvider.class)

        .stream().map(ServiceLoader.Provider::get))

     .forEach(eachSLProvider -> System.out.println("My " + eachSLProvider.getName()  
+ " " + level + " level house will need " + eachSLProvider.getBricksQuote(level)));

}

 



 Open Services Gateway Initiative 91

public static void main(String[] args) {

    int[] levels = {1, 2};

    IntStream levelStream = Arrays.stream(levels);

 

    levelStream.forEach(levelcount -> doWork(levelcount, Stream.of(args)

        .map(getCustomDir -> getProviderLayer(getCustomDir))));

}

Now, we can calculate the number of bricks and their cost for different levels of the house using 
the basic and high-quality implementations, with a separate module layer being devoted to 
each implementation. This demonstrates the power and flexibility that module layers provide, 
by enabling you to dynamically load and unload different implementations of a service with-
out affecting other parts of your application.

Remember to adjust the service providers’ code based on your specific use case and require-
ments. The example provided here is just a starting point for you to build on and adapt as 
needed.

In summary, this example illustrates the utility of Java module layers in creating applications 
that are both adaptable and scalable. By using the concepts of module layers and the Java 
ServiceLoader, you can create extensible applications, allowing you to adapt those applica-
tions to different requirements and conditions without affecting the rest of your codebase.

Open Services Gateway Initiative
The Open Services Gateway Initiative (OSGi) has been an alternative module system available 
to Java developers since 2000, long before the introduction of Jigsaw and Java module layers. 
As there was no built-in standard module system in Java at the time of OSGi’s emergence, it 
addressed many modularity problems differently compared to Project Jigsaw. In this section, 
with insights from Nikita, whose expertise in Java modularity encompasses OSGi, we will com-
pare Java module layers and OSGi, highlighting their similarities and differences.

OSGi Overview
OSGi is a mature and widely used framework that provides modularity and extensibility for 
Java applications. It offers a dynamic component model, which allows developers to create, 
update, and remove modules (called bundles) at runtime without restarting the application.

Similarities
 ■ Modularity: Both Java module layers and OSGi promote modularity by enforcing a clear 

separation between components, making it easier to maintain, extend, and reuse code.

 ■ Dynamic loading: Both technologies support dynamic loading and unloading of 
modules or bundles, allowing developers to update, extend, or remove components at 
runtime without affecting the rest of the application.



92 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

 ■ Service abstraction: Both Java module layers (with the ServiceLoader) and OSGi pro-
vide service abstractions that enable loose coupling between components. This allows for 
greater flexibility when switching between different implementations of a service.

Differences
 ■ Maturity: OSGi is a more mature and battle-tested technology, with a rich ecosystem and 

tooling support. Java module layers, which were introduced in JDK 9, are comparatively 
newer and may not have the same level of tooling and library support as OSGi.

 ■ Integration with Java platform: Java module layers are a part of the Java platform, pro-
viding a native solution for modularity and extensibility. OSGi, by contrast, is a separate 
framework that builds on top of the Java platform.

 ■ Complexity: OSGi can be more complex than Java module layers, with a steeper learning 
curve and more advanced features. Java module layers, while still providing powerful 
functionality, may be more straightforward and easier to use for developers who are new 
to modularity concepts.

 ■ Runtime environment: OSGi applications run inside an OSGi container, which man-
ages the life cycle of the bundles and enforces modularity rules. Java module layers run 
directly on the Java platform, with the module system handling the loading and unload-
ing of modules.

 ■ Versioning: OSGi provides built-in support for multiple versions of a module or bun-
dle, allowing developers to deploy and run different versions of the same component 
concurrently. This is achieved by qualifying modules with versions and applying “uses 
constraints” to ensure safe class namespaces exist for each module. However, dealing 
with versions in OSGi can introduce unnecessary complexity for module resolution and 
for end users. In contrast, Java module layers do not natively support multiple versions of 
a module, but you can achieve similar functionality by creating separate module layers 
for each version.

 ■ Strong encapsulation: Java module layers, as first-class citizens in the JDK, provide strong 
encapsulation by issuing error messages when unauthorized access to non-exported func-
tionality occurs, even via reflection. In OSGi, non-exported functionality can be “hid-
den” using class loaders, but the module internals are still available for reflection access 
unless a special security manager is set. OSGi was limited by pre-JPMS features of Java SE 
and could not provide the same level of strong encapsulation as Java module layers.

When it comes to achieving modularity and extensibility in Java applications, developers typi-
cally have two main options: Java module layers and OSGi. Remember, the choice between Java 
module layers and OSGi is not always binary and can depend on many factors. These include 
the specific requirements of your project, the existing technology stack, and your team’s 
familiarity with the technologies. Also, it’s worth noting that Java module layers and OSGi are 
not the only options for achieving modularity in Java applications. Depending on your specific 
needs and context, other solutions might be more appropriate. It is crucial to thoroughly 
evaluate the pros and cons of all available options before making a decision for your project. 
Your choice should be based on the specific demands and restrictions of your project to ensure 
optimal outcomes.



 Introduction to Jdeps, Jlink, Jdeprscan, and Jmod 93

On the one hand, if you need advanced features like multiple version support and a dynamic 
component model, OSGi may be the better option for you. This technology is ideal for complex 
applications that require both flexibility and scalability. However, it can be more difficult to 
learn and implement than Java module layers, so it may not be the best choice for developers 
who are new to modularity.

On the other hand, Java module layers offer a more straightforward solution for achieving 
modularity and extensibility in your Java applications. This technology is built into the Java 
platform itself, which means that developers who are already familiar with Java should find it 
relatively easy to use. Additionally, Java module layers offer strong encapsulation features that 
can help prevent dependencies from bleeding across different modules.

Introduction to Jdeps, Jlink, Jdeprscan, and Jmod
This section covers four tools that aid in the development and deployment of modular applica-
tions: jdeps, jlink, jdeprscan, and jmod. Each of these tools serves a unique purpose in the process 
of building, analyzing, and deploying Java applications.

Jdeps
Jdeps is a tool that facilitates analysis of the dependencies of Java classes or packages. It’s partic-
ularly useful when you’re trying to create a module file for JAR files. With jdeps, you can create 
various filters using regular expressions (regex); a regular expression is a sequence of characters 
that forms a search pattern. Here’s how you can use jdeps on the loadLayers class:

$ jdeps mods/com.codekaram.brickhouse/com/codekaram/brickhouse/loadLayers.class 

loadLayers.class -> java.base

loadLayers.class -> not found

   com.codekaram.brickhouse -> com.codekaram.brickhouse.spi   not found

   com.codekaram.brickhouse -> java.io                        java.base

   com.codekaram.brickhouse -> java.lang                      java.base

   com.codekaram.brickhouse -> java.lang.invoke               java.base

   com.codekaram.brickhouse -> java.lang.module               java.base

   com.codekaram.brickhouse -> java.nio.file                  java.base

   com.codekaram.brickhouse -> java.util                      java.base

   com.codekaram.brickhouse -> java.util.function             java.base

   com.codekaram.brickhouse -> java.util.stream               java.base

The preceding command has the same effect as passing the option -verbose:package to 
jdeps. The -verbose option by itself will list all the dependencies:

$ jdeps -v mods/com.codekaram.brickhouse/com/codekaram/brickhouse/loadLayers.class 

loadLayers.class -> java.base

loadLayers.class -> not found

   com.codekaram.brickhouse.loadLayers -> com.codekaram.brickhouse.spi.BricksProvider  not found

   com.codekaram.brickhouse.loadLayers -> java.io.PrintStream                   java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.Class                       java.base



94 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

   com.codekaram.brickhouse.loadLayers -> java.lang.ClassLoader                 java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.ModuleLayer                 java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.NoSuchMethodException       java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.Object                      java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.String                      java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.System                      java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.CallSite             java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.LambdaMetafactory    java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.MethodHandle         java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.MethodHandles        java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.MethodHandles$Lookup java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.MethodType           java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.StringConcatFactory  java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.module.Configuration        java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.module.ModuleFinder         java.base

   com.codekaram.brickhouse.loadLayers -> java.nio.file.Path                    java.base

   com.codekaram.brickhouse.loadLayers -> java.nio.file.Paths                   java.base

   com.codekaram.brickhouse.loadLayers -> java.util.Arrays                      java.base

   com.codekaram.brickhouse.loadLayers -> java.util.Collection                  java.base

   com.codekaram.brickhouse.loadLayers -> java.util.ServiceLoader               java.base

   com.codekaram.brickhouse.loadLayers -> java.util.Set                         java.base

   com.codekaram.brickhouse.loadLayers -> java.util.Spliterator                 java.base

   com.codekaram.brickhouse.loadLayers -> java.util.function.Consumer           java.base

   com.codekaram.brickhouse.loadLayers -> java.util.function.Function           java.base

   com.codekaram.brickhouse.loadLayers -> java.util.function.IntConsumer        java.base

   com.codekaram.brickhouse.loadLayers -> java.util.function.Predicate          java.base

   com.codekaram.brickhouse.loadLayers -> java.util.stream.IntStream            java.base

   com.codekaram.brickhouse.loadLayers -> java.util.stream.Stream               java.base

   com.codekaram.brickhouse.loadLayers -> java.util.stream.StreamSupport        java.base

Jdeprscan
Jdeprscan is a tool that analyzes the usage of deprecated APIs in modules. Deprecated APIs are 
older APIs that the Java community has replaced with newer ones. These older APIs are still sup-
ported but are marked for removal in future releases. Jdeprscan helps developers maintain their 
code by suggesting alternative solutions to these deprecated APIs, aiding them in transitioning 
to newer, supported APIs.

