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Preface
Welcome to my guide to JVM performance engineering, distilled from more than 20 years of 
expertise as a Java Champion and performance engineer. Within these pages lies a journey 
through the evolution of the JVM—a narrative that unfolds Java’s robust capabilities and archi-
tectural prowess. This book meticulously navigates the intricacies of JVM internals and the art 
and science of performance engineering, examining everything from the inner workings of the 
HotSpot VM to the strategic adoption of modular programming. By asserting Java’s pivotal role 
in modern computing—from server environments to the integration with exotic hardware—it 
stands as a beacon for practitioners and enthusiasts alike, heralding the next frontier in JVM 
performance engineering. 

Intended Audience
This book is primarily written for Java developers and software engineers who are keen to 
enhance their understanding of JVM internals and performance tuning. It will also greatly 
benefit system architects and designers, providing them with insights into JVM’s impact on 
system performance. Performance engineers and JVM tuners will find advanced techniques 
for optimizing JVM performance. Additionally, computer science and engineering students 
and educators will gain a comprehensive understanding of JVM’s complexities and advanced 
features. 

With the hope of furthering education in performance engineering, particularly with a focus 
on the JVM, this text also aligns with advanced courses on programming languages, algo-
rithms, systems, computer architectures, and software engineering. I am passionate about fos-
tering a deeper understanding of these concepts and excited about contributing to coursework 
that integrates the principles of JVM performance engineering and prepares the next genera-
tion of engineers with the knowledge and skills to excel in this critical area of technology.

Focusing on the intricacies and strengths of the language and runtime, this book offers a 
thorough dissection of Java’s capabilities in concurrency, its strengths in multithreading, and 
the sophisticated memory management mechanisms that drive peak performance across varied 
environments. 

Book Organization
Chapter 1, “The Performance Evolution of Java: The Language and the Virtual Machine,” 
expertly traces Java’s journey from its inception in the mid-1990s to the sophisticated advance-
ments in Java 17. Highlighting Java’s groundbreaking runtime environment, complete with 
the JVM, expansive class libraries, and a formidable set of tools, the chapter sets the stage for 
Java’s innovative advancements, underlying technical excellence, continuous progress, and 
flexibility.

Key highlights include an examination of the OpenJDK HotSpot VM’s transformative garbage 
collectors (GCs) and streamlined Java bytecode. This section illustrates Java’s dedication to 
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performance, showcasing advanced JIT compilation and avant-garde optimization techniques. 
Additionally, the chapter explores the synergistic relationship between the HotSpot VM’s client 
and server compilers, and their dynamic optimization capabilities, demonstrating Java’s con-
tinuous pursuit of agility and efficiency. 

Another focal point is the exploration of OpenJDK’s memory management with the HotSpot 
GCs, particularly highlighting the adoption of the “weak generational hypothesis.” This con-
cept underpins the efficiency of collectors in HotSpot, employing parallel and concurrent GC 
threads as needed, ensuring peak memory optimization and application responsiveness.

The chapter maintains a balance between technical depth and accessibility, making it suitable 
for both seasoned Java developers and those new to the language. Practical examples and code 
snippets are interspersed to provide a hands-on understanding of the concepts discussed.

Chapter 2, “Performance Implications of Java’s Type System Evolution,” seamlessly contin-
ues from the performance focus of Chapter 1, delving into the heart of Java: its evolving type 
system. The chapter explores Java’s foundational elements—primitive and reference types, 
interfaces, classes, and arrays—that anchored Java programming prior to Java SE 5.0.

The narrative continues with the transformative enhancements from Java SE 5.0 onward, such 
as the introduction of generics, annotations, and VarHandle type reference—all further enrich-
ing the language. The chapter spotlights recent additions such as switch expressions, sealed 
classes, and the much-anticipated records.

Special attention is given to Project Valhalla’s ongoing work, examining the performance 
nuances of the existing type system and the potential of future value classes. The section offers 
insights into Project Valhalla’s ongoing endeavors, from refined generics to the conceptualiza-
tion of classes for basic primitives.

Java’s type system is more than just a set of types—it’s a reflection of Java’s commitment to ver-
satility, efficiency, and innovation. The goal of this chapter is to illuminate the type system’s 
past, present, and promising future, fostering a profound understanding of its intricacies.

Chapter 3, “From Monolithic to Modular Java: A Retrospective and Ongoing Evolution,” 
provides extensive coverage of the Java Platform Module System (JPMS) and its breakthrough 
impact on modular programming. This chapter marks Java’s bold transition into the modu-
lar era, beginning with a fundamental exploration of modules. It offers hands-on guidance 
through the creation, compilation, and execution of modules, making it accessible even to 
newcomers in this domain.

Highlighting Java’s transition from a monolithic JDK to a modular framework, the chapter 
reflects Java’s adaptability to evolving needs and its commitment to innovation. A standout 
section of this chapter is the practical implementation of modular services using JDK 17, which 
navigates the intricacies of module interactions, from service providers to consumers, enriched 
by working examples. The chapter addresses key concepts like encapsulation of implementa-
tion details and the challenges of JAR hell, illustrating how Jigsaw layers offer elegant solutions 
in the modular landscape. 

Further enriching this exploration, the chapter draws insightful comparisons with OSGi, spot-
lighting the parallels and distinctions, to give readers a comprehensive understanding of Java’s 
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modular systems. The introduction of essential tools such as jdeps, jlink, jdeprscan, and jmod, 
integral to the modular ecosystem, is accompanied by thorough explanations and practical 
examples. This approach empowers readers to effectively utilize these tools in their develop-
mental work. 

Concluding with a reflection on the performance nuances of JPMS, the chapter looks forward 
to the future of Java’s modular evolution, inviting readers to contemplate its potential impacts 
and developments.

Chapter 4, “The Unified Java Virtual Machine Logging Interface,” delves into the vital yet 
often underappreciated world of logs in software development. It begins by underscoring the 
necessity of a unified logging system in Java, addressing the challenges posed by disparate log-
ging systems and the myriad benefits of a cohesive approach. The chapter not only highlights 
the unification and infrastructure of the logging system but also emphasizes its role in moni-
toring performance and optimization. 

The narrative explores the vast array of log tags and their specific roles, emphasizing the impor-
tance of creating comprehensive and insightful logs. In tackling the challenges of discerning 
any missing information, the chapter provides a lucid understanding of log levels, outputs, and 
decorators. The intricacies of these features are meticulously examined, with practical exam-
ples illuminating their application in tangible scenarios.

A key aspect of this chapter is the exploration of asynchronous logging, a critical feature for 
enhancing log performance with minimal impact on application efficiency. This feature is 
essential for developers seeking to balance comprehensive logging with system performance.

Concluding the chapter, the importance of logs as a diagnostic tool is emphasized, showcasing 
their role in both proactive system monitoring and reactive problem-solving. Chapter 4 not 
only highlights the power of effective logging in Java, but also underscores its significance 
in building and maintaining robust applications. This chapter reinforces the theme of Java’s 
ongoing evolution, showcasing how advancements in logging contribute significantly to the 
language’s capability and versatility in application development.

Chapter 5, “End-to-End Java Performance Optimization: Engineering Techniques and Micro-
benchmarking with JMH,” focuses on the essence of performance engineering within the Java 
ecosystem. Emphasizing that performance transcends mere speed, this chapter highlights its 
critical role in crafting an unparalleled user experience. It commences with a formative explo-
ration of performance engineering’s pivotal role within the broader software development 
realm, highlighting its status as a fundamental quality attribute and unraveling its multifac-
eted layers. 

With precision, the chapter delineates the metrics pivotal to gauging Java’s performance, 
encompassing aspects from footprint to the nuances of availability, ensuring readers grasp 
the full spectrum of performance dynamics. Stepping in further. It explores the intricacies of 
response time and its symbiotic relationship with availability. This inspection provides insights 
into the mechanics of application timelines, intricately weaving the narrative of response time, 
throughput, and the inevitable pauses that punctuate them.

Yet, the performance narrative is only complete by acknowledging the profound influence of 
hardware. This chapter decodes the symbiotic relationship between hardware and software, 
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emphasizing the harmonious symphony that arises from the confluence of languages, proces-
sors, and memory models. From the subtleties of memory models and their bearing on thread 
dynamics to the foundational principles of Java Memory Model, this chapter journeys through 
the maze of concurrent hardware, shedding light on the order mechanisms pivotal to concur-
rent computing. 

Moving beyond theoretical discussions, this chapter draws on over two decades of hands-on 
experience in performance optimization. It introduces a systematic approach to performance 
diagnostics and analysis, offering insights into methodologies and a detailed investigation of 
subsystems and approaches to identifying potential performance issues. The methodologies are 
not only vital for software developers focused on performance optimization but also provide 
valuable insights into the intricate relationship between underlying hardware, software stacks, 
and application performance. 