Here’s how you can use jdeprscan on the com.codekaram.brickhouse module:

$ jdeprscan --for-removal mods/com.codekaram.brickhouse

No deprecated API marked for removal found.

In this example, jdeprscan is used to scan the com.codekaram.brickhouse module for depre-
cated APIs that are marked for removal. The output indicates that no such deprecated APIs are 
found.



 Introduction to Jdeps, Jlink, Jdeprscan, and Jmod 95

You can also use --list to see all deprecated APIs in a module:

$ jdeprscan --list mods/com.codekaram.brickhouse

No deprecated API found.

In this case, no deprecated APIs are found in the com.codekaram.brickhouse module.

Jmod
Jmod is a tool used to create, describe, and list JMOD files. JMOD files are an alternative to JAR 
files for packaging modular Java applications, which offer additional features such as native 
code and configuration files. These files can be used for distribution or to create custom run-
time images with jlink.

Here’s how you can use jmod to create a JMOD file for the brickhouse example. Let’s first com-
pile and package the module specific to this example:

$ javac --module-source-path src -d build/modules $(find src -name "*.java")

$ jmod create --class-path build/modules/com.codekaram.brickhouse com.codekaram.brickhouse.jmod

Here, the jmod create command is used to create a JMOD file named com.codekaram.
brickhouse.jmod from the com.codekaram.brickhouse module located in the build/ 
modules directory. You can then use the jmod describe command to display information 
about the JMOD file:

$ jmod describe com.codekaram.brickhouse.jmod

This command will output the module descriptor and any additional information about the 
JMOD file.

Additionally, you can use the jmod list command to display the contents of the created 
JMOD file:

$ jmod list com.codekaram.brickhouse.jmod

com/codekaram/brickhouse/

com/codekaram/brickhouse/loadLayers.class

com/codekaram/brickhouse/loadLayers$1.class

…

The output lists the contents of the com.codekaram.brickhouse.jmod file, showing the  
package structure and class files.

By using jmod to create JMOD files, describe their contents, and list their individual files, you 
can gain a better understanding of your modular application’s structure and streamline the 
process of creating custom runtime images with jlink.



96 Chapter 3  From Monolithic to Modular Java: A Retrospective and Ongoing Evolution

Jlink
Jlink is a tool that helps link modules and their transitive dependencies to create custom mod-
ular runtime images. These custom images can be packaged and deployed without needing the 
entire Java Runtime Environment (JRE), which makes your application lighter and faster to 
start.

To use the jlink command, this tool needs to be added to your path. First, ensure that the 
$JAVA_HOME/bin is in the path. Next, type jlink on the command line:

$ jlink

Error: --module-path must be specified

Usage: jlink <options> --module-path <modulepath> --add-modules <module>[,<module>...]

Use --help for a list of possible options

Here’s how you can use jlink for the code shown in “Implementing Modular Services with  
JDK 17”:

$ jlink --module-path $JAVA_HOME/jmods:build/modules --add-modules com.example.builder --output 
consumer.services --bind-services

A few notes on this example:

 ■ The command includes a directory called $JAVA_HOME/jmods in the module-path. This 
directory contains the java.base.jmod needed for all application modules.

 ■ Because the module is a consumer of services, it’s necessary to link the service providers 
(and their dependencies). Hence, the –bind-services option is used.

 ■ The runtime image will be available in the consumer.services directory as shown here:

$ ls consumer.services/

bin conf include legal lib release

Let’s now run the image:

$ consumer.services/bin/java -m com.example.builder/com.example.builder.Builder

Building a house with bricks...

With jlink, you can create lightweight, custom, stand-alone runtime images tailored to your 
modular Java applications, thereby simplifying the deployment and reducing the size of your 
distributed application.

Conclusion
This chapter has undertaken a comprehensive exploration of Java modules, tools, and tech-
niques to create and manage modular applications. We have delved into the Java Platform 
Module System (JPMS), highlighting its benefits such as reliable configuration and strong 
encapsulation. These features contribute to more maintainable and scalable applications.



 Conclusion 97

We navigated the intricacies of creating, packaging, and managing modules, and explored the 
use of module layers to enhance application flexibility. These practices can help address com-
mon challenges faced when migrating to newer JDK versions (e.g., JDK 11 or JDK 17), including 
updating project structures and ensuring dependency compatibility.

Performance Implications
The use of modular Java carries significant performance implications. By including only the 
necessary modules in your application, the JVM loads fewer classes, which improves start-up 
performance and reduces the memory footprint. This is particularly beneficial in resource- 
limited environments such as microservices running in containers. However, it is important to 
note that while modularity can improve performance, it also introduces a level of complexity. 
For instance, improper module design can lead to cyclic dependencies,2 negatively impacting 
performance. Therefore, careful design and understanding of modules are essential to fully 
reap the performance benefits.

Tools and Future Developments
We examined the use of powerful tools like jdeps, jdeprscan, jmod, and jlink, which are instru-
mental in identifying and addressing compatibility issues, creating custom runtime images, 
and streamlining the deployment of modular applications. Looking ahead, we can anticipate 
more advanced options for creating custom runtime images with jlink, and more detailed and 
accurate dependency analysis with jdeps.

As more developers adopt modular Java, new best practices and patterns will emerge, along-
side new tools and libraries designed to work with JPMS. The Java community is continuously 
improving JPMS, with future Java versions expected to refine and expand its capabilities.

Embracing the Modular Programming Paradigm
Transitioning to modular Java can present unique challenges, especially in understanding 
and implementing modular structures in large-scale applications. Compatibility issues may 
arise with third-party libraries or frameworks that may not be fully compatible with JPMS. 
These challenges, while part of the journey toward modernization, are often outweighed by 
the benefits of modular Java, such as improved performance, enhanced scalability, and better 
maintainability.

In conclusion, by leveraging the knowledge gained from this chapter, you can confidently 
migrate your projects and fully harness the potential of modular Java applications. The future 
of modular Java is exciting, and embracing this paradigm will equip you to meet the evolving 
needs of the software development landscape. It’s an exciting time to be working with modular 
Java, and we look forward to seeing how it evolves and shapes the future of robust and efficient 
Java applications.

2 https://openjdk.org/projects/jigsaw/spec/issues/#CyclicDependences

https://openjdk.org/projects/jigsaw/spec/issues/#CyclicDependences


This page intentionally left blank 



Index

Numerics
4-9s, response times, 124–126

5-9s, response times, 125–126

Symbols
@Benchmark, 171

@BenchmarkMode, 171

@Fork, 171

@Measurement, 168–169, 171

@OperationsPerInvocation, 169, 171

@OutputTimeUnit, 171

@Setup, 171

@State, 171

@Teardown, 171

@Warmup, 168–169, 171

_ (underscore), code readability, 51

A
AArch64 ports

macOS/AArch64 port, 40

windows/AArch64 port, 39

accelerators, 307–309

Aparapi, 308, 314, 317–321

cloud computing, 309–312

CUDA4J, 314

descriptors, 335

HAT, 335–336

language design, 313–314

limitations, 311–312

LWJGL, 313–317



338 accelerators

OpenCL, 308

performance, 311

Project Panama, 314

FFM API, 309, 330–333

vector API, 308, 327–330, 334–335

Project Sumatra, 314, 321–324

resource contention, 311

toolchains, 313–314

TornadoVM, 308, 314, 324–327, 336

adaptive optimization, Hotspot VM, 9

adaptive sizing

footprint, performance engineering, 123

heap management, 184

Adaptive spinning (Java 7), 243

Ahead-of-Time (AOT) compilation

GraalVM, 284–285, 298

state management, 283–285

allocation-stall-based GC (Garbage 
Collection), 207

AMD, infinity fabric, 144

analytics

benchmarking performance, 161

OLAP, 214–215

annotations, 43, 50–51

JMH, 169–172

meta-annotations, 51

AOT (Ahead-of-Time) compilation

GraalVM, 284–285, 298

state management, 283–285

Apache

Cassandra, 214–215

Flink, 215

Hadoop

availability, 124

GC performance, 214

Vector API, 335

HBase, 214–215

Hive, 214

Ignite, 215

Spark

GC collection performance, 214

Vector API, 334

Aparapi, 308, 314, 317–321

application profilers, performance  
engineering, 157

Application Programming Interface (API)