The chapter emphasizes the importance of a structured benchmarking regime, encompassing 
everything from memory management to the assessment of feature releases and system layers. 
This sets the stage for the Java Micro-Benchmark Suite (JMH), the pièce de résistance of JVM 
benchmarking. From its foundational setup to the intricacies of its myriad features, the journey 
encompasses the genesis of writing benchmarks, to their execution, enriched with insights into 
benchmarking modes, profilers, and JMH’s pivotal annotations. 

Chapter 5 thus serves as a comprehensive guide to end-to-end Java performance optimization 
and as a launchpad for further chapters. It inspires a fervor for relentless optimization and 
arms readers with the knowledge and tools required to unlock Java’s unparalleled performance 
potential.

Memory management is the silent guardian of Java applications, often operating behind the 
scenes but crucial to their success. Chapter 6, “Advanced Memory Management and Garbage 
Collection in OpenJDK,” marks a deep dive into specialized JVM improvements, showcasing 
advanced performance tools and techniques. This chapter offers a leap into the world of gar-
bage collection, unraveling the techniques and innovations that ensure Java applications run 
efficiently and effectively. 

The chapter commences with a foundational overview of garbage collection in Java, setting the 
stage for the detailed exploration of Thread-Local Allocation Buffers (TLABs) and Promotion 
Local Allocation Buffers (PLABs), and elucidating their pivotal roles in memory management. 
As we progress, the chapter sheds light on optimizing memory access, emphasizing the signifi-
cance of the NUMA-aware garbage collection and its impact on performance. 

The highlight of this chapter lies in its exploration of advanced garbage collection techniques. 
The narrative reviews the G1 Garbage Collector (G1 GC), unraveling its revolutionary approach 
to heap management. From grasping the advantages of a regionalized heap to optimizing G1 
GC parameters for peak performance, this section promises a holistic cognizance of one of 
Java’s most advanced garbage collectors. Additionally, the Z Garbage Collector (ZGC) is pre-
sented as a technological marvel with its adaptive optimization techniques, and the advance-
ments that make it a game-changer in real-time applications.
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This chapter also offers insights into the emerging trends in garbage collection, setting the 
stage for what lies ahead. Practicality remains at the forefront, with a dedicated section offering 
invaluable tips for evaluating GC performance. From sympathizing with various workloads, 
such as Online Analytical Processing (OLAP) to Online Transaction Processing (OLTP) and 
Hybrid Transactional/Analytical Processing (HTAP), to synthesizing live data set pressure and 
data lifespan patterns, the chapter equips readers with the apparatus and knowledge to opti-
mize memory management effectively. This chapter is an accessible guide to advanced garbage 
collection techniques that Java professionals need to navigate the topography of memory 
management.

Chapter 7, “Runtime Performance Optimizations: A Focus on Strings, Locks, and Beyond,” 
is dedicated to exploring the critical facets of Java’s runtime performance, particularly in the 
realms of string handling and lock synchronization—two areas essential for efficient applica-
tion performance. 

The chapter excels at taking a comprehensive approach to demystifying these JVM optimi-
zations through detailed under-the-hood analysis—utilizing a range of profiling techniques, 
from bytecode analysis to memory and sample-based profiling to gathering call stack views of 
profiled methods—to enrich the reader’s understanding. Additionally, the chapter leverages 
JMH benchmarking to highlight the tangible improvements such optimizations bring. The 
practical use of async-profiler for method-level insights and NetBeans memory profiler further 
enhances the reader’s granular understanding of the JVM enhancements. This chapter aims 
to test and illuminate the optimizations, equipping readers with a comprehensive approach to 
using these tools effectively, thereby building on the performance engineering methodologies 
and processes discussed in Chapter 5.

The journey continues with an extensive review of the string optimizations in Java, highlight-
ing major advancements across various Java versions, and then shifts focus onto enhanced 
multithreading performance, highlighting Java’s thread synchronization mechanisms. 

Further, the chapter helps navigate the world of concurrency, with discussion of the transition 
from the thread-per-task model to the scalable thread-per-request model. The examination of 
Java’s Executor Service, ThreadPools, ForkJoinPool framework, and CompletableFuture ensures 
a robust comprehension of Java’s concurrency mechanisms.

The chapter concludes with a glimpse into the future of concurrency in Java with virtual 
threads. From understanding virtual threads and their carriers to discussing parallelism and 
integration with existing APIs, this chapter is a practical guide to advanced concurrency mech-
anisms and string optimizations in Java. 

Chapter 8, “Accelerating Time to Steady State with OpenJDK HotSpot VM,” is dedicated to 
optimizing start-up to steady-state performance, crucial for transient applications such as con-
tainerized environments, serverless architectures, and microservices. The chapter emphasizes 
the importance of minimizing JVM start-up and warm-up time to enhance efficient execution, 
incorporating a pivotal exploration into GraalVM’s revolutionary role in this domain. 

The narrative dissects the phases of JVM start-up and the journey to an application’s steady-
state, highlighting the significance of managing state during these phases across various 
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architectures. An in-depth look at Class Data Sharing (CDS) sheds light on shared archive files 
and memory mapping, underscoring the advantages in multi-instance setups. The narrative 
then shifts to ahead-of-time (AOT) compilation, contrasting it with just-in-time (JIT) compila-
tion and detailing the transformative impact of HotSpot VM’s Project Leyden and its forecasted 
ability to manage states via CDS and AOT. This sets the stage for GraalVM and its revolutionary 
impact on Java's performance landscape. By harnessing advanced optimization techniques, 
including static images and dynamic compilation, GraalVM enhances performance for a wide 
array of applications. The exploration of cutting-edge technologies like GraalVM alongside a 
holistic survey of OpenJDK projects such as CRIU and CraC, which introduce groundbreaking 
checkpoint/restore functionality, adds depth to the discussion. This comprehensive cover-
age provides insights into the evolving strategies for optimizing Java applications, making 
this chapter an invaluable resource for developers looking to navigate today’s cloud native 
environments.

The final chapter, Chapter 9, “Harnessing Exotic Hardware: The Future of JVM Performance 
Engineering,” focuses on the fascinating intersection of exotic hardware and the JVM, illu-
minating its galvanizing impact on performance engineering. This chapter begins with an 
introduction to the increasingly prominent world of exotic hardware, particularly within cloud 
environments. It explores the integration of this hardware with the JVM, underscoring the 
pivotal role of language design and toolchains in this process. 

Through a series of carefully detailed case studies, the chapter showcases the real-world 
applications and challenges of integrating such hardware accelerators. From the Lightweight 
Java Game Library (LWJGL), to the innovative Aparapi, which bridges Java and OpenCL, each 
study offers valuable insights into the complexities and triumphs of these integrations. The 
chapter also examines Project Sumatra’s significant contributions to this realm and introduces 
TornadoVM, a specialized JVM tailored for hardware accelerators. 

Through these case studies, the symbiotic potential of integrating exotic hardware with the 
JVM becomes increasingly evident, leading up to an overview of Project Panama, heralding a 
new horizon in JVM performance engineering. At the heart of Project Panama lies the Vector 
API, a symbol of innovation designed for vector computations. This API is not just about com-
putations—it’s about ensuring they are efficiently vectorized and tailored for hardware that 
thrives on vector operations. This ensures that developers have the tools to express parallel 
computations optimized for diverse hardware architectures. But Panama isn’t just about vec-
tors. The Foreign Function and Memory API emerges as a pivotal tool, a bridge that allows Java 
to converse seamlessly with native libraries. This is Java’s answer to the age-old challenge of 
interoperability, ensuring Java applications can interface effortlessly with native code, breaking 
language barriers.

Yet, the integration is no walk in the park. From managing intricate memory access patterns to 
deciphering hardware-specific behaviors, the path to optimization is laden with complexities. 
But these challenges drive innovation, pushing the boundaries of what’s possible. Looking to 
the future, the chapter showcases my vision of Project Panama as the gold standard for JVM 
interoperability. The horizon looks promising, with Panama poised to redefine performance 
and efficiency for Java applications.

This isn’t just about the present or the imminent future. The world of JVM performance 
engineering is on the cusp of a revolution. Innovations are knocking at our door, waiting to be 
embraced—with Tornado VM’s Hybrid APIs, and with HAT toolkit and Project Babylon on the 
horizon.
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How to Use This Book
1. Sequential Reading for Comprehensive Understanding: This book is designed to be read from 

beginning to end, as each chapter builds upon the knowledge of the previous ones. This 
approach is especially recommended for readers new to JVM performance engineering.

2. Modular Approach for Specific Topics: Experienced readers may prefer to jump directly to 
chapters that address their specific interests or challenges. The table of contents and 
index can guide you to relevant sections.

3. Practical Examples and Code: Throughout the book, practical examples and code snippets 
are provided to illustrate key concepts. To get the most out of these examples, readers are 
encouraged to build on and run the code themselves. (See item 5.)

4. Visual Aids for Enhanced Understanding: In addition to written explanations, this book 
employs a variety of textual and visual aids to deepen your understanding.

a. Case Studies: Real-world scenarios that demonstrate the application of JVM perfor-
mance techniques.

b. Screenshots: Visual outputs depicting profiling results as well as various GC plots, 
which are essential for understanding the GC process and phases.

c. Use-Case Diagrams: Visual representations that map out the system’s functional 
requirements, showing how different entities interact with each other.

d.  Block Diagrams: Illustrations that outline the architecture of a particular JVM or sys-
tem component, highlighting performance features.

e. Class Diagrams: Detailed object-oriented designs of various code examples, showing 
relationships and hierarchies.

f. Process Flowcharts: Step-by-step diagrams that walk you through various performance 
optimization processes and components.

g. Timelines: Visual representations of the different phases or state changes in an activity 
and the sequence of actions that are taken.

5. Utilizing the Companion GitHub Repository: A significant portion of the book’s value lies in 
its practical application. To facilitate this, I have created JVM Performance Engineering 
GitHub Repository (https://github.com/mo-beck/JVM-Performance-Engineering). Here, 
you will find

a. Complete Code Listings: All the code snippets and scripts mentioned in the book are 
available. This allows you to see the code and experiment with it. Use it as a launch-
pad for your projects and fork and improve it.

b. Additional Resources and Updates: The field of JVM Performance Engineering is ever 
evolving. The repository will be periodically updated with new scripts, resources, and 
information to keep you abreast of the latest developments.

c. Interactive Learning: Engage with the material by cloning the repository, running the 
GC scripts against your GC log files, and modifying them to see how outcomes better 
suit your GC learning and understanding journey.

https://github.com/mo-beck/JVM-Performance-Engineering
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6. Engage with the Community: I encourage readers to engage with the wider community. Use 
the GitHub repository to contribute your ideas, ask questions, and share your insights. 
This collaborative approach enriches the learning experience for everyone involved.

7. Feedback and Suggestions: Your feedback is invaluable. If you have suggestions, corrections, 
or insights, I warmly invite you to share them. You can provide feedback via the GitHub 
repository, via email (jvmbook@codekaram.com), or via social media platforms (https://
www.linkedin.com/in/monicabeckwith/ or https://twitter.com/JVMPerfEngineer).

                                                      
In Java’s vast realm, my tale takes wing, 
A narrative so vivid, of wonders I sing. 

Distributed systems, both near and afar, 
With JVM shining—the brightest star!

Its rise through the ages, a saga profound, 
With each chronicle, inquiries resound. 

“Where lies the wisdom, the legends so grand?” 
They ask with a fervor, eager to understand.

This book is a beacon for all who pursue, 
A tapestry of insights, both aged and new. 

In chapters that flow, like streams to the seas, 
I share my heart’s journey, my tech odyssey.

—Monica Beckwith

Register your copy of JVM Performance Engineering on the InformIT site for convenient 
access to updates and/or corrections as they become available. To start the registration 
process, go to informit.com/register and log in or create an account. Enter the product ISBN 
(9780134659879) and click Submit. If you would like to be notified of exclusive offers on new 
editions and updates, please check the box to receive email from us. 

mailto:jvmbook@codekaram.com
https://www.linkedin.com/in/monicabeckwith/
https://www.linkedin.com/in/monicabeckwith/
https://twitter.com/JVMPerfEngineer
http://informit.com/register
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Chapter 3
From Monolithic to Modular 

Java: A Retrospective and 
Ongoing Evolution

Introduction
In the preceding chapters, we journeyed through the significant advancements in the Java  
language and its execution environment, witnessing the remarkable growth and transfor-
mation of these foundational elements. However, a critical aspect of Java’s evolution, which 
has far-reaching implications for the entire ecosystem, is the transformation of the Java 
Development Kit (JDK) itself. As Java matured, it introduced a plethora of features and  
language-level enhancements, each contributing to the increased complexity and sophistica-
tion of the JDK. For instance, the introduction of the enumeration type in J2SE 5.0 necessitated 
the addition of the java.lang.Enum base class, the java.lang.Class. getEnumConstants() 
method, EnumSet, and EnumMap to the java.util package, along with updates to the 
Serialized Form. Each new feature or syntax addition required meticulous integration and robust 
support to ensure seamless functionality.

With every expansion of Java, the JDK began to exhibit signs of unwieldiness. Its monolithic 
structure presented challenges such as an increased memory footprint, slower start-up times, 
and difficulties in maintenance and updates. The release of JDK 9 marked a significant turning 
point in Java’s history, as it introduced the Java Platform Module System (JPMS) and transi-
tioned Java from a monolithic structure to a more manageable, modular one. This evolution 
continued with JDK 11 and JDK 17, with each bringing further enhancements and refinements 
to the modular Java ecosystem.

This chapter delves into the specifics of this transformation. We will explore the inherent chal-
lenges of the monolithic JDK and detail the journey toward modularization. Our discussion 
will extend to the benefits of modularization for developers, particularly focusing on those 
who have adopted JDK 11 or JDK 17. Furthermore, we’ll consider the impact of these changes on 
JVM performance engineering, offering insights to help developers optimize their applications 
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and leverage the latest JDK innovations. Through this exploration, the goal is to demonstrate 
how Java applications can significantly benefit from modularization.

Understanding the Java Platform Module System
As just mentioned, the JPMS was a strategic response to the mounting complexity and unwield-
iness of the monolithic JDK. The primary goal when developing it was to create a scalable 
platform that could effectively manage security risks at the API level while enhancing perfor-
mance. The advent of modularity within the Java ecosystem empowered developers with the 
flexibility to select and scale modules based on the specific needs of their applications. This 
transformation allowed Java platform developers to use a more modular layout when managing 
the Java APIs, thereby fostering a system that was not only more maintainable but also more 
efficient. A significant advantage of this modular approach is that developers can utilize only 
those parts of the JDK that are necessary for their applications; this selective usage reduces the 
size of their applications and improves load times, leading to more efficient and performant 
applications.

Demystifying Modules
In Java, a module is a cohesive unit comprising packages, resources, and a module descriptor 
(module-info.java) that provides information about the module. The module serves as a  
container for these elements. Thus, a module

 ■ Encapsulates its packages: A module can declare which of its packages should be 
accessible to other modules and which should be hidden. This encapsulation improves 
code maintainability and security by allowing developers to clearly express their code’s 
intended usage.

 ■ Expresses dependencies: A module can declare dependencies on other modules, making 
it clear which modules are required for that module to function correctly. This explicit 
dependency management simplifies the deployment process and helps developers iden-
tify problematic issues early in the development cycle.

 ■ Enforces strong encapsulation: The module system enforces strong encapsulation 
at both compile time and runtime, making it difficult to break the encapsulation 
either accidentally or maliciously. This enforcement leads to better security and 
maintainability.

 ■ Boosts performance: The module system allows the JVM to optimize the loading and 
execution of code, leading to improved start-up times, lower memory consumption, and 
faster execution.

The adoption of the module system has greatly improved the Java platform’s maintainability, 
security, and performance.
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Modules Example
Let’s explore the module system by considering two example modules: com.house. 
brickhouse and com.house.bricks. The com.house.brickhouse module contains two 
classes, House1 and House2, which calculate the number of bricks needed for houses with 
different levels. The com.house.bricks module contains a Story class that provides a method 
to count bricks based on the number of levels. Here’s the directory structure for com.house.
brickhouse:

src

── com.house.brickhouse

        ├── com

        │   └── house

        │       └── brickhouse

        │           ├── House1.java

        │           └── House2.java

        └── module-info.java

com.house.brickhouse:
   module-info.java:

module com.house.brickhouse {

    requires com.house.bricks;

    exports com.house.brickhouse;

}

com/house/brickhouse/House1.java:

package com.house.brickhouse;

import com.house.bricks.Story;

public class House1 {

    public static void main(String[] args) {

        System.out.println("My single-level house will need " + Story.count(1) + " bricks");

    }

}

com/house/brickhouse/House2.java:

package com.house.brickhouse;

import com.house.bricks.Story;

 

public class House2 {

    public static void main(String[] args) {

        System.out.println("My two-level house will need " + Story.count(2) + " bricks");

    }

}
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Now let’s look at the directory structure for com.house.bricks:

src

└── com.house.bricks

    ├── com

    │   └── house

    │       └── bricks

    │           └── Story.java

    └── module-info.java

 

com.house.bricks:
   module-info.java:
 

module com.house.bricks {

    exports com.house.bricks;