Aparapi, 308, 314, 317–321

compatibility, 310–311

CUDA4J, 314

FFM API, 309, 330–333

Hybrid API, 336

hypervisors, 310–311

language API, JVM, 333–334

native libraries, JVM, 333–334

ndrange API, 335–336

ServiceLoader API, 81–83

vector API, 308, 327–330, 334–335

virtual threads, 267

applications

life cycle of, 279

Project Leyden, 285

ramp-up phase, 276–277

steady-state phase, 276–277

stopping, 278

Arm, NUMA advances, 144

arrays

byte array internals, 60

elements, 61–62

length of, 61

multidimensional arrays, 49

types of, 48–49

asynchronous logging

backpressure management, 111

benefits of, 110

best practices, 111–113

customizing solutions, 111



 Cache-Coherent NUMA (ccNUMA) 339

implementing, 110–111

Log4j2, 110

Logback, 110

performance, 112–113

reliability, 112

unified logging integration, 111

async-profiler, 157

atomicity, 139–141

availability, performance engineering

MTBF, 124–126

MTTR, 124–126

B
backpressure, asynchronous logging, 111

backward compatibility, Java, 83–84

barriers, concurrent computing, 139

benchmarking

contended locks, 248–251

harnesses, 164–165

JMH, 172–174

@Benchmark, 171

@BenchmarkMode, 171

@Fork, 171

@Measurement, 168–169, 171

@OperationsPerInvocation, 169, 171

@OutputTimeUnit, 171

@Setup, 171

@State, 171

@Teardown, 171

@Warmup, 168–169, 171

annotations, 169, 171–172

benchmarking modes, 170

features of, 165

loop optimizations, 169

Maven, 166–170

measurement phase, 168–169

perfasm, 174

profilers, 170–171

profiling benchmarks, 174

running microbenchmarks,  
166–168

warm-up phase, 168–169

writing/building microbenchmarks, 
166–168

JVM memory management, 161–164

loop optimizations, 169

Maven, 166–170

microbenchmarking, 165–174

modes, 170

performance engineering, 158

harnesses, 164–165

iterative approach, 161

JVM memory management,  
161–164

metrics, 159

microbenchmarking, 165–174

process (overview), 159–161

unified logging, 108

warm-up phase, 168–169

best practices, asynchronous logging, 
111–113

bimorphic call sites, 12

bootstrapping, JVM start-up  
performance, 275

bottom-up methodology, performance  
engineering, 146–148

byte array internals, 60

bytecode, 2

loading, 275–276

start-up performance, optimizing, 
275–276

verifying, 275–276

C
C#, Project Valhalla comparisons, 67–68

C++ Interpreter, 3

Cache-Coherent NUMA (ccNUMA), 144



340 caches

caches

accelerator descriptors, 335

CodeCache

Hotspot VM, 3

Segmented CodeCache, 7–8, 
300–302

hardware, 132

LLC, 137

SLC, 137

warming, 276

call tree analysis, contended locks,  
performance, 251–254

Cassandra (Apache), 214–215

ccNUMA (Cache-Coherent NUMA), 144

Checkpoint/Restore in Userspace (CRIU), 
292–295

Class Data Sharing (CDS), 282

classes

hidden classes, 38–39

Hotspot VM deoptimization, 9–10

loading, 9–10, 276

primitive classes, 65–66

Project Valhalla, 65–66

sealed classes, 38–39, 44, 56–57

types, 47–48

value classes, 63–66

client compiler (C1), 7

cloud computing

exotic hardware, 309–312

limitations, 311–312

performance, 311

resource contention, 311

code footprint, 119

code readability, underscore ( _ ), 51

code refactoring, footprint, performance 
engineering, 122

CodeCache

Hotspot VM, 3

Segmented CodeCache, 7–8, 303

colored pointers, ZGC, 197–198

command-line, Project Valhalla, 67

compact strings, 227–236

compiling

AOT

GraalVM, 284–285, 298

state management, 283–285

JIT, 276, 283–285

modules, 72–76

CompletableFuture frameworks, threads, 
264–265

concatenating strings, 224–227

concurrent computing

algorithms, 14

atomicity, 139–141

barriers, 139

fences, 139

GC threads, 16–18

happens-before relationships,  
139–141

hardware

core utilization, 136

memory hierarchies, 136–138

processors, 136–138

SMT, 136

software interplay, 131

memory

access in multiprocessor systems, 141

models, atomicity, 139–141

NUMA, 141, 145

architecture of, 143

ccNUMA, 144

components of, 142–143

cross-traffic, 143

fabric architectures, 144

interleaved memory, 143

local traffic, 143

nodes in modern systems, 142



 exotic hardware 341

threads

CompletableFuture frameworks, 
264–265

ForkJoinPool frameworks, 261–264

GC threads, 16–18

Java Executor Service, 261

thread pools, 261

thread-per-request model, 261–266

thread-per-task model, 259–260

thread-stack processing, 39–40

virtual threads, 265–270

volatiles, 139

ZGC, 198–200

condensers, Project Leyden, 286

containerized environments

performance engineering, 155

scalability, 297–298

start-up performance, 297–298

contended locks, 239–240

Adaptive spinning (Java 7), 243

benchmarking, 248–251

call tree analysis, 251–254

flamegraph analysis, 249–251

Improved Contended Locking, 34

lock coarsening, 242

lock elision, 242

monitor enter/exit operations, 243–245

PAUSE instructions, 258–259

performance engineering, 245–259

ReentrantLock (Java 5), 241

spin-loop hints, 258–259

spin-wait hints, 257–259

StampedLock (Java 8), 241–242

continuations, virtual threads, 270

Coordinated Restore at Checkpoint (CRaC), 
292–295

core scaling, heap management, 185

core utilization, concurrent hardware, 136

CRaC (Coordinated Restore at Checkpoint), 
292–295

CRIU (Checkpoint/Restore in Userspace), 
292–295

cross-traffic, NUMA, 143

CUDA4J API (Application Programming 
Interface), 314

customizing asynchronous logging  
solutions, 111

D
data access, accelerator descriptors, 335

data lifespan patterns, 216

data structure optimization, footprint, 122

DDR (Double Data Rate) memory, 137–138

debugging, fast/slow, 99

decorators, unified logging, 104–105

deduplicating strings, 223–224

deflated locks, 238–239

degradation, graceful, 17

deoptimization, Hotspot VM

class loading/unloading, 9–10

dynamic deoptimization, 9

polymorphic call sites, 11–13

deprecations, Java 17 (Java SE 17), 41

Double Data Rate (DDR) memory, 137–138

dynamic dumping, shared archive files, 
282–283

E
encapsulation, Java 17 (Java SE 17), 40–41

enumerations, 49–50

Epsilon GC (Garbage Collector), 35

exotic hardware, 307–309

Aparapi, 308, 314, 317–321

cloud computing, 309–312

CUDA4J, 314

descriptors, 335



342 exotic hardware

HAT, 335–336

language design, 313–314

limitations, 311–312

LWJGL, 313–317

OpenCL, 308

performance, 311

Project Panama, 314

FFM API, 309, 330–333

vector API, 308, 327–330, 334–335

Project Sumatra, 314, 321–324

resource contention, 311

toolchains, 313–314

TornadoVM, 308, 314, 324–327, 336

experimental design, performance  
engineering, 146

F
fabric architectures, NUMA, 144

failure, MTBF, 124–126

fast-debug, 99

fences, concurrent computing, 139

FFM (Foreign Function and Memory) API, 
309, 330–333

flamegraph analysis, contended lock  
performance, 249–251

Flink, Apache, 215

footprint

performance engineering

adaptive sizing policies, 123

code footprint, 119

code refactoring, 122

data structure optimization, 122

JVM parameter tuning, 122

managing, 120

memory footprint, 119

mitigating issues, 122–123

NMT, 120–122

non-heap memory, monitoring with 
NMT, 120–122

physical resources, 120

strings, reducing footprint, 224–236

Foreign Function and Memory (FFM) API, 
309, 330–333

@Fork, 171

ForkJoinPool frameworks, threads, 261–264

formatting, accelerator descriptors, 335

G
G1 GC (Garbage-First Garbage Collector), 

16, 178–179

deduplicating strings (dedup), 223–224

heap management

adaptive sizing, 184

core scaling, 185

humongous objects handling, 186

IHOP, 186

pause-time predictability, 184–185

regionalized heaps, 184, 186–188

marking thresholds, 196–197

NUMA-aware memory allocator, 38

optimizing, 193–196

pause responsiveness, 189–193

performance, 188–197, 217

games, LWJGL, 313–317

Garbage Collector (GC), 2

allocation-stall-based GC, 207

analytics (OLAP), 214–215

concurrent algorithms, 14

concurrent GC threads, 16–18

concurrent work, 17

data lifespan patterns, 216

Epsilon GC, 35

future trends, 210–212

G1 GC, 16, 38, 178–179

deduplicating strings (dedup), 