}

 

com/house/bricks/Story.java:
 

package com.house.bricks;

 

public class Story {

    public static int count(int level) {

        return level * 18000;

    }

}

Compilation and Run Details
We compile the com.house.bricks module first:

$ javac -d mods/com.house.bricks src/com.house.bricks/module-info.java src/com.house.bricks/com/
house/bricks/Story.java

Next, we compile the com.house.brickhouse module:

$ javac --module-path mods -d mods/com.house.brickhouse 

src/com.house.brickhouse/module-info.java 

src/com.house.brickhouse/com/house/brickhouse/House1.java

src/com.house.brickhouse/com/house/brickhouse/House2.java

Now we run the House1 example:

$ java --module-path mods -m com.house.brickhouse/com.house.brickhouse.House1
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Output:

My single-level house will need 18000 bricks

Then we run the House2 example:

$ java --module-path mods -m com.house.brickhouse/com.house.brickhouse.House2

Output:

My two-level house will need 36000 bricks

Introducing a New Module
Now, let’s expand our project by introducing a new module that provides various types of 
bricks. We’ll call this module com.house.bricktypes, and it will include different classes for 
different types of bricks. Here’s the new directory structure for the com.house.bricktypes 
module:

src

└── com.house.bricktypes

    ├── com

    │   └── house

    │       └── bricktypes

    │           ├── ClayBrick.java

    │           └── ConcreteBrick.java

    └── module-info.java

com.house.bricktypes:
    module-info.java:

module com.house.bricktypes {

    exports com.house.bricktypes;

}

The ClayBrick.java and ConcreteBrick.java classes will define the properties and  
methods for their respective brick types.

ClayBrick.java:

package com.house.bricktypes;

 

public class ClayBrick {

    public static int getBricksPerSquareMeter() {

        return 60;

    }

}
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ConcreteBrick.java:

package com.house.bricktypes;

 

public class ConcreteBrick {

    public static int getBricksPerSquareMeter() {

        return 50;

    }

}

With the new module in place, we need to update our existing modules to make use of these 
new brick types. Let’s start by updating the module-info.java file in the com.house. 
brickhouse module:

module com.house.brickhouse {

    requires com.house.bricks;

    requires com.house.bricktypes;

    exports com.house.brickhouse;

}

We modify the House1.java and House2.java files to use the new brick types.

House1.java:

package com.house.brickhouse;

import com.house.bricks.Story;

import com.house.bricktypes.ClayBrick;

 

public class House1 {

    public static void main(String[] args) {

        int bricksPerSquareMeter = ClayBrick.getBricksPerSquareMeter();

        System.out.println(" My single-level house will need "  
+ Story.count(1, bricksPerSquareMeter) + " clay bricks");

    }

}

House2.java:

package com.house.brickhouse;

import com.house.bricks.Story;

import com.house.bricktypes.ConcreteBrick;

 

public class House2 {



 Understanding the Java Platform Module System 75

    public static void main(String[] args) {

        int bricksPerSquareMeter = ConcreteBrick.getBricksPerSquareMeter();

        System.out.println(" My two-level house will need "  
+ Story.count(2, bricksPerSquareMeter) + " concrete bricks");

    }

}

By making these changes, we’re allowing our House1 and House2 classes to use different types 
of bricks, which adds more flexibility to our program. Let’s now update the Story.java class in 
the com.house.bricks module to accept the bricks per square meter:

package com.house.bricks; 

 

public class Story {

    public static int count(int level, int bricksPerSquareMeter) {

        return level * bricksPerSquareMeter * 300;

    }

}

Now that we’ve updated our modules, let’s compile and run them to see the changes in action:

 ■ Create a new mods directory for the com.house.bricktypes module:

$ mkdir mods/com.house.bricktypes

 ■ Compile the com.house.bricktypes module:

$ javac -d mods/com.house.bricktypes 

src/com.house.bricktypes/module-info.java 

src/com.house.bricktypes/com/house/bricktypes/*.java

 ■ Recompile the com.house.bricks and com.house.brickhouse modules:

$ javac --module-path mods -d mods/com.house.bricks 

src/com.house.bricks/module-info.java src/com.house.bricks/com/house/bricks/Story.java 

$ javac --module-path mods -d mods/com.house.brickhouse 

src/com.house.brickhouse/module-info.java 

src/com.house.brickhouse/com/house/brickhouse/House1.java 

src/com.house.brickhouse/com/house/brickhouse/House2.java

With these updates, our program is now more versatile and can handle different types of bricks. 
This is just one example of how the modular system in Java can make our code more flexible 
and maintainable.
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Figure 3.1 Class Diagram to Show the Relationships Between Modules

Let’s now visualize these relationships with a class diagram. Figure 3.1 includes the new 
module com.house.bricktypes, and the arrows represent “Uses” relationships. House1 uses 
Story and ClayBrick, whereas House2 uses Story and ConcreteBrick. As a result, instances 
of House1 and House2 will contain references to instances of Story and either ClayBrick or 
ConcreteBrick, respectively. They use these references to interact with the methods and attri-
butes of the Story, ClayBrick, and ConcreteBrick classes. Here are more details:

 ■ House1 and House2: These classes represent two different types of houses. Both classes 
have the following attributes:

 ■ name: A string representing the name of the house.

 ■ levels: An integer representing the number of levels in the house.

 ■ story: An instance of the Story class representing a level of the house.

 ■ main(String[] args): The entry method for the class, which acts as the initial kick-
starter for the application’s execution.

 ■ Story: This class represents a level in a house. It has the following attributes:

 ■ level: An integer representing the level number.

 ■ bricksPerSquareMeter: An integer representing the number of bricks per square 
meter for the level.

 ■ count(int level, int bricksPerSquareMeter): A method that calculates the 
total number of bricks required for a given level and bricks per square meter.

 ■ ClayBrick and ConcreteBrick: These classes represent two different types of bricks. 
Both classes have the following attributes:

 ■ getBricksPerSquareMeter(): A static method that returns the number of bricks per 
square meter. This method is called by the houses to obtain the value needed for calcu-
lations in the Story class.
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Next, let’s look at the use-case diagram of the Brick House Construction system with the House 
Owner as the actor and Clay Brick and Concrete Brick as the systems (Figure 3.2). This diagram 
illustrates how the House Owner interacts with the system to calculate the number of bricks 
required for different types of houses and choose the type of bricks for the construction.

Here’s more information on the elements of the use-case diagram:

 ■ House Owner: This is the actor who wants to build a house. The House Owner interacts 
with the Brick House Construction system in the following ways:

 ■ Calculate Bricks for House 1: The House Owner uses the system to calculate the 
number of bricks required to build House 1.

 ■ Calculate Bricks for House 2: The House Owner uses the system to calculate the  
number of bricks required to build House 2.

 ■ Choose Brick Type: The House Owner uses the system to select the type of bricks to be 
used for the construction.

 ■ Brick House Construction: This system helps the House Owner in the construction 
process. It provides the following use cases:

 ■ Calculate Bricks for House 1: This use case calculates the number of bricks required 
for House 1. It interacts with both the Clay Brick and Concrete Brick systems to get the 
necessary data.

 ■ Calculate Bricks for House 2: This use case calculates the number of bricks required 
for House 2. It also interacts with both the Clay Brick and Concrete Brick systems to get 
the necessary data.

 ■ Choose Brick Type: This use case allows the House Owner to choose the type of bricks 
for the construction.

 ■ Clay Brick and Concrete Brick: These systems provide the data (e.g., size, cost) to 
the Brick House Construction system that is needed to calculate the number of bricks 
required for the construction of the houses.

Figure 3.2 Use-Case Diagram of Brick House Construction
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From Monolithic to Modular: The Evolution of the JDK
Before the introduction of the modular JDK, the bloating of the JDK led to overly complex and 
difficult-to-read applications. In particular, complex dependencies and cross-dependencies 
made it difficult to maintain and extend applications. JAR (Java Archives) hell (i.e., problems 
related to loading classes in Java) arose due to both the lack of simplicity and JARs’ lack of 
awareness about the classes they contained.

The sheer footprint of the JDK also posed a challenge, particularly for smaller devices or other 
situations where the entire monolithic JDK wasn’t needed. The modular JDK came to the  
rescue, transforming the JDK landscape.

Continuing the Evolution: Modular JDK in JDK 11 and 
Beyond
The Java Platform Module System (JPMS) was first introduced in JDK 9, and its evolution has 
continued in subsequent releases. JDK 11, the first long-term support (LTS) release after JDK 
8, further refined the modular Java platform. Some of the notable improvements and changes 
made in JDK 11 are summarized here:

 ■ Removal of deprecated modules: Some Java Enterprise Edition (EE) and Common 
Object Request Broker Architecture (CORBA) modules that had been deprecated in JDK 
9 were finally removed in JDK 11. This change promoted a leaner Java platform and 
reduced the maintenance burden.