223–224

heap management, 184–188

marking thresholds, 196–197



 hardware 343

optimizing, 193–196

pause responsiveness, 189–193

performance, 188–197, 217

graceful degradation, 17

high allocation rate-based GC, 206–207

high-usage-based GC, 207–208

Hotspot VM, 13

hybrid applications (HTAP), 215

incremental compacting algorithms, 14

LDS, 216–217

lots of threads, 18

MSC, 16, 22

NUMA-aware GC, 181–183

old-generation collections, 16

operational stores (OLTP), 215

parallel GC threads, 16–18

pauses, 17

performance

engineering, 154

evaluations, 212–216

PLAB, 180–181

proactive GC, 208–209

reclamation triggers, 16

scavenge algorithm, 16

Shenandoah GC, 16, 37

STW algorithms, 14

task queues, 17

task stealing, 17

thread-local handshakes, 14

time-based GC, 204–205

TLAB, 179–180

ultra-low-pause-time collectors, 14

warm-up-based GC, 205–206

weak generational hypothesis, 14–16

young collections, 14–16

ZGC, 16, 35, 37–38, 39–40, 178–179

advancements, 209–210

allocation-stall-based GC, 207

colored pointers, 197–198

concurrent computing, 198–200

high allocation rate-based GC, 
206–207

high-usage-based GC, 207–208

performance, 217

phases, 199–201

proactive GC, 208–209

thread-local handshakes, 198–199

time-based GC, 204–205

triggering cycles, 204–209

warm-up-based GC, 205–206

ZPages, 198, 202–204

generational hypothesis, weak, 14–16

generics, 1, 19–22, 25, 43, 51, 64–66

GraalVM, 289

AOT compilation, 284–285, 298

native image generation, 291

OpenJDK support, 291

TornadoVM, 308, 314, 324–327, 336

graceful degradation, 17

H
Hadoop (Apache)

availability, 124 

GC performance, 214

Vector API, 335

happens-before relationships, 139–141, 237

hardware

accelerators, TornadoVM, 324–327

caches, 132 

concurrent computing

core utilization, 136

memory hierarchies, 136–138

processors, 136–138

SMT, 136

software interplay, 131

exotic hardware, 307–309



344 hardware

Aparapi, 308, 314, 317–321

cloud computing, 309–312

CUDA4J, 314

language design, 313–314

limitations, 311–312

LWJGL, 313–317

OpenCL, 308

performance, 311

Project Panama, 308–309, 314, 
327–335

Project Sumatra, 314, 321–324

resource contention, 311

toolchains, 313–314

TornadoVM, 308, 314, 324–327, 336

hardware-aware programming, 132

HAT, 335–336

heterogenity, 310

performance and, 128–131

software dynamics, 129–131

subsystems, performance engineering, 
156–157

harnesses, benchmarking, 164–165

HashMap, annotations, 51

HAT (Hardware Accelerator Toolkit), 335–336

HBase (Apache), 214–215

heap management

adaptive sizing, 184

core scaling, 185

G1 GC, 184–188

humongous objects handling, 186

IHOP, 186

nmethod code heaps, 8

off-heap forwarding tables, 201

pause-time predictability, 184–185

regionalized heaps, 184, 186–188

ZGC, off-heap forwarding tables, 201

heterogenity, hardware, 310

hidden classes, 38–39

hierarchies, memory, 136–138

high allocation rate-based GC (Garbage 
Collection), 206–207

high-usage-based GC (Garbage Collection), 
207–208

Hive (Apache), 214

hops, 28–30

host OS, performance engineering, 156

Hotspot VM

adaptive optimization, 9

C++ Interpreter, 3

client compiler (C1), 7

CodeCache, 3

contended locks, 242–243

deoptimization, 9–10

class loading/unloading, 9–10

polymorphic call sites, 11–13

GC, 13

concurrent algorithms, 14

concurrent GC threads, 16–18

concurrent work, 17

future trends, 210–212

G1 GC, 16, 178–179, 184–197

graceful degradation, 17

incremental compacting  
algorithms, 14

lots of threads, 18

NUMA-aware GC, 181–183

old-generation collections, 16

parallel GC threads, 16–18

pauses, 17

performance evaluations, 212–216

PLAB, 180–181

reclamation triggers, 16

scavenge algorithm, 16

Shenandoah GC, 16

STW algorithms, 14

task queues, 17



 interface types 345

task stealing, 17

thread-local handshakes, 14

TLAB, 179–180

ultra-low-pause-time collectors, 14

weak generational hypothesis, 14–16

young collections, 14–16

ZGC, 16, 178–179, 197–210

interned strings, 221–223

interpreter, 5

JIT compiler, 5

literal strings, 221–223

mixed-mode execution, 3

monitor locks, 238–241

nmethod, 7–8

performance-critical methods,  
optimizing, 3–5

PLAB, 180–181

print compilation, 5–6

Project Valhalla, 67

server compiler (C2), 7

start-up performance, 300–302

steady-state phase, 301

TemplateTable, 3

tiered compilation, 6–7

TLAB, 179–180

unified logging

asynchronous logging integration, 111

benchmarking, 108

decorators, 104–105

identifying missing information, 102

infrastructure of, 100

JDK 11, 113

JDK 17, 113

levels, 103–104

log tags, 101

managing systems, 109

need for, 99–100

optimizing systems, 109

outputs, 105–106

performance, 108

performance metrics, 101

specific tags, 102

tools/techniques, 108

usage examples, 107–108

warm-up performance, 298

compilers, 300–303

optimizing, 300–301

HTAP (Hybrid Transactional/Analytical 
Processing), hybrid applications, 215

humongous objects handling, heap  
management, 186

Hybrid API, 336

hybrid applications (HTAP), 215

hypervisors

constraints, 310–311

performance engineering, 156

I
Ignite (Apache), 215

IHOP (Initiating Heap Occupancy Percent), 
heap management, 186

image generation (native), GraalVM, 291

immutable objects, Project Valhalla, 63

implementing modular services, 81–83

Improved Contended Locking, 34

incremental compacting algorithms, 14

indy-fication, string concatenation, 224–227

infinity fabric, AMD, 144

inflated locks, 239–241

Initiating Heap Occupancy Percent (IHOP), 
heap management, 186

inline caches, 12

inlining, 7

instanceof operator, pattern matching, 38

Intel, mesh fabric architectures, 144

interface types, 45–46, 51–52



346 interleaved memory, NUMA

interleaved memory, NUMA, 143

interned strings, 221–223

interpreter, 5

J
JAR Hell versioning problem, 83–91

Java, 1–2

application profilers, performance  
engineering, 157

array types, 48–49

asynchronous logging

backpressure management, 111

benefits of, 110

best practices, 111–113

customizing solutions, 111

implementing, 110–111

Log4j2, 110

Logback, 110

performance, 112–113

reliability, 112

unified logging integration, 111

backward compatibility, 83–84

bytecode, 2

C# comparisons, 67–68

class types, 47–48

enhanced performance, 42

evolution of, 18–42

GC, 2

concurrent algorithms, 14

concurrent GC threads, 16–18

concurrent work, 17

G1 GC, 16

graceful degradation, 17

Hotspot VM, 13

incremental compacting  
algorithms, 14

lots of threads, 18

old-generation collections, 16

parallel GC threads, 16–18

pauses, 17

reclamation triggers, 16

scavenge algorithm, 16

Shenandoah GC, 16

STW algorithms, 14

task queues, 17

task stealing, 17

thread-local handshakes, 14

ultra-low-pause-time collectors, 14

weak generational hypothesis, 14–16

young collections, 14–16

ZGC, 16

Hotspot VM

adaptive optimization, 9

C++ Interpreter, 3

client compiler (C1), 7

CodeCache, 3

deoptimization, 9–10, 9–13

GC, 13–14, 13–18

interpreter, 5

JIT compiler, 5

mixed-mode execution, 3

nmethod, 7–8

performance-critical methods, 3–5

print compilation, 5–6

server compiler (C2), 7

TemplateTable, 3

tiered compilation, 6–7

interface types, 45–46

JIT compiler, 3, 5

Kotlin comparisons, 68

literals, 45

null, 45

primitive data types, 44–45

reference types, 45–49

release cadence, 34

Scala comparisons, 68



 Java 17 (Java SE 17) 347

as statically type-checked language, 43

as strongly typed language, 43

Java 1.1 (JDK 1.1), 18–19

array types, 48–49

class types, 47–48

interface types, 45–46

reference types, 45–49

Java 1.4.2 (J2SE 1.4.2), 18–19

array types, 48–49

class types, 47–48

interface types, 45–46

reference types, 45–49

Java 5 (J2SE 5.0)

annotations, 43, 50

enumerations, 49–50

generics, 43

JVM, 22–23

language features, 19–22

packages enhancements, 22–23

ReentrantLock, 241

Java 6 (Java SE 6)

annotations, 50

Biased locking, 242

enumerations, 49–50

JVM, 23–25

Java 7 (Java SE 7)

Adaptive spinning, 243

annotations, 50

enumerations, 49–50

JVM, 26–30

language features, 25–26

NUMA architectures, 28–30

underscore ( _ ), 51

Java 8 (Java SE 8)

annotations, 50–51

generics, 51

interface types, 51–52

JVM, 31–32

language features, 30

meta-annotations, 51

StampedLock, 241–242

“target-type” inference, 51

underscore ( _ ), 51

Java 9 (Java SE 9), 32–34

MethodHandles, 52–54

VarHandles, 43–44, 52–54

Java 10 (Java SE 10), 34–35, 52–54

Java 11 (Java SE 11), 35–37

modular JDK, 78, 82–83

unified logging, 113

Java 12 (Java SE 12), 37

modular JDK, 78, 82–83

switch expressions, 44, 55–56

Java 13 (Java SE 13), 37–38

modular JDK, 78, 82–83

switch expressions, 44, 55–56

yield keyword, 37 

Java 14 (Java SE 14), 38

modular JDK, 78, 82–83

records, 57

switch expressions, 44, 55–56

Java 15 (Java SE 15), 38–39

modular JDK, 78, 82–83

records, 57

sealed classes, 38–39, 44, 56–57

Java 16 (Java SE 16), 39–40

modular JDK, 78, 82–83

records, 57

sealed classes, 38–39, 44, 56–57

Java 17 (Java SE 17)

deprecations, 42

encapsulation, 40–41

JDK, 40–41

JVM, 40

language features, 41

library enhancements, 41



348 Java 17 (Java SE 17)

modular services, 78

example of, 80–81

implementing, 81–83

service consumers, 79–83

service providers, 79, 82–83

removals, 42

sealed classes, 38–39, 44, 56–57

security, 40–41

unified logging, 113

Java Archive (JAR), JAR Hell versioning 
problem, 83–91

Java Development Kit (JDK), 1

bytecode, 2

Java 17 (Java SE 17), 40–41

JRE, 2

modular JDK, 78, 82–83

Java Executor Service, 261

Java Microbenchmark Harness (JMH)

@Benchmark, 171

@BenchmarkMode, 171

@Fork, 171

@Measurement, 168–171

@OperationsPerInvocation, 169–171

@OutputTimeUnit, 171

@Setup, 171

@State, 171

@Teardown, 171

@Warmup, 168–171

annotations, 169–172

benchmarking, 172–174

benchmarking modes, 170

features of, 165

loop optimizations, 169

Maven, 166–170

measurement phase, 168–169

perfasm, 174

profilers, 170–171

profiling benchmarks, 174

running microbenchmarks, 166–168

warm-up phase, 168–169

writing/building microbenchmarks, 
166–168

Java Memory Model (JMM), thread  
synchronization, 237

Java Object Layout (JOL), 59–62

Java on Truffle, 292

Java Platform Module Service (JPMS), 
84–85. See also modules

Java Runtime Environment (JRE), 2

Java Virtual Machine (JVM), 1

bootstrapping, start-up performance, 
275

future of, 336

Java 5 (J2SE 5.0), 22–23

Java 6 (Java SE 6), 23–25

Java 7 (Java SE 7), 26–30

Java 8 (Java SE 8), 31–32

Java 9 (Java SE 9), 32–34

Java 10 (Java SE 10), 34–35

Java 11 (Java SE 11), 35–36

Java 12 (Java SE 12), 37

Java 13 (Java SE 13), 37–38

Java 14 (Java SE 14), 38

Java 15 (Java SE 15), 38–39

Java 16 (Java SE 16), 39–40

Java 17 (Java SE 17), 40

language API, 333–334

memory management, benchmarking, 
161–164

native libraries, 333–334

optimizing, serverless operations, 
296–297

parameter tuning, footprint,  
performance engineering, 122

performance engineering, 153–154, 336

runtime environments, 153–154

serverless operations, 296–297



 JVM (Java Virtual Machine) 349

Shenandoah GC, 37

start-up performance, optimizing, JVM 
bootstrapping, 275

unified logging

asynchronous logging integration, 111

benchmarking, 108

decorators, 104–105

identifying missing information, 102

infrastructure of, 100

JDK 11, 113

JDK 17, 113

levels, 103–104

log tags, 101

managing systems, 109

optimizing systems, 109

outputs, 105–106

performance, 108

performance metrics, 101

specific tags, 102

tools/techniques, 108

usage examples, 107–108

Jdeprscan, 94–95

Jdeps, 93–94

JDK (Java Development Kit), 1

bytecode, 2

Java 17 (Java SE 17), 40–41

JRE, 2

modular JDK, 78, 82–83

jigsaw layers, 83–91

JIT (Just-in-Time) compiler, 3, 276

OSR, 5

state management, 283–285

Jlink, 96

JMH (Java Microbenchmark Harness)