 ■ Matured module system: The JPMS has matured over time, benefiting from the 
feedback of developers and real-world usage. Newer JDK releases have addressed issues, 
improved performance, and optimized the module system’s capabilities.

 ■ Refined APIs: APIs and features have been refined in subsequent releases, providing a 
more consistent and coherent experience for developers using the module system.

 ■ Continued enhancements: JDK 11 and subsequent releases have continued to enhance 
the module system—for example, by offering better diagnostic messages and error report-
ing, improved JVM performance, and other incremental improvements that benefit 
developers.

Implementing Modular Services with JDK 17
With the JDK’s modular approach, we can enhance the concept of services (introduced in 
Java 1.6) by decoupling modules that provide the service interface from their provider mod-
ule, eventually creating a fully decoupled consumer. To employ services, the type is usually 
declared as an interface or an abstract class, and the service providers need to be clearly identi-
fied in their modules, enabling them to be recognized as providers. Lastly, consumer modules 
are required to utilize those providers.
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To better explain the decoupling that occurs, we’ll use a step-by-step example to build a 
BricksProvider along with its providers and consumers.

Service Provider
A service provider is a module that implements a service interface and makes it available for 
other modules to consume. It is responsible for implementing the functionalities defined in the 
service interface. In our example, we’ll create a module called com.example.bricksprovider, 
which will implement the BrickHouse interface and provide the service.

Creating the com.example.bricksprovider Module

First, we create a new directory called bricksprovider; inside it, we create the com/example/
bricksprovider directory structure. Next, we create a module-info.java file in the  
bricks provider directory with the following content:

module com.example.bricksprovider {

    requires com.example.brickhouse;

    provides com.example.brickhouse.BrickHouse with com.example.bricksprovider.BricksProvider;

}

This module-info.java file declares that our module requires the com.example.brickhouse 
module and provides an implementation of the BrickHouse interface through the com. 
example.bricksprovider.BricksProvider class.

Now, we create the BricksProvider.java file inside the com/example/bricksprovider 
directory with the following content:

package com.example.bricksprovider;

import com.example.brickhouse.BrickHouse;

 

public class BricksProvider implements BrickHouse {

    @Override

    public void build() {

        System.out.println("Building a house with bricks...");

    }

}

Service Consumer
A service consumer is a module that uses a service provided by another module. It declares the 
service it requires in its module-info.java file using the uses keyword. The service consumer 
can then use the ServiceLoader API to discover and instantiate implementations of the 
required service.
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Creating the com.example.builder Module

First, we create a new directory called builder; inside it, we create the com/example/builder 
directory structure. Next, we create a module-info.java file in the builder directory with 
the following content:

module com.example.builder {

    requires com.example.brickhouse;

    uses com.example.brickhouse.BrickHouse;

}

This module-info.java file declares that our module requires the com.example.brickhouse 
module and uses the BrickHouse service.

Now, we create a Builder.java file inside the com/example/builder directory with the 
following content:

package com.example.builder;

import com.example.brickhouse.BrickHouse;

import java.util.ServiceLoader;

 

public class Builder {

    public static void main(String[] args) {

        ServiceLoader<BrickHouse> loader = ServiceLoader.load(BrickHouse.class);

        loader.forEach(BrickHouse::build);

    }

}

A Working Example
Let’s consider a simple example of a modular Java application that uses services:

 ■ com.example.brickhouse: A module that defines the BrickHouse service interface 
that other modules can implement

 ■ com.example.bricksprovider: A module that provides an implementation of the 
BrickHouse service and declares it in its module-info.java file using the provides 
keyword

 ■ com.example.builder: A module that consumes the BrickHouse service and declares 
the required service in its module-info.java file using the uses keyword

The builder can then use the ServiceLoader API to discover and instantiate the BrickHouse 
implementation provided by the com.example.bricksprovider module.
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Figure 3.3 Modular Services

Figure 3.3 depicts the relationships between the modules and classes in a module diagram. 
The module diagram represents the dependencies and relationships between the modules and 
classes:

 ■ The com.example.builder module contains the Builder.java class, which uses the 
BrickHouse interface from the com.example.brickhouse module.

 ■ The com.example.bricksprovider module contains the BricksProvider.java class, 
which implements and provides the BrickHouse interface.

Implementation Details
The ServiceLoader API is a powerful mechanism that allows the com.example.builder 
module to discover and instantiate the BrickHouse implementation provided by the com.
example.bricksprovider module at runtime. This allows for more flexibility and better 
separation of concerns between modules. The following subsections focus on some implemen-
tation details that can help us better understand the interactions between the modules and the 
role of the ServiceLoader API.

Discovering Service Implementations

The ServiceLoader.load() method takes a service interface as its argument—in our case, 
BrickHouse.class—and returns a ServiceLoader instance. This instance is an iterable 
object containing all available service implementations. The ServiceLoader relies on the 
information provided in the module-info.java files to discover the service implementations.
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Instantiating Service Implementations

When iterating over the ServiceLoader instance, the API automatically instantiates the ser-
vice implementations provided by the service providers. In our example, the BricksProvider 
class is instantiated, and its build() method is called when iterating over the ServiceLoader 
instance.

Encapsulating Implementation Details

By using the JPMS, the com.example.bricksprovider module can encapsulate its implemen-
tation details, exposing only the BrickHouse service that it provides. This allows the com.
example.builder module to consume the service without depending on the concrete  
implementation, creating a more robust and maintainable system.

Adding More Service Providers

Our example can be easily extended by adding more service providers implementing the 
BrickHouse interface. As long as the new service providers are properly declared in their 
respective module-info.java files, the com.example.builder module will be able to discover 
and use them automatically through the ServiceLoader API. This allows for a more modular 
and extensible system that can adapt to changing requirements or new implementations.

Figure 3.4 is a use-case diagram that depicts the interactions between the service consumer and 
service provider. It includes two actors: Service Consumer and Service Provider.

 ■ Service Consumer: This uses the services provided by the Service Provider. The Service 
Consumer interacts with the Modular JDK in the following ways:

 ■ Discover Service Implementations: The Service Consumer uses the Modular JDK to 
find available service implementations.

 ■ Instantiate Service Implementations: Once the service implementations are discov-
ered, the Service Consumer uses the Modular JDK to create instances of these services.

 ■ Encapsulate Implementation Details: The Service Consumer benefits from the 
encapsulation provided by the Modular JDK, which allows it to use services without 
needing to know their underlying implementation.

 ■ Service Provider: This implements and provides the services. The Service Provider inter-
acts with the Modular JDK in the following ways:

 ■ Implement Service Interface: The Service Provider uses the Modular JDK to 
implement the service interface, which defines the contract for the service.

 ■ Encapsulate Implementation Details: The Service Provider uses the Modular JDK to 
hide the details of its service implementation, exposing only the service interface.

 ■ Add More Service Providers: The Service Provider can use the Modular JDK to add 
more providers for the service, enhancing the modularity and extensibility of the 
system.
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Figure 3.4 Use-Case Diagram Highlighting the Service Consumer and Service Provider

The Modular JDK acts as a robust facilitator for these interactions, establishing a comprehensive 
platform where service providers can effectively offer their services. Simultaneously, it provides 
an avenue for service consumers to discover and utilize these services efficiently. This dynamic 
ecosystem fosters a seamless exchange of services, enhancing the overall functionality and 
interoperability of modular Java applications.

JAR Hell Versioning Problem and Jigsaw Layers
Before diving into the details of the JAR hell versioning problem and Jigsaw layers, I’d like to 
introduce Nikita Lipski, a fellow JVM engineer and an expert in the field of Java modularity. 
Nikita has provided valuable insights and a comprehensive write-up on this topic, which we 
will be discussing in this section. His work will help us better understand the JAR hell version-
ing problem and how Jigsaw layers can be utilized to address this issue in JDK 11 and JDK 17.

Java’s backward compatibility is one of its key features. This compatibility ensures that when a 
new version of Java is released, applications built for older versions can run on the new version 
without any changes to the source code, and often even without recompilation. The same 
principle applies to third-party libraries—applications can work with updated versions of the 
libraries without modifications to the source code.
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However, this compatibility does not extend to versioning at the source level, and the JPMS 
does not introduce versioning at this level, either. Instead, versioning is managed at the artifact 
level, using artifact management systems like Maven or Gradle. These systems handle version-
ing and dependency management for the libraries and frameworks used in Java projects, ensur-
ing that the correct versions of the dependencies are included in the build process. But what 
happens when a Java application depends on multiple third-party libraries, which in turn may 
depend on different versions of another library? This can lead to conflicts and runtime errors if 
multiple versions of the same library are present on the classpath.