@Benchmark, 171

@BenchmarkMode, 171

@Fork, 171

@Measurement, 168–171

@OperationsPerInvocation, 169–171

@OutputTimeUnit, 171

@Setup, 171

@State, 171

@Teardown, 171

@Warmup, 168–171

annotations, 169–172

benchmarking, 172–174

benchmarking modes, 170

features of, 165

loop optimizations, 169

Maven, 166–170

measurement phase, 168–169

perfasm, 174

profilers, 170–171

profiling benchmarks, 174

running microbenchmarks, 166–168

warm-up phase, 168–169

writing/building microbenchmarks, 
166–168

JMM (Java Memory Model), thread  
synchronization, 237

Jmod, 95

JOL (Java Object Layout), 59–62

JPMS (Java Platform Module Service), 
84–85. See also modules

JRE (Java Runtime Environment), 2

JShell, 32–34

Just-in-Time (JIT) compiler, 3, 276

OSR, 5

state management, 283–285

JVM (Java Virtual Machine), 1

bootstrapping, start-up performance, 275

future of, 336

Java 5 (J2SE 5.0), 22–23

Java 6 (Java SE 6), 23–25

Java 7 (Java SE 7), 26–30

Java 8 (Java SE 8), 31–32



350 JVM (Java Virtual Machine)

Java 9 (Java SE 9), 32–34

Java 10 (Java SE 10), 34–35

Java 11 (Java SE 11), 35–36

Java 12 (Java SE 12), 37

Java 13 (Java SE 13), 37–38

Java 14 (Java SE 14), 38

Java 15 (Java SE 15), 38–39

Java 16 (Java SE 16), 39–40

Java 17 (Java SE 17), 40

language API, 333–334

memory management, benchmarking, 
161–164

native libraries, 333–334

optimizing, serverless operations, 
296–297

parameter tuning, footprint,  
performance engineering, 122

performance engineering,  
153–154, 336

runtime environments, 153–154

serverless operations, 296–297

Shenandoah GC, 37

start-up performance, optimizing, JVM 
bootstrapping, 275

unified logging

asynchronous logging integration, 111

benchmarking, 108

decorators, 104–105

identifying missing information, 102

infrastructure of, 100

JDK 11, 113

JDK 17, 113

levels, 103–104

log tags, 101

managing systems, 109

optimizing systems, 109

outputs, 105–106

performance, 108

performance metrics, 101

specific tags, 102

tools/techniques, 108

usage examples, 107–108

K
klasses, 58–61

Kotlin, Project Valhalla comparisons, 68

L
language API, JVM, 333–334

language design, exotic hardware, 
313–314

Last-Level Caches (LLC), 137

latency, 123, 188

layers

jigsaw layers, 83–91

system stack layers, 151

LDS (Live Data Sets), 216–217

levels, unified logging, 103–104

libraries

interactions, performance engineering, 
152–153

Java 17 (Java SE 17), 41

Lightweight Java Game Library (LWJGL), 
313–317

literal strings, 221–223

literals, 45

Live Data Sets (LDS), 216–217

LLC (Last-Level Caches), 137

loading

bytecode, 275–276

classes, 9–10, 276

local traffic, NUMA, 143

lock coarsening, 242

lock elision, 242

log tags, 101

Log4j2, 110

Logback, 110



 memory 351

logging

asynchronous logging, 111–113

unified logging

asynchronous logging integration, 111

benchmarking, 108

decorators, 104–105

identifying missing information, 102

infrastructure of, 100

JDK 11, 113

JDK 17, 113

levels, 103–104

log tags, 101

managing systems, 109

need for, 99–100

optimizing systems, 109

outputs, 105–106

performance, 108

performance metrics, 101

specific tags, 102

tools/techniques, 108

usage examples, 107–108

loop optimizations, benchmarking, 169

lots of threads, GC, 18

LWJGL (Lightweight Java Game Library), 
313–317

M
macOS/AArch64 port, 40

managing

backpressure, asynchronous logging, 111

footprint, performance engineering, 120

heaps

G1 GC, 184–188

off-heap forwarding tables, 201

ZGC, 201

JVM memory, benchmarking, 161–164

memory, optimizing, 217

state, 278–280

AOT compilation, 283–285

benefits of, 281

JIT compilation, 283–285

unified logging systems, 109

Mark-Sweep-Compacting (MSC), 16, 22

marking thresholds, G1 GC, 196–197

Maven, microbenchmarking, 166–170

Mean Time Between Failure (MTBF), 
124–126

Mean Time to Recovery (MTTR), 124–126

@Measurement, 168–171

measurement phase, benchmarking, 
168–169

megamorphic call sites, 12

memory

access

in multiprocessor systems, 141

optimizing with NUMA-aware GC, 
181–183

performance, Project Valhalla, 66

DDR memory, 137–138

FFM API, 309, 330–333

footprint, 119

hierarchies, 136–138

interleaved memory, NUMA, 143

JMM, thread synchronization, 237

JVM memory management,  
benchmarking, 161–164

mapping, shared archive files, 282

memory models, 131–136

NMT, monitoring non-heap memory, 
120–122

non-heap memory, monitoring with 
NMT, 120–122

NUMA, 141, 145

architecture of, 143

ccNUMA, 144

components of, 142–143

cross-traffic, 143



352 memory

fabric architectures, 144

GC (Garbage Collector), 181–183

interleaved memory, 143

Java 7 (Java SE 7), 28–30

local traffic, 143

nodes in modern systems, 142

NUMA-aware memory allocator, 38

object memory layouts, 59–62

optimizing, 217

value classes, 63–66

mesh fabric architectures, Intel, 144

meta-annotations, 51

Metaspace, 302–304

MethodHandles, 52–54

microbenchmarking

JMH, 172–174

@Benchmark, 171

@BenchmarkMode, 171

@Fork, 171

@Measurement, 168–169, 171

@OperationsPerInvocation, 169, 171

@OutputTimeUnit, 171

@Setup, 171

@State, 171

@Teardown, 171

@Warmup, 168–169, 171

annotations, 169, 171–172

benchmarking modes, 170

features of, 165

loop optimizations, 169

Maven, 166–170

measurement phase, 168–169

perfasm, 174

profilers, 170–171

profiling benchmarks, 174

running microbenchmarks, 166–168

warm-up phase, 168–169

writing/building microbenchmarks, 
166–168

Maven, 166–170

warm-up phase, 168–169

mixed-mode execution, Hotspot VM, 3

modifying, modules, 74–75

modular JDK (Java Development Kit), 78, 
82–83

modular services, 78

example of, 80–81

implementing, 81–83

service consumers, 79–83

service providers, 79, 82–83

ModuleLayer, 84–85

modules. See also JPMS

compiling, 72–76

defined, 70

example of, 71–72

Jdeprscan, 94–95

Jdeps, 93–94

Jlink, 96

Jmod, 95

jigsaw layers, 83–91

modifying, 74–75

OSGi comparisons, 91–93

performance, 97

relationships between, 76

role of, 70

running, 72–76

service consumers, 79–83

service providers, 79, 82–83

updating, 74–75

use-case diagrams, 77

monitor enter operations, 243–245

monitor exit operations, 243–245

monitor locks

contended locks, 239–241

Adaptive spinning (Java 7), 243



 NUMA (Non-Uniform Memory Access) 353

benchmarking, 248–251

call tree analysis, 251–254

flamegraph analysis, 249–251

lock coarsening, 242

lock elision, 242

monitor enter operations, 243–245

monitor exit operations, 243–245

PAUSE instructions, 258–259

performance engineering, 245–259

ReentrantLock (Java 5), 241

spin-loop hints, 258–259

spin-wait hints, 257–259

StampedLock (Java 8), 241–242

deflated locks, 238–239

inflated locks, 239–241

role of, 238

types of, 238–241

uncontended locks, 238–239, 242

monomorphic call sites, 12

mpstat tool, 156

MSC (Mark-Sweep-Compacting), 16, 22

MTBF (Mean Time Between Failure), 
124–126

MTTR (Mean Time to Recovery),  
124–126

multidimensional arrays, 49

multiprocessor systems

memory access, 141

NUMA, 141, 145

architecture of, 143

ccNUMA, 144

components of, 142–143

cross-traffic, 143

fabric architectures, 144

hops, 28–30

interleaved memory, 143

local traffic, 143

nodes in modern systems, 142

multithreading

SMT, concurrent hardware, 136

synchronizing threads, 236

contended locks, 239–259

happens-before relationships, 237

JMM, 237

monitor locks, 238–259

Mustang. See Java 6 (Java SE 6)

mutation rates, regionalized heaps, 188

N
native image generation, GraalVM, 291

native libraries, JVM (Java Virtual Machine), 
333–334

Native Memory Tracking (NMT), 120–122

ndrange API, 335–336

NetBeans IDE, compact strings, 229–236

nmethod, 7–8

NMT (Native Memory Tracking), 120–122

non-heap memory, monitoring with NMT, 
120–122

non-method code heap, segmented code 
cache, 8

non-profiled nmethod code heap, 8

null, 45

NUMA (Non-Uniform Memory Access),  
141, 145

architecture of, 143

ccNUMA, 144

components of, 142–143

cross-traffic, 143

fabric architectures, 144

GC (Garbage Collector), 181–183

hops, 28–30

interleaved memory, 143

Java 7 (Java SE 7), 28–30

local traffic, 143

nodes in modern systems, 142

NUMA-aware memory allocator, 38



354 objects

O
objects

components of, 58–59

immutable objects, Project Valhalla, 63

klasses, 58–61

memory layouts, 59–62

value objects, Project Valhalla, 66

off-heap forwarding tables, ZGC, 201

OLAP (Online Analytical Processing), 
214–215

old-generation collections, 16

OLTP (Online Transaction Processing) 
systems

operational stores, 215

performance engineering, 149–151

On-Stack Replacement (OSR), 5

OpenCL, 308, 314, 317–321

OpenJDK

concurrent algorithms, 14

CRIU, 292–295

GC

future trends, 210–212

G1 GC, 178–179, 184–197

NUMA-aware GC, 181–183

performance evaluations, 212–216

PLAB, 180–181

TLAB, 179–180

ZGC, 178–179, 197–210

GraalVM, 291

incremental compacting algorithms, 14

PLAB, 180–181

Project CRaC, 292–295

STW algorithms, 14

thread-local handshakes, 14

TLAB, 179–180

ultra-low-pause-time collectors, 14

Open Services Gateway initiative (OSGi), 
91–93

operational stores (OLTP), 215

@OperationsPerInvocation, 169–171

optimizing

data structures, footprint, 122

G1 GC, 188–197

JVM, serverless operations, 296–297

memory, 217

performance-critical methods, 3–5

runtime performance, 219

strings, 220–236

threads, 236–270

start-up performance, 274–275

strings, 220

compact strings, 227–236

concatenating, 224–227

deduplicating (dedup), 223–224

indy-fication, 224–227

interned strings, 221–223

literal strings, 221–223

reducing footprint, 224–236

threads, synchronization, 236

contended locks, 239–259

happens-before relationships, 237

JMM, 237

monitor locks, 238–259

unified logging systems, 109

warm-up performance, 274

OS (Operating Systems), performance  
engineering, 155–156

OSGi (Open Services Gateway initiative), 
91–93

OSR (On-Stack Replacement), 5

outputs, unified logging, 105–106

@OutputTimeUnit, 171

P
parallel GC threads, 16–18

parallelism, virtual threads, 269–270



 performance 355

pattern matching, instanceof operator, 38

PAUSE instructions, contended locks, 
258–259

pause responsiveness, G1 GC, 189–193

pauses, GC, 17

pause-time predictability, heap  
management, 184–185

perfasm, profiling JMH benchmarks, 174

performance

asynchronous logging, 112–113

availability

MTBF, 124–126

MTTR, 124–126

cloud computing, 311

concurrent computing

atomicity, 139–141

barriers, 139

core utilization, 136

fences, 139

happens-before relationships, 139–141

memory access in multiprocessor 
systems, 141

memory hierarchies, 136–138

memory models, 139–141

NUMA, 141–145

processors, 136–138

volatiles, 139

engineering. See separate entry

evaluating, 117

exotic hardware, 311

footprint

adaptive sizing policies, 123

code footprint, 119

code refactoring, 122

data structure optimization, 122

JVM parameter tuning, 122

managing, 120

memory footprint, 119

mitigating issues, 122–123

monitoring non-heap memory with 
NMT, 120–122

NMT, 120–122

physical resources, 120

G1 GC, 188–197, 217

GC, 212–216

hardware, 128

caches, 132

concurrent hardware, 136–138

hardware-aware programming, 132

memory hierarchies, 136–138

processors, 136–138

SMT, 136

software dynamics, 129–131

memory access performance, Project 
Valhalla, 66

memory models, 131–132

atomicity, 139–141

thread dynamics, 133–136

Metaspace, 304–306

metrics, 118–128

modules, 97

performance-critical methods,  
optimizing, 3–5

PermGen, 304–306

PMU, 157

processors, 136–138

Project Leyden, 285–290

Project Valhalla, 58–63

QoS, defined, 117–118

ramp-up performance, 298–300

application lifecycles, 279

defined, 273

serverless operations, 295–296

tasks (overview), 276–277

transitioning to steady-state, 281

response times, 123, 127–128

4–9s, 124–126

5–9s, 125–126



356 performance

runtime performance, 219

strings, 220–236

threads, 236–270

start-up performance, 274, 297

application lifecycles, 278

CDS, 281–282

containerized environments, 296–297

Hotspot VM, 300

JVM bootstrapping, 275

Metaspace, 302

PermGen, 302

serverless operations, 294–295

SUT, 117

thread synchronization, 236

contended locks, 239–259

happens-before relationships, 237

JMM, 237

monitor locks, 238–259

throughput, 123–124

unified logging, 101, 108

UoW, 117

warm-up performance

defined, 273

Hotspot VM, 302

Metaspace, 304–306

optimizing, 274

PermGen, 304–306 

ZGC, 217

performance engineering, 3–5, 115–116

availability

MTBF, 124–126

MTTR, 124–126

benchmarking, 158

harnesses, 164–165

iterative approach, 161

JMH, 165–174

JVM memory management, 161–164

metrics, 159

microbenchmarking, 165–174

process (overview), 159–161

bottom-up methodology, 146–148

concurrent computing

atomicity, 139–141

barriers, 139

core utilization, 136

fences, 139

happens-before relationships, 139–141

memory access in multiprocessor 
systems, 141

memory hierarchies, 136–138

memory models, 139–141

NUMA, 141–145

processors, 136–138

volatiles, 139

containerized environments, 155

contended locks, 245–259

evaluating, 117

experimental design, 146

footprint

adaptive sizing policies, 123

code footprint, 119

code refactoring, 122

data structure optimization, 122

JVM parameter tuning, 122

managing, 120

memory footprint, 119

mitigating issues, 122–123

monitoring non-heap memory with 
NMT, 120–122

NMT, 120–122

physical resources, 120

GC, 154

hardware

caches, 132

concurrent hardware, 136–138

core utilization, 136



 Project Jigsaw 357

memory hierarchies, 136–138

processors, 136–138

SMT, 136

hardware subsystems, 156–157

hardware’s role in, 128

hardware-aware programming, 132

software dynamics, 129–131

hypervisors, 156

JVM, future of, 336

memory models, 131–133

atomicity, 139–141

thread dynamics, 133–136

methodologies, 145–150

metrics, 118–128

OLTP systems, 149–151

OS, 155–156

PMU, 157

processors, 136–138

QoS, defined, 117–118

response times, 123, 127–128

4–9s, 124–126

5–9s, 125–126

SoW, 149–151

subsystems

async-profiler, 157

components of (overview), 152

containerized environments, 155

GC, 154

hardware, 156–157

host OS, 156

hypervisors, 156

interactions, 152–153

Java application profilers, 157

JVM, 153–154

libraries, 152–153

OS, 155–156

PMU, 157

runtime environments, 153–154

system infrastructures, 152–153

system profilers, 157

system stack layers, 151

SUT, 117

system infrastructures, 152–153

system profilers, 157

throughput, 123–124

top-down methodology, 148–158

UoW, 117

Performance Monitoring Units (PMU), 157

PermGen (Permanent Generation), 
304–306

phases, ZGC, 199–201

physical resources, footprint, 120

PLAB (Promotion-Local Allocation Buffers), 
180–181

PMU (Performance Monitoring Units), 157

pointers (colored), ZGC, 197–198

polymorphic call sites, 11–13

“pool of strings”, 221

ports

macOS/AArch64 port, 40

windows/AArch64 port, 39

primitive classes, 65–66

primitive data types, 44–45

print compilation, Hotspot VM, 5–6

proactive GC (Garbage Collection), 
208–209

processors

fabric architectures, 144

multiprocessor systems, memory  
access, 141

performance, 136–138

profiled nmethod code heap, 8

profilers, JMH, 170–171, 174

Project Babylon, 336

Project CRaC, 292–295

Project Jigsaw, 32–34



358 Project Leyden

Project Leyden, 285–290

Project Lilliput, 237

Project Loom, 237, 266

Project Panama

FFM API, 309, 330–333

vector API, 308, 327–330, 334–335

Project Sumatra, 314, 321–324

Project Valhalla, 44, 237

arrays, 60–62

C# comparisons, 67–68

classes, 65–66

command-line options, 67

experimental features, 67

generics, 64–66

Hotspot VM, 67

immutable objects, 63

JOL, 59–62

Kotlin comparisons, 68

memory access performance, 66

object memory layouts, 59–62

performance implications, 58–63

Scala comparisons, 68

use case scenarios, 67

value classes, 63–66

value objects, 66

Promotion-Local Allocation Buffers (PLAB), 
180–181

Q
Quality of Service (QoS), defined, 117–118

R
ramp-down performance, life cycle of  

applications, 278

ramp-up performance, 298–300

applications, life cycle of, 278

defined, 273

serverless operations, 295–296

tasks (overview), 276–277

transitioning to steady-state, 281

readable code, underscore ( _ ), 51

reclamation triggers, 16

records (Java 16, Java 17), 39, 57

recovery, MTTR, 124–126

ReentrantLock (Java 5), 241

refactoring code, footprint, 122

reference types, 45–49

regionalized heaps, 184, 186–188

relationships between modules, 76

release cadence, Java, 34

reliability, asynchronous logging, 112

removals, Java 17 (Java SE 17), 42

requirements gathering (benchmarking 
performance), 160

resource contention, exotic hardware, 311

response times, performance engineering, 
123, 127–128

4–9s, 124–126

5–9s, 125–126

STW pauses, 126–128

responsiveness

G1 GC, pause responsiveness, 189–193

regionalized heaps, 188

restore/checkpoint functionality, CRIU, 
291–294

running modules, 72–76

runtime environments, performance  
engineering, 153–154

runtime performance, strings, 219–220

compact strings, 227–236

concatenating, 224–227

deduplicating (dedup), 223–224

indy-fication, 224–227

interned strings, 221–223

literal strings, 221–223

reducing footprint, 224–236



 statically type-checked language, Java as 359

S
Scala, Project Valhalla comparisons, 68

scalability

containerized environments, 297–298

G1 GC, 188

threads

CompletableFuture frameworks, 
264–265

ForkJoinPool frameworks, 261–264

Java Executor Service, 261

thread pools, 261

thread-per-request model, 261–266

thread-per-task model, 259–260

virtual threads, 265–270

scavenge algorithm, 16

sealed classes (Java 15, Java 17), 38–39, 
44, 56–57

security, Java 17 (Java SE 17), 40–41

Segmented CodeCache, 7–8, 300–302

server compiler (C2), 7

serverless operations

JVM optimization, 296–297

ramp-up performance, 295–296

start-up performance, 294–295

service consumers, 79–80, 82–83

Service Level Agreements (SLA), 117–118, 
124–125

Service Level Indicators (SLI), 117–118, 123

Service Level Objectives (SLO), 117–118, 123

service providers, 79, 82–83

ServiceLoader API, 81–83

@Setup, 171

shared archive files, 282–283

Shenandoah GC, 16, 37

Simultaneous Multithreading (SMT), 136

sizing policies, footprint, 123

SLA (Service Level Agreements), 117–118, 
124–125

SLC (System-Level Caches), 137

SLI (Service Level Indicators), 117–118, 123

SLO (Service Level Objectives), 117–118, 123

slow-debug, 99

SMT (Simultaneous Multithreading), 136

software

concurrency, hardware interplay, 131

engineering, layers of, 116–117

hardware dynamics in performance, 
129–131

SoW (Statements of Work), 149–151

Spark (Apache)