So, although JPMS has certainly improved modularity and code organization in Java, the “JAR 
hell” problem can still be relevant when dealing with versioning at the artifact level. Let’s look 
at an example (shown in Figure 3.5) where an application depends on two third-party libraries 
(Foo and Bar), which in turn depend on different versions of another library (Baz).

If both versions of the Baz library are placed on the classpath, it becomes unclear which version 
of the library will be used at runtime, resulting in unavoidable version conflicts. To address 
this issue, JPMS prohibits such situations by detecting split packages, which are not allowed in 
JPMS, in support of its “reliable configuration” goal (Figure 3.6).

While detecting versioning problems early is useful, JPMS does not provide a recommended 
way to resolve them. One approach to address these problems is to use the latest version of the 
conflicting library, assuming it is backward compatible. However, this might not always be 
possible due to introduced incompatibilities.

To address such cases, JPMS offers the ModuleLayer feature, which allows for the installation 
of a module sub-graph into the module system in an isolated manner. When different ver-
sions of the conflicting library are placed into separate layers, both of those versions can be 
loaded by JPMS. Although there is no direct way to access a module of the child layer from 
the parent layer, this can be achieved indirectly—by implementing a service provider in the 
child layer module, which the parent layer module can then use. (See the earlier discussion of 
“Implementing Modular Services with JDK 17” for more details.)

Figure 3.5 Modularity and Version Conflicts
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Figure 3.6 Reliable Configuration with JPMS

Working Example: JAR Hell
In this section, a working example is provided to demonstrate the use of module layers in 
addressing the JAR hell problem in the context of JDK 17 (this strategy is applicable to JDK 11 
users as well). This example builds upon Nikita’s explanation and the house service provider 
implementation we discussed earlier. It demonstrates how you can work with different versions 
of a library (termed basic and high-quality implementations) within a modular application.

First, let’s take a look at the sample code provided by Java SE 9 documentation:1

 1  ModuleFinder finder = ModuleFinder.of(dir1, dir2, dir3);

 2  ModuleLayer parent = ModuleLayer.boot();

 3   Configuration cf = parent.configuration().resolve(finder, ModuleFinder.of(), 
Set.of("myapp"));

 4  ClassLoader scl = ClassLoader.getSystemClassLoader();

 5  ModuleLayer layer = parent.defineModulesWithOneLoader(cf, scl);

In this example:

 ■ At line 1, a ModuleFinder is set up to locate modules from specific directories (dir1, 
dir2, and dir3).

 ■ At line 2, the boot layer is established as the parent layer.

 ■ At line 3, the boot layer’s configuration is resolved as the parent configuration for the 
modules found in the directories specified in line 1.

 ■ At line 5, a new layer with the resolved configuration is created, using a single class loader 
with the system class loader as its parent.

1 https://docs.oracle.com/javase/9/docs/api/java/lang/ModuleLayer.html

https://docs.oracle.com/javase/9/docs/api/java/lang/ModuleLayer.html
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Figure 3.7 JPMS Example Versions and Layers

Figure 3.8 JPMS Example Version Layers Flattened

Now, let’s extend our house service provider implementation. We’ll have basic and high-quality 
implementations provided in the com.codekaram.provider modules. You can think of the 
“basic implementation” as version 1 of the house library and the “high-quality implementa-
tion” as version 2 of the house library (Figure 3.7).

For each level, we will reach out to both the libraries. So, our combinations would be level 1 + 
basic implementation provider, level 1 + high-quality implementation provider, level 2 + basic 
implementation provider, and level 2 + high-quality implementation provider. For simplicity, 
let’s denote the combinations as house ver1.b, house ver1.hq, house ver2.b, and house ver2.hq, 
respectively (Figure 3.8).

Implementation Details
Building upon the concepts introduced by Nikita in the previous section, let’s dive into the 
implementation details and understand how the layers’ structure and program flow work in 
practice. First, let’s look at the source trees:

ModuleLayer

├── basic

│   └── src

│       └── com.codekaram.provider
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│           ├── classes

│           │   ├── com

│           │   │   └── codekaram

│           │   │       └── provider

│           │   │           └── House.java

│           │   └── module-info.java

│           └── tests

├── high-quality

│   └── src

│       └── com.codekaram.provider

│           ├── classes

│           │   ├── com

│           │   │   └── codekaram

│           │   │       └── provider

│           │   │           └── House.java

│           │   └── module-info.java

│           └── tests

└── src

    └── com.codekaram.brickhouse

        ├── classes

        │   ├── com

        │   │   └── codekaram

        │   │       └── brickhouse

        │   │           ├── loadLayers.java

        │   │           └── spi

        │   │               └── BricksProvider.java

        │   └── module-info.java

        └── tests

Here’s the module file information and the module graph for com.codekaram.provider. Note 
that these look exactly the same for both the basic and high-quality implementations.

module com.codekaram.provider {

    requires com.codekaram.brickhouse;

    uses com.codekaram.brickhouse.spi.BricksProvider;

    provides com.codekaram.brickhouse.spi.BricksProvider with com.codekaram.provider.House;

}

The module diagram (shown in Figure 3.9) helps visualize the dependencies between modules 
and the services they provide, which can be useful for understanding the structure of a modu-
lar Java application:

 ■ The com.codekaram.provider module depends on the com.codekaram.brickhouse 
module and implicitly depends on the java.base module, which is the foundational 
module of every Java application. This is indicated by the arrows pointing from com.
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codekaram.provider to com.codekaram.brickhouse and the assumed arrow to 
java.base.

 ■ The com.codekaram.brickhouse module also implicitly depends on the java.base 
module, as all Java modules do.

Figure 3.9 A Working Example with Services and Layers

 ■ The java.base module does not depend on any other module and is the core module 
upon which all other modules rely.

 ■ The com.codekaram.provider module provides the service com.codekaram. 
brickhouse.spi.BricksProvider with the implementation com.codekaram. 
provider.House. This relationship is represented in the graph by a dashed arrow from 
com.codekaram.provider to com.codekaram.brickhouse.spi.BricksProvider.

Before diving into the code for these providers, let’s look at the module file information for the 
com.codekaram.brickhouse module:

module com.codekaram.brickhouse {

    uses com.codekaram.brickhouse.spi.BricksProvider;

    exports com.codekaram.brickhouse.spi;

}

The loadLayers class will not only handle forming layers, but also be able to load the service 
providers for each level. That’s a bit of a simplification, but it helps us to better understand the 
flow. Now, let’s examine the loadLayers implementation. Here’s the creation of the layers’ 
code based on the sample code from the “Working Example: JAR Hell” section:

static ModuleLayer getProviderLayer(String getCustomDir) {

   ModuleFinder finder = ModuleFinder.of(Paths.get(getCustomDir));

   ModuleLayer parent = ModuleLayer.boot();

   Configuration cf = parent.configuration().resolve(finder, 

     ModuleFinder.of(), Set.of("com.codekaram.provider"));

   ClassLoader scl = ClassLoader.getSystemClassLoader();

   ModuleLayer layer = parent.defineModulesWithOneLoader(cf, scl);
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   System.out.println("Created a new layer for " + layer);

   return layer;

}

If we simply want to create two layers, one for house version basic and another for house ver-
sion high-quality, all we have to do is call getProviderLayer() (from the main method):

doWork( Stream.of(args) 
.map(getCustomDir -> getProviderLayer(getCustomDir)));

If we pass the two directories basic and high-quality as runtime parameters, the  
getProviderLayer() method will look for com.codekaram.provider in those directories 
and then create a layer for each. Let’s examine the output (the line numbers have been added 
for the purpose of clarity and explanation):

 1   $ java --module-path mods -m com.codekaram.brickhouse/ 
com.codekaram.brickhouse.loadLayers basic high-quality

 2  Created a new layer for com.codekaram.provider

 3  I am the basic provider

 4  Created a new layer for com.codekaram.provider

 5  I am the high-quality provider

 ■ Line 1 is our command-line argument with basic and high-quality as directories that 
provide the implementation of the BrickProvider service.

 ■ Lines 2 and 4 are outputs indicating that com.codekaram.provider was found in both 
the directories and a new layer was created for each.