GC collection performance, 214

Vector API, 334

specific tags, 102

spin-loop hints, contended locks,  
258–259

spin-wait hints, contended locks, 257–259

StampedLock (Java 8), 241–242

start-up performance, 297

applications, life cycle of, 278

CDS, 282

containerized environments, 297–298

Hotspot VM, 300–302

JVM bootstrapping, 275

Metaspace, 304–306

optimizing, 274–275

PermGen, 304–306

serverless operations, 294–295

@State, 171

state management

AOT compilation, 283–285

benefits of, 281

JIT compilation, 283–285

start-up performance, 278–280

Statements of Work (SoW), 149–151

statically type-checked language,  
Java as, 43



360 steady-state phase

steady-state phase

applications, life cycle of, 278

GraalVM, 290–291

Hotspot VM, 301

Metaspace, 304–306

PermGen, 304–306

transitioning ramp-up performance  
to, 281

stealing tasks, GC, 17

stopping, applications, 278

Stop the World (STW) algorithms, 14

Stop the World (STW) pauses, response 
times, 126–128

strings, 220

compact strings, 227–236

concatenating, 224–227

deduplicating (dedup), 223–224

indy-fication, 224–227

interned strings, 221–223

literal strings, 221–223

NetBeans IDE, 229–236

“pool of strings”, 221

reducing footprint, 224–236

storing, 221–223

visualizing representations, 228

strongly typed language, Java as, 43

STW (Stop the World) algorithms, 14

STW (Stop the World) pauses, response 
times, 126–128

subsystems, performance engineering

async-profiler, 157

components of (overview), 152

containerized environments, 155

GC, 154

hardware, 156–157

host OS, 156

hypervisors, 156

interactions, 152–153

Java application profilers, 157

JVM, 153–154

libraries, 152–153

OS, 155–156

PMU, 157

runtime environments, 153–154

system infrastructures, 152–153

system profilers, 157

system stack layers, 151

SUT (System Under Test), 117

sweepers, 8

switch expressions (Java 12, Java 14), 37, 
44, 55–56

synchronizing threads, 236

happens-before relationships, 237

JMM, 237

monitor locks

contended locks, 239–259

deflated locks, 238–239

inflated locks, 239–241

role of, 238

types of, 238–241

uncontended locks, 238–239

sysstat tool, 156

system infrastructures, performance  
engineering, 152–153

System-Level Caches (SLC), 137

system profilers, performance  
engineering, 157

system stacks, layers of, 151

System Under Test (SUT), 117

T
tags, unified logging, 101–102

tail latency, regionalized heaps, 188

“target-type” inference, 51

task queues, 17

task stealing, GC, 17

@Teardown, 171

TemplateTable, Hotspot VM, 3



 unified logging 361

test planning/development, benchmarking 
performance, 160

text blocks, 37–38

Thread-Local Allocation Buffers (TLAB), 
179–180

threads

CompletableFuture frameworks, 
264–265

concurrent computing

CompletableFuture frameworks, 
264–265

ForkJoinPool frameworks,  
261–264

Java Executor Service, 261

thread pools, 261

thread-per-request model, 259–260

thread-per-task model, 261–266

virtual threads, 266–270

concurrent thread-stack processing, 
39–40

ForkJoinPool frameworks, 261–264

GC, 18

memory models, 133–136

monitor locks

contended locks, 239–259

deflated locks, 238–239

inflated locks, 239–241

role of, 238

types of, 238–241

uncontended locks, 238–239

scalability

CompletableFuture frameworks, 
264–265

ForkJoinPool frameworks, 261–264

Java Executor Service, 261

thread pools, 261

thread-per-request model, 261–266

thread-per-task model, 259–260

virtual threads, 265–270

synchronizing, 236

contended locks, 239–259

happens-before relationships, 237

JMM, 237

monitor locks, 238–259

thread pools, 261

thread-local handshakes, 14, 198–199

TLAB, 179–180

virtual threads

API integration, 267

carriers, 267

continuations, 270

example of, 267–269

parallelism, 269–270

Project Loom, 266

throughput, performance engineering, 
123–124

tiered compilation, Hotspot VM, 6–7

time-based GC, ZGC, 204–205

TLAB (Thread-Local Allocation Buffers), 
179–180

toolchains, exotic hardware, 313–314

top-down methodology, performance  
engineering, 148–158

TornadoVM, 308, 314, 324–327, 336

U
ultra-low-pause-time collectors, 14

uncontended locks, 238–239, 242

Biased locking (Java 6), 242

underscore ( _ ), code readability, 51

unified logging

asynchronous logging integration, 111

benchmarking, 108

decorators, 104–105

identifying missing information, 102

infrastructure of, 100

JDK 11, 113

JDK 17, 113



362 unified logging

levels, 103–104

log tags, 101

managing systems, 109

need for, 99–100

optimizing systems, 109

outputs, 105–106

performance, 108

performance metrics, 101

specific tags, 102

tools/techniques, 108

usage examples, 107–108

Unit of Work (UoW), 117

unloading/loading classes, Hotspot VM 
deoptimization, 9–10

updating, modules, 74–75

use case scenarios, Project Valhalla, 67

use-case diagrams, modules, 77

V
validation, benchmarking performance, 160

value classes, 63–66

value objects, Project Valhalla, 66

VarHandles, 43–44, 52–54

vector API, Project Panama, 308, 327–330, 
334–335

verifying bytecode, optimizing start-up  
performance, 275–276

versioning, JAR Hell versioning problem, 
83–91

virtual threads, 265

API integration, 267

carriers, 267

continuations, 270

example of, 267–269

parallelism, 269–270

Project Loom, 266

virtualized hardware. See exotic hardware

vmstat utility, 155–156

volatiles, concurrent computing, 139

W
warming caches, 276

@Warmup, 168–169, 171

warm-up-based GC (Garbage Collection), 
205–206

warm-up performance

defined, 273

Hotspot VM, 300–303

Metaspace, 304–306

optimizing, 274

PermGen, 304–306

warm-up phase, benchmarking,  
168–169

weak generational hypothesis, 14–16

windows/AArch64 port, 39

X - Y - Z
yield keyword (Java 13), 37

young collections, 14–16

Z Garbage Collector (ZGC), 16, 35–38, 
178–179

advancements, 209–210

allocation-stall-based GC, 207

colored pointers, 197–198

concurrent computing, 198–200

concurrent thread-stack processing, 
39–40

high allocation rate-based GC,  
206–207

high-usage-based GC, 207–208

performance, 217

phases, 199–201

proactive GC, 208–209

thread-local handshakes, 198–199

time-based GC, 204–205

triggering cycles, 204–209

warm-up-based GC, 205–206

ZPages, 198, 202–204


	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	3 From Monolithic to Modular Java: A Retrospective and Ongoing Evolution
	Introduction
	Understanding the Java Platform Module System
	Demystifying Modules
	Modules Example
	Compilation and Run Details
	Introducing a New Module

	From Monolithic to Modular: The Evolution of the JDK
	Continuing the Evolution: Modular JDK in JDK 11 and Beyond
	Implementing Modular Services with JDK 17
	Service Provider
	Service Consumer
	A Working Example
	Implementation Details

	JAR Hell Versioning Problem and Jigsaw Layers
	Working Example: JAR Hell
	Implementation Details

	Open Services Gateway Initiative
	OSGi Overview
	Similarities
	Differences

	Introduction to Jdeps, Jlink, Jdeprscan, and Jmod
	Jdeps
	Jdeprscan
	Jmod
	Jlink

	Conclusion
	Performance Implications
	Tools and Future Developments
	Embracing the Modular Programming Paradigm


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	X
	Y
	Z