 ■ Lines 3 and 5 are the output of provider.getName() as implemented in the doWork() 
code:

private static void doWork(Stream<ModuleLayer> myLayers){  

myLayers.flatMap(moduleLayer -> ServiceLoader 

   .load(moduleLayer, BricksProvider.class)

    .stream().map(ServiceLoader.Provider::get))

  .forEach(eachSLProvider -> System.out.println("I am the " + eachSLProvider.getName() +  
" provider"));}

In doWork(), we first create a service loader for the BricksProvider service and load the 
provider from the module layer. We then print the return String of the getName() method 
for that provider. As seen in the output, we have two module layers and we were successful in 
printing the I am the basic provider and I am the high-quality provider out-
puts, where basic and high-quality are the return strings of the getName() method.
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Now, let’s visualize the workings of the four layers that we discussed earlier. To do so, we’ll 
create a simple problem statement that builds a quote for basic and high-quality bricks for both 
levels of the house. First, we add the following code to our main() method:

int[] level = {1,2};

IntStream levels = Arrays.stream(level);

Next, we stream doWork() as follows:

levels.forEach(levelcount -> loadLayers

         .doWork(…

We now have four layers similar to those mentioned earlier (house ver1.b, house ver1.hq, house 
ver2.b, and house ver2.hq). Here’s the updated output:

Created a new layer for com.codekaram.provider

My basic 1 level house will need 18000 bricks and those will cost me $6120

Created a new layer for com.codekaram.provider

My high-quality 1 level house will need 18000 bricks and those will cost me $9000

Created a new layer for com.codekaram.provider

My basic 2 level house will need 36000 bricks and those will cost me $12240

Created a new layer for com.codekaram.provider

My high-quality 2 level house will need 36000 bricks and those will be over my budget of $15000

 

NOTE The return string of the getName() methods for our providers has been 
changed to return just the "basic" and "high-quality" strings instead of an 
entire sentence.

The variation in the last line of the updated output serves as a demonstration of how addi-
tional conditions can be applied to service providers. Here, a budget constraint check has been 
integrated into the high-quality provider’s implementation for a two-level house. You can, of 
course, customize the output and conditions as per your requirements.

Here’s the updated doWork() method to handle both the level and the provider, along with the 
relevant code in the main method:

private static void doWork(int level, Stream<ModuleLayer> myLayers){

    myLayers.flatMap(moduleLayer -> ServiceLoader

        .load(moduleLayer, BricksProvider.class)

        .stream().map(ServiceLoader.Provider::get))

     .forEach(eachSLProvider -> System.out.println("My " + eachSLProvider.getName()  
+ " " + level + " level house will need " + eachSLProvider.getBricksQuote(level)));

}
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public static void main(String[] args) {

    int[] levels = {1, 2};

    IntStream levelStream = Arrays.stream(levels);

 

    levelStream.forEach(levelcount -> doWork(levelcount, Stream.of(args)

        .map(getCustomDir -> getProviderLayer(getCustomDir))));

}

Now, we can calculate the number of bricks and their cost for different levels of the house using 
the basic and high-quality implementations, with a separate module layer being devoted to 
each implementation. This demonstrates the power and flexibility that module layers provide, 
by enabling you to dynamically load and unload different implementations of a service with-
out affecting other parts of your application.

Remember to adjust the service providers’ code based on your specific use case and require-
ments. The example provided here is just a starting point for you to build on and adapt as 
needed.

In summary, this example illustrates the utility of Java module layers in creating applications 
that are both adaptable and scalable. By using the concepts of module layers and the Java 
ServiceLoader, you can create extensible applications, allowing you to adapt those applica-
tions to different requirements and conditions without affecting the rest of your codebase.

Open Services Gateway Initiative
The Open Services Gateway Initiative (OSGi) has been an alternative module system available 
to Java developers since 2000, long before the introduction of Jigsaw and Java module layers. 
As there was no built-in standard module system in Java at the time of OSGi’s emergence, it 
addressed many modularity problems differently compared to Project Jigsaw. In this section, 
with insights from Nikita, whose expertise in Java modularity encompasses OSGi, we will com-
pare Java module layers and OSGi, highlighting their similarities and differences.

OSGi Overview
OSGi is a mature and widely used framework that provides modularity and extensibility for 
Java applications. It offers a dynamic component model, which allows developers to create, 
update, and remove modules (called bundles) at runtime without restarting the application.

Similarities
 ■ Modularity: Both Java module layers and OSGi promote modularity by enforcing a clear 

separation between components, making it easier to maintain, extend, and reuse code.

 ■ Dynamic loading: Both technologies support dynamic loading and unloading of 
modules or bundles, allowing developers to update, extend, or remove components at 
runtime without affecting the rest of the application.
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 ■ Service abstraction: Both Java module layers (with the ServiceLoader) and OSGi pro-
vide service abstractions that enable loose coupling between components. This allows for 
greater flexibility when switching between different implementations of a service.

Differences
 ■ Maturity: OSGi is a more mature and battle-tested technology, with a rich ecosystem and 

tooling support. Java module layers, which were introduced in JDK 9, are comparatively 
newer and may not have the same level of tooling and library support as OSGi.

 ■ Integration with Java platform: Java module layers are a part of the Java platform, pro-
viding a native solution for modularity and extensibility. OSGi, by contrast, is a separate 
framework that builds on top of the Java platform.

 ■ Complexity: OSGi can be more complex than Java module layers, with a steeper learning 
curve and more advanced features. Java module layers, while still providing powerful 
functionality, may be more straightforward and easier to use for developers who are new 
to modularity concepts.

 ■ Runtime environment: OSGi applications run inside an OSGi container, which man-
ages the life cycle of the bundles and enforces modularity rules. Java module layers run 
directly on the Java platform, with the module system handling the loading and unload-
ing of modules.

 ■ Versioning: OSGi provides built-in support for multiple versions of a module or bun-
dle, allowing developers to deploy and run different versions of the same component 
concurrently. This is achieved by qualifying modules with versions and applying “uses 
constraints” to ensure safe class namespaces exist for each module. However, dealing 
with versions in OSGi can introduce unnecessary complexity for module resolution and 
for end users. In contrast, Java module layers do not natively support multiple versions of 
a module, but you can achieve similar functionality by creating separate module layers 
for each version.

 ■ Strong encapsulation: Java module layers, as first-class citizens in the JDK, provide strong 
encapsulation by issuing error messages when unauthorized access to non-exported func-
tionality occurs, even via reflection. In OSGi, non-exported functionality can be “hid-
den” using class loaders, but the module internals are still available for reflection access 
unless a special security manager is set. OSGi was limited by pre-JPMS features of Java SE 
and could not provide the same level of strong encapsulation as Java module layers.

When it comes to achieving modularity and extensibility in Java applications, developers typi-
cally have two main options: Java module layers and OSGi. Remember, the choice between Java 
module layers and OSGi is not always binary and can depend on many factors. These include 
the specific requirements of your project, the existing technology stack, and your team’s 
familiarity with the technologies. Also, it’s worth noting that Java module layers and OSGi are 
not the only options for achieving modularity in Java applications. Depending on your specific 
needs and context, other solutions might be more appropriate. It is crucial to thoroughly 
evaluate the pros and cons of all available options before making a decision for your project. 
Your choice should be based on the specific demands and restrictions of your project to ensure 
optimal outcomes.
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On the one hand, if you need advanced features like multiple version support and a dynamic 
component model, OSGi may be the better option for you. This technology is ideal for complex 
applications that require both flexibility and scalability. However, it can be more difficult to 
learn and implement than Java module layers, so it may not be the best choice for developers 
who are new to modularity.

On the other hand, Java module layers offer a more straightforward solution for achieving 
modularity and extensibility in your Java applications. This technology is built into the Java 
platform itself, which means that developers who are already familiar with Java should find it 
relatively easy to use. Additionally, Java module layers offer strong encapsulation features that 
can help prevent dependencies from bleeding across different modules.

Introduction to Jdeps, Jlink, Jdeprscan, and Jmod
This section covers four tools that aid in the development and deployment of modular applica-
tions: jdeps, jlink, jdeprscan, and jmod. Each of these tools serves a unique purpose in the process 
of building, analyzing, and deploying Java applications.

Jdeps
Jdeps is a tool that facilitates analysis of the dependencies of Java classes or packages. It’s partic-
ularly useful when you’re trying to create a module file for JAR files. With jdeps, you can create 
various filters using regular expressions (regex); a regular expression is a sequence of characters 
that forms a search pattern. Here’s how you can use jdeps on the loadLayers class:

$ jdeps mods/com.codekaram.brickhouse/com/codekaram/brickhouse/loadLayers.class 

loadLayers.class -> java.base

loadLayers.class -> not found

   com.codekaram.brickhouse -> com.codekaram.brickhouse.spi   not found

   com.codekaram.brickhouse -> java.io                        java.base

   com.codekaram.brickhouse -> java.lang                      java.base

   com.codekaram.brickhouse -> java.lang.invoke               java.base

   com.codekaram.brickhouse -> java.lang.module               java.base

   com.codekaram.brickhouse -> java.nio.file                  java.base

   com.codekaram.brickhouse -> java.util                      java.base

   com.codekaram.brickhouse -> java.util.function             java.base

   com.codekaram.brickhouse -> java.util.stream               java.base

The preceding command has the same effect as passing the option -verbose:package to 
jdeps. The -verbose option by itself will list all the dependencies:

$ jdeps -v mods/com.codekaram.brickhouse/com/codekaram/brickhouse/loadLayers.class 

loadLayers.class -> java.base

loadLayers.class -> not found

   com.codekaram.brickhouse.loadLayers -> com.codekaram.brickhouse.spi.BricksProvider  not found

   com.codekaram.brickhouse.loadLayers -> java.io.PrintStream                   java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.Class                       java.base
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   com.codekaram.brickhouse.loadLayers -> java.lang.ClassLoader                 java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.ModuleLayer                 java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.NoSuchMethodException       java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.Object                      java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.String                      java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.System                      java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.CallSite             java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.LambdaMetafactory    java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.MethodHandle         java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.MethodHandles        java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.MethodHandles$Lookup java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.MethodType           java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.invoke.StringConcatFactory  java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.module.Configuration        java.base

   com.codekaram.brickhouse.loadLayers -> java.lang.module.ModuleFinder         java.base

   com.codekaram.brickhouse.loadLayers -> java.nio.file.Path                    java.base

   com.codekaram.brickhouse.loadLayers -> java.nio.file.Paths                   java.base

   com.codekaram.brickhouse.loadLayers -> java.util.Arrays                      java.base

   com.codekaram.brickhouse.loadLayers -> java.util.Collection                  java.base

   com.codekaram.brickhouse.loadLayers -> java.util.ServiceLoader               java.base

   com.codekaram.brickhouse.loadLayers -> java.util.Set                         java.base

   com.codekaram.brickhouse.loadLayers -> java.util.Spliterator                 java.base

   com.codekaram.brickhouse.loadLayers -> java.util.function.Consumer           java.base

   com.codekaram.brickhouse.loadLayers -> java.util.function.Function           java.base

   com.codekaram.brickhouse.loadLayers -> java.util.function.IntConsumer        java.base

   com.codekaram.brickhouse.loadLayers -> java.util.function.Predicate          java.base

   com.codekaram.brickhouse.loadLayers -> java.util.stream.IntStream            java.base

   com.codekaram.brickhouse.loadLayers -> java.util.stream.Stream               java.base

   com.codekaram.brickhouse.loadLayers -> java.util.stream.StreamSupport        java.base

Jdeprscan
Jdeprscan is a tool that analyzes the usage of deprecated APIs in modules. Deprecated APIs are 
older APIs that the Java community has replaced with newer ones. These older APIs are still sup-
ported but are marked for removal in future releases. Jdeprscan helps developers maintain their 
code by suggesting alternative solutions to these deprecated APIs, aiding them in transitioning 
to newer, supported APIs.

Here’s how you can use jdeprscan on the com.codekaram.brickhouse module:

$ jdeprscan --for-removal mods/com.codekaram.brickhouse

No deprecated API marked for removal found.

In this example, jdeprscan is used to scan the com.codekaram.brickhouse module for depre-
cated APIs that are marked for removal. The output indicates that no such deprecated APIs are 
found.
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You can also use --list to see all deprecated APIs in a module:

$ jdeprscan --list mods/com.codekaram.brickhouse

No deprecated API found.

In this case, no deprecated APIs are found in the com.codekaram.brickhouse module.

Jmod
Jmod is a tool used to create, describe, and list JMOD files. JMOD files are an alternative to JAR 
files for packaging modular Java applications, which offer additional features such as native 
code and configuration files. These files can be used for distribution or to create custom run-
time images with jlink.

Here’s how you can use jmod to create a JMOD file for the brickhouse example. Let’s first com-
pile and package the module specific to this example:

$ javac --module-source-path src -d build/modules $(find src -name "*.java")

$ jmod create --class-path build/modules/com.codekaram.brickhouse com.codekaram.brickhouse.jmod

Here, the jmod create command is used to create a JMOD file named com.codekaram.
brickhouse.jmod from the com.codekaram.brickhouse module located in the build/ 
modules directory. You can then use the jmod describe command to display information 
about the JMOD file:

$ jmod describe com.codekaram.brickhouse.jmod

This command will output the module descriptor and any additional information about the 
JMOD file.

Additionally, you can use the jmod list command to display the contents of the created 
JMOD file:

$ jmod list com.codekaram.brickhouse.jmod

com/codekaram/brickhouse/

com/codekaram/brickhouse/loadLayers.class

com/codekaram/brickhouse/loadLayers$1.class

…

The output lists the contents of the com.codekaram.brickhouse.jmod file, showing the  
package structure and class files.

By using jmod to create JMOD files, describe their contents, and list their individual files, you 
can gain a better understanding of your modular application’s structure and streamline the 
process of creating custom runtime images with jlink.
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Jlink
Jlink is a tool that helps link modules and their transitive dependencies to create custom mod-
ular runtime images. These custom images can be packaged and deployed without needing the 
entire Java Runtime Environment (JRE), which makes your application lighter and faster to 
start.

To use the jlink command, this tool needs to be added to your path. First, ensure that the 
$JAVA_HOME/bin is in the path. Next, type jlink on the command line:

$ jlink

Error: --module-path must be specified

Usage: jlink <options> --module-path <modulepath> --add-modules <module>[,<module>...]

Use --help for a list of possible options

Here’s how you can use jlink for the code shown in “Implementing Modular Services with  
JDK 17”:

$ jlink --module-path $JAVA_HOME/jmods:build/modules --add-modules com.example.builder --output 
consumer.services --bind-services

A few notes on this example:

 ■ The command includes a directory called $JAVA_HOME/jmods in the module-path. This 
directory contains the java.base.jmod needed for all application modules.

 ■ Because the module is a consumer of services, it’s necessary to link the service providers 
(and their dependencies). Hence, the –bind-services option is used.

 ■ The runtime image will be available in the consumer.services directory as shown here:

$ ls consumer.services/

bin conf include legal lib release

Let’s now run the image:

$ consumer.services/bin/java -m com.example.builder/com.example.builder.Builder

Building a house with bricks...

With jlink, you can create lightweight, custom, stand-alone runtime images tailored to your 
modular Java applications, thereby simplifying the deployment and reducing the size of your 
distributed application.

Conclusion
This chapter has undertaken a comprehensive exploration of Java modules, tools, and tech-
niques to create and manage modular applications. We have delved into the Java Platform 
Module System (JPMS), highlighting its benefits such as reliable configuration and strong 
encapsulation. These features contribute to more maintainable and scalable applications.
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We navigated the intricacies of creating, packaging, and managing modules, and explored the 
use of module layers to enhance application flexibility. These practices can help address com-
mon challenges faced when migrating to newer JDK versions (e.g., JDK 11 or JDK 17), including 
updating project structures and ensuring dependency compatibility.

Performance Implications
The use of modular Java carries significant performance implications. By including only the 
necessary modules in your application, the JVM loads fewer classes, which improves start-up 
performance and reduces the memory footprint. This is particularly beneficial in resource- 
limited environments such as microservices running in containers. However, it is important to 
note that while modularity can improve performance, it also introduces a level of complexity. 
For instance, improper module design can lead to cyclic dependencies,2 negatively impacting 
performance. Therefore, careful design and understanding of modules are essential to fully 
reap the performance benefits.

Tools and Future Developments
We examined the use of powerful tools like jdeps, jdeprscan, jmod, and jlink, which are instru-
mental in identifying and addressing compatibility issues, creating custom runtime images, 
and streamlining the deployment of modular applications. Looking ahead, we can anticipate 
more advanced options for creating custom runtime images with jlink, and more detailed and 
accurate dependency analysis with jdeps.

As more developers adopt modular Java, new best practices and patterns will emerge, along-
side new tools and libraries designed to work with JPMS. The Java community is continuously 
improving JPMS, with future Java versions expected to refine and expand its capabilities.

Embracing the Modular Programming Paradigm
Transitioning to modular Java can present unique challenges, especially in understanding 
and implementing modular structures in large-scale applications. Compatibility issues may 
arise with third-party libraries or frameworks that may not be fully compatible with JPMS. 
These challenges, while part of the journey toward modernization, are often outweighed by 
the benefits of modular Java, such as improved performance, enhanced scalability, and better 
maintainability.

In conclusion, by leveraging the knowledge gained from this chapter, you can confidently 
migrate your projects and fully harness the potential of modular Java applications. The future 
of modular Java is exciting, and embracing this paradigm will equip you to meet the evolving 
needs of the software development landscape. It’s an exciting time to be working with modular 
Java, and we look forward to seeing how it evolves and shapes the future of robust and efficient 
Java applications.

2 https://openjdk.org/projects/jigsaw/spec/issues/#CyclicDependences

https://openjdk.org/projects/jigsaw/spec/issues/#CyclicDependences
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